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A number of papers including particularly Press (1965),
Pollack (1965), Reinwald and Soland (1966, 1967), and
Callahan and Chapman (1967), have considered the construc-
tion of sequential testing procedures or decision trees from a
given limited entry decision table. In general, for limited entry
tables, such methods proceed by the selection of a condition
from the table and the derivation of two subtables not con-
taining the selected condition, one as the successor of the true
or Yes branch from this condition, and the other as the suc-
cessor of the false or No branch. The two subtables are obtained
by deleting the row for the selected condition from the table
and, in the case of the subtable for successor to the Yes branch,
all of the rules for which the condition entry was ‘N’, while for
the successor table to the No branch, all those rules for which
the condition entry was ‘Y’.

The approach is illustrated using the table of Fig. 1 with the
further information that the three conditions are logically
independent. A discussion of logical dependence and adefinition
of logical independence for the conditions of a limited entry
table is given by King (1969). The sets of actions to be taken

for each of the five rules are denoted by 4,, 4,, . . . As.
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If the first condition is selected for initial evaluation then the
two subtables obtained are shown in Fig. 2.

If the subtables are now treated similarly and, for the sake of
illustration, we select C, for next evaluation on the left branch
and C; on the right branch then we obtain the tree shown in
Fig. 3 with single condition tables remaining to be developed.
On developing the single condition tables the tree shown in
Fig. 4 is obtained.

In the process which we have illustrated informally three
distinct activities can be identified. These activities are:

(a) the selection of conditions

(b) the editing of a table to remove a selected condition and
produce successor subtables

(c) 'the interpretation of final tables as specifying that one or
more of the action sets are to be carried out.

Of these three activities the selection of conditions for testing
is the critical aspect from the point of view of the derivation of
optimal sequential testing procedures but this aspect can only
be considered when general and well defined methods exist for
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the mechanics of the other basic activities. In practice one
would expect to have general purpose processors to carry out
the conversion to a sequential testing procedure which could
be particularised to different methods of condition selection by
the addition of a condition selection procedure. An example of
this approach is given by Dic1 (1970).

Normally the objective of an optimising condition selection
procedure is to minimise run-time. Whilst it is known that a
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procedure to produce the sequential testing procedure which is
the absolute optimum with respect to run-time will be complex
(see Reinwald and Soland, 1966), a number of condition
selection procedures have been discussed in the literature which
are inherently more simple and have been regarded by their
authors as being sufficiently near optimal for many practical
purposes. Examples of such procedures are those of Schwayder
(1971), Ganapathy and Rajaraman (1973), and Verhelst (1972).
The latter, which was originally thought by its author to pro-
duce the absolute optimum, is discussed further by King and
Johnson (1974). An elementary and incomplete but nonetheless
readable and interesting discussion of the problem of deriving
optimum sequential testing procedures from decision tables is
to be found in Humby (1973) and a discussion of the basic
information required for its solution is to be found in Inglis and
King (1968). A brief discussion can also be found in Pollack
et al. (1971).

Relationships among conditions

The table discussed in the preceding section was stated to have
logically independent conditions. A table may, however, have
specified an associated group of logical relations which always
hold among its conditions and, in general, when we use the
term ‘table’ this term should be taken as including the state-
ments of the logical relationships among its conditions. Con-
sider the table shown in Fig. 5 which has been used for illus-
tration previously by King (1967) and was subsequently dis-
cussed by Pollack (1967), and King (1969).

(C,) AGE < 60 Y Y — N
(C,) AGE > 20 Y — N —
(CHSEX=M’" | N Y N —

| 4, 4, 4, 4,

(C,;, N) AND (C,, N) IMPOSS.
Fig. §

The logical relationship shown in Fig. 5 states that it is not
possible to obtain a No outcome to both C; and C, for a
particular transaction. It should be noted, see King (1969),
that the logical relationship can also be stated in either of the
two forms

(C,, N) IMPLIES (C,, Y) ,
and (C,, N) IMPLIES (Cy, Y) ,

and that from any of these three statements the other two may
be derived. The logical relationships may give rise to implied
entries which can be shown explicitly in the table as in Fig. 6.

C, |Y Y ()N
C, | Y — N (V)
C, |[N Y N —

| 4, 4, 4, 4,

(C,, N) AND (C,, N) IMPOSS.
Fig. 6

The development of a tree from the table of Fig. 6 is illustrated
in Fig. 7 where it is seen that consideration of the implied
entries has ensured that only logically possible paths are
included in the tree. Note that the successor subtables shown in
Fig. 7(a) result from the editing process described previously
but that further editing has been carried out on the No sub-
table, both condition rows having been deleted, to give the
primitive table shown down the No branch from C; in Fig. 7(b).
This deletion of condition rows may be made since the subtable
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does not specify that any testing of C, and C; is required. £

In addition to editing the table to produce successor subtablg
for both the Yes and No branches from the condition selected;
it is also necessary to edit the statements of logical relationships
among conditions associated with the table to produce states
ments of logical relationship to be associated with the successer
subtables. This aspect is discussed in more detail below. In t@
example considered in Fig. 7, the statement of logical relatio%
ship shown in Fig. 6 provides no information when C, is true
so that there are no logical relationships to be considered with
the Yes branch subtable shown in Fig. 7(a). When C; is fal@
then the statement of Fig. 6 reduces to a statement that C, {s
necessarily true and this fact is indicated by the bracketed
entry in the No successor subtable in Fig. 7(a). Note that this
situation involves a slight widening of the interpretation of
bracketed entries from that shown in Fig. 6 since they now
also indicate outcomes implied by tests which have taken place
in the course of reaching this particular point on the partial
tree. Condition rows which contain only implied entries and
dashes may be immediately deleted in the editing process as
occurred in Fig. 7.

Overall table meaning

In the first proposals for the use of decision tables in computing
the convention was adopted that one and only one rule of a
decision table should be satisfied for each transaction and
methods for converting tables to sequential testing procedures
have hitherto been based on this assumption. It now appears
that in certain circumstances and applications other conven-
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tions may be used with advantage. In particular the multi-rule
convention proposed by Barnard (1969) has been used most
successfully in the FILETAB system (1972).

The different possible forms of overall table meaning were
discussed by King (1969), are further discussed by King and
Johnson (1973), and commented upon by Harrison (1973).
Various authors, e.g. Press (1965), have suggested that a
drawback of the sequential testing procedure method of trans-
lation is that it cannot handle ambiguous tables satisfactorily.
Press concluded that for this reason binary mask methods of
the type introduced by Kirk (1965) are to be preferred with
apparently ambiguous tables. It now seems clear that suitably
designed tree methods can satisfactorily handle tables con-
forming to any of the conventions on overall table meaning.
When a table is required to conform to the one and only one
rule convention the method described in this paper will detect
errors by identifying those circumstances in which more than
one rule can be satisfied.

The general method proposed in this paper is further
illustrated using the table shown in Fig. 8 which specifies that a
distinct group of actions, A,, is required if ‘seat revenue’
exceeds £7,500, actions A, are required if ‘sales revenue’
exceeds £2,500, actions A if total revenue exceeds £10,000,
and actions A4, if none of these three conditions hold. Note that
total revenue = seat revenue + sales revenue + sundry revenue
so that the third condition may hold without either of the first
two conditions holding. If the first and second conditions hold,
however, then the third condition will necessarily hold and all
three action sets, 4, 4, and A4, are required. It should be noted
that in the initial table the logical relationship among the
conditions does not give rise to implied entries of the form (Y)
or (N).
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(C,) SEAT REVENUE > 7,500 | ¥ — — N
(C,) SALES REVENUE > 2500 | — Y — N
(C;) TOTAL REVENUE > 10,0000 — — Y N

A, A, Ay A,

(C,, Y) AND (C,, Y) IMPLIES (C;, Y)
Fig. 8

The logical relationship stated in Fig. 8 may also be stated in,

among others, the following three alternative ways:

(Cy, Y) AND (C,, Y) AND (C,, N) IMPOSS.

(Cy, Y) AND (C,, N) IMPLIES (C,, N).

(C,, Y) AND (C;, N) IMPLIES (C,, N) .
For convenience a briefer notation is used in the following
discussion where we write C; in place of (C;, Y), 71C; in place
of (C;, N), and use the symbols A in place of AND and —
which stands for IMPLIES when there are symbols to the
right and IMPOSS when there are no symbols to the right.
(See Appendix).

In Fig. 9 we show the stages in the development of a sequential
testing procedure from the table illustrated in Fig. 8. Fig. 9(a)
shows the table and its associated condition relationship in the
briefer notation we are now adopting. In Fig. 9(b) we see that
the Yes and No branch successor subtables include the results
of editing the logical relationship statement shown in Fig. 9(a).
This process involved substituting for the condition tested, the
value which obtains down the particular branch under con-
sideration, simplifying the resulting logical statement, and
associating the result with the particular subtable if this result
is not always satisfied by the possible combinations of values of
the conditions remaining to be tested.

For the Yes branch the substitution yields

trueAC, A T1C;5 >
which simplifies to
C2 AT C3 bd

which has the alternative forms C, - C; and ‘IC3 - 71C,8

and is associated with the Yes branch subtable. It gives rise to =

the implied entry (Y) shown in that subtable.
For the No branch the substitution yields

falseACy, A 11C; —

which is satisfied for all four possible combinations of values of &
C, and C;. There is, therefore, no constraint on the values of £
the conditions that may occur down the No branch and so no g
statements of logical relationships are associated with that
subtable. The reader may care to verify that substituting in the
three alternative forms of the relationship

CinC, > Gy,
CiATC > G, ,
and C, A 11C3 > T1C,
yields the alternative forms
C, -G
1C; —» T1C,
for the Yes branch and no constraints for the No branch.

N
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In Fig. 9(c) we show the further development of the subtables
shown in Fig. 9(b). The development of the No branch subtable
is straightforward. In the left branch subtable the values of the
condition C, are substituted in the logical relationship to
yield the statements

C, A T1true —
and C, A T1false -

to be associated with the Yes branch and No branch subtables
respectively. The first of these statements is always satisfied and
does not, therefore, constitute a constraint whereas the second
states that C, will necessarily be found to be false down the No
path and the statement gives rise to the (N) entry shown in the
subtable.

In Fig. 10 we show the development of the remaining subtables
of Fig. 9(c). It will be seen that this flowchart shows that if all
three conditions are true, which is a logically possible outcome,
then the first three rules of the table are all satisfied by the
transaction. Again if the first condition is false and the re-
maining two are true then the transaction satisfies both the
second and third rules.

Completeness and ambiguity for decision tables

Particularly in the earlier literature on decision tables much
emphasis was placed on the checking of tables to ensure that all
possible combinations of condition outcomes were covered
and that for each such outcome the actions required were
clearly specified.

For the purpose of formalising these checking procedures a
decision table is said to be complete if it specifies an action set
for every logically possible transaction. A table which is not
complete is said to be incomplete. A table is said to be ambiguous
if more than one action set is specified for any logically possible
transaction. In many of the classical uses of decision tables a
requirement has been that a table should be complete and not
ambiguous, i.e. one and only one action set is specified for
every logically possible transaction. A table which is not
ambiguous is said to be unambiguous.

Methods for translating tables to sequential testing pro-
cedures such as those of Pollack (1965), and Callahan and
Chapman (1967), have been applicable only to tables which are
unambiguous and complete or have been made complete by
the inclusion of an ‘else’ rule.

In the process for the derivation of sequential testing pro-
cedures described in this paper there is no restriction on the
properties of the table from which the testing procedure is
derived. In the table shown in Fig. 8 it is possible for a trans-
action to satisfy all of the first three rules and so the three
action sets, 4, A, and A, may all be specified. It is seen that
these three action sets are specified for the path corresponding
to all three conditions being true in the testing procedure shown
in Fig. 10 where it will also be noted that there is a path which

C, | Y N
c, |N —
A4, A, (@
G
Y N
& {42}
A
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Fig. 11
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specifies both 4, and A3, and also one which specifies both
A, and A4,.

Similarly if the table is not complete, i.e. there are logically
possible transactions which satisfy none of the rules, then there
will be one or more paths in the testing procedure which result
in the selection of no rules at all. We illustrate this aspect in
Fig. 11(b) where a development of the table of Fig. 11(a) is
shown.

It is seen, therefore, that the method described in this paper is
applicable to the derivation of a sequential testing procedure
from a decision table whatever the properties of the table in
regard to ambiguity and completeness. These matters relate
to the interpretation and use of the sequential testing procedure
obtained but do not in any way inhibit the mechanics of its
derivation.

Primitive final tables with no conditions
In the process we have informally described, the number of
conditions in a successor table is at least one less than the
number of conditions in the table at the immediately preceding
higher level from which it was derived. In the next section wey
formalise the algorithm for the process of constructing aE
sequential testing procedure from a decision table. In thl%
formalisation the splitting or ‘bifurcation’ of a table on &
condition to form its two successor subtables is apphecfi
iteratively until only tables with no conditions at all remaing
We describe such tables with no conditions as ‘primitive finak
tables’.
It can be readily seen that a prlmmve final table will always b®

/:sdy

one of the three types shown in Fig. 12. g
3
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In Fig. 12(a) we have a table with a single rule specifying th&
action set 4,,, Fig. 12(b) shows a table with more than one rul%
each having one of the distinct action sets 4,, . . ., 4;, and 1133
Fig. 12(c) we have a null table with no conditions and no rules=

For each transaction satisfying the path through the sequenti
testing procedure terminated by a final table with a single rul§
of the type shown in Fig. 12(a), the single action set, A4, 150
specified. A single rule final table is thus complete and une
ambiguous in the sense that for every transaction satlsfyu:E
the path leading to it, one and only one action set is specifie

For each transaction satisfying a path terminated by 5’—
multi-rule final table of the type shown in Fig. 12(b), the actior
sets, Ay, . . ., A;, are all spec1ﬁed A final table with more tham
one rule is thus complete in the sense that all transactio
satisfying the path leading to it cause the specification of a‘,(‘,
least one action set, and ambiguous in the sense that it d0e§
not specify a unique action set for each transaction.

A null final table as shown in Fig. 12(c) is unambiguous since
for a transaction satisfying the path leading to it we do not have
more than one action set specified. It is not complete since it
does not specify an action set for these transactions.

It has been shown by Johnson (1974) that if a decision table is
complete then all of the final tables in any sequential testing
procedure derived from it will also be complete, i.e. of the
form shown in Figs. 12(a) and 12(b), and conversely that if, in a
sequential testing procedure developed from a decision table,
all of the final tables are complete, then the original table is
complete. Johnson has also shown that a similar relationship
holds for the property of ambiguity. In this case if any of the
final tables is of the form of Fig. 12(b) then the original table is
ambiguous, and conversely, in a sequential testing procedure
derived from an ambiguous decision table at least one of the
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final tables will be of the form of Fig. 12(d).

From the above results we see that if a table is required to
conform to any particular convention in regard to complete-
ness and ambiguity then this can be determined by an examin-
ation of the final tables in any arbitrary sequential testing
procedure derived from the table. Thus if all of the final tables
are of the form of Fig. 12(a) then the original table is complete
and unambiguous.

A formalisation of the algorithm

The process of deriving a sequential testing procedure from a
decision table which has been described informally is now
specified more precisely. As stated previously we require the set
of logical relationships, if any, which exist among its conditions,
to be associated with the table.

The process of bifurcation of a table on an arbitrarily selected
condition to form the true (Yes branch) and false (No branch)
successor table is first defined. The steps in this bifurcation
process are:

1. Using the statements of logical relationships among the
conditions, make explicit in the table all possible implied
entries.

2. Select a condition from among those present in the table
and construct the two successor subtables. Include in these
tables all of the condition lines in the original table except
the one selected. Assign to the Yes branch successor table
all rules with a Yes, implied Yes, or dash entry, and to the
No branch successor table all those rules with a No, implied
No, or dash entry. Rules with a dash entry for the selected
condition thus appear in both successor tables.

3. The logical relations among the conditions of the two suc-
cessor tables are obtained by substituting, in the case of the
Yes branch table, the value true for the condition selected
and for the No branch table, the value false. The logical
relationships should then be simplified.

4.If a successor table is produced containing one or more
conditions, is complete, and has the same action set specified
for every rule, then it should be replaced by a complete and
unambiguous primitive final table with that action set, i.e.
a table of the type shown in Fig. 12(a).

The process of constructing a complete sequential testing
procedure from a decision table proceeds by the selection of a
condition from the original table and its bifurcation using this
condition, the selection of conditions in the successor tables
and their bifurcation et seq, until a tree is formed in which each
path terminates in one or other of the types of primitive final
table. The primitive final tables are then each interpreted as
- specifying either no action set, one action set, or several action
sets.

The recognition of common subtables

The method described will generate a sequential testing pro-
cedure in the form of a binary tree. It has been suggested by
Sprague (1966) that a sophisticated procedure might recognise
common subtables when they occur and so represent the se-
quential testing procedure in a more compact form as a directed
graph. We illustrate this process using the table shown in
Fig. 13, where the first and third rules specify the same actions
as do the second and fourth. The conditions in the table are

Fig. 14
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logically independent so there are no associated logxcaE

relations.

If for the initial bifurcation C; is chosen and for bifurcation ofg

the resulting No branch subtable C, is chosen we obtain theg

partially developcd procedure shown in Fig. 14.

The remaining two tables to be developed are identical andB

therefore the branches leading to them may be linked. If thlS\

is done and the table then bifurcated on the remaining condition1
we obtain the representation of the sequential testing procedurem

shown in Fig. 15.

It should be noted that this recognition of common subtables.\)
results only in a more concise representatlon of the sequentlaloo
testing procedure and hence some economy in store utilisation.% £
It does not improve the run-time of the procedure in any wa.yﬁD
and, in some circumstances, it can frustrate the production of”
an optimum procedure with respect to run-time since thqg
optimum procedure may require the two identical but distincts
subtables to be further developed in different ways.

In the example used for illustration the conditions were”
logically independent so that there was no associated infor-
mation on logical dependence with the various subtables.2
However in general there may be such information and it is»
important that the process which recognises common subtables®
should also ensure that a common pair also have identical
statements of logical relationship among their conditions. If the
statements of logical relationship for the two tables are different
then they cannot be regarded as a common subtable.

[ZE1%
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The testability of conditions
In the preceding sections of this paper and in all previously

MONTH-NO GE 1 N — — Y
¢,|Y Y N NN MONTH-NO LE 12 — N — Y
C|— — Y Y N DAY-NO GE 1 — — N —
CG|Y N Y N — DAY-NO LE DAYS-IN (MONTH-NO) — — — N
A, A, Ay A, A, REPORT ERROR NUMBER l1 2 3 4
Fig. 13 Fig. 16
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published work on decision tables it has been assumed implicitly
that, when selecting a condition from a table for bifurcation,
any condition may be selected and its truth or falsity established
from the current transaction whether or not any of the other
conditions in the table have been tested. In some circumstances,
however, it may only be possible to test a condition if certain
other conditions have already been tested and found to have
particular values.

Consider the table shown in Fig. 16 which appeared previously

in King and Johnson (1973). In this table C, cannot be tested
unless C; and C, are both true. If a program does not take this
fact into account and C, is tested first then an erroneous trans-
action may cause an array bounds error.
In the following discussion we represent by ¢C, the ‘testability
of C,’. Thus 711C, is stating that C, cannot be tested. With this
formalisation we can deal with the concept of the testability
of conditions within the general framework already established
for handling logical dependencies among conditions.

In the example under discussion we have C, testable if and
only if both C, and C, are true. Hence if either C, or C, is false
then C, cannot be tested. Symbolically we have:

Cl A C2 - tC4

and

t C4 g C1 A Cz .
Using the symbol < to denote implication in both directions
these two statements may be written

Cl A C2 > tC4 .
We also have

_|C1V —ICZ A d —ltC4

which is derivable from the previous statement by negating
both sides. This form states that if either C, isfalse or C, is false
then C, is not testable. In the table of Fig. 16 there is also a
logical relationship between the first two conditions of the
table. The initial table to which the algorithm is applied is,
therefore, as shown in Fig. 17.

The algorithm for the selection of a condition for the bi-
furcation of a table must restrict its choice to those conditions
for which there are no testability constraints. Thus, for the
initial bifurcation of the table of Fig. 17, C, may not be selected.
If C, is selected for initial bifurcation the first step produces the

G, | N (Y) —
G () N

Ci | — —

S
| =]
2| N~

| 4, 4, 4, 4,

Cl /\Cz «> 1C4
_lCI A 1C2 -
Fig. 17
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Fig. 18
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situation as shown in Fig. 18 where there has been a straig
substitution of the values true and false for C, in the associat
logical and testability constraints.

The first of the constraints associated with the Yes branch
successor table simpliﬁes to C, «» tC,, and states that C, can bg
tested if and only if C, is true. C, cannot, therefore, be selecte
as the condition for the bifurcation of this table. The seconFB
relationship simplifies to false — which is always satisfied (sea
Appendix) and so does not constitute a constraint.

The first of the constraints on the No branch successor tablE#
simplifies to false < ¢tC, which states that-C, may not be tested
down this branch. It should therefore be verified that the ro#
for this condition contains only dash entries and the conditiort
deleted from the table. If any of the entries for an untestablg
condition are other than dash then there is a contradictiom
between the testability constraints and the entries in the tablg
which indicates an error which requires to be reported. Th%
second constraint down the No branch simplifies to 1C; -
which states that C, is always true down this branch and so the
condition may be deleted from the table.

The result of these simplification and editing processes

produces the situation shown in Fig. 19.
If the Yes branch table in Fig. 19 is now bifurcated on C; then
C, will be found to be testable down the Yes branch from C,
but untestable down the No branch. With the subsequent
selection of conditions for bifurcation as indicated, the sequen-
tial testing procedure shown in Fig. 20 is obtained.

ueu&J.HO/Lu o°dno-olwapeoe)/:sdny wolj pa

The conversion of extended entry tables

An extended entry table can always be converted into an
equivalent limited entry table. The resulting limited entry table
can then be converted to a sequential testing procedure in the
way described previously in this paper. This approach was
discussed by Press (1965). An alternative method is to create a
sequential testing procedure directly from the extended entry
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table. The initial form of the procedure is represented as a
tree in which, as previously, a node corresponds to a condition,
but now there will be as many paths leading from a node as
there are distinct states for the condition.

Consider the extended entry table in Fig. 21 where the entries
for the first condition indicate four mutually exclusive states
and those for the second condition three mutually exclusive
states.

If the condition is selected for initial bifurcation we obtain the
partially developed tree shown in Fig. 22(a) which, when the
remaining subtables are developed, gives the sequential testing
procedure shown in Fig. 22(b). From Fig. 22 we see that an
algorithm, similar to that already given for limited entry tables,
can be formalised to deal with extended entry tables.

7 N
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Extended entry conditions with mutually exclusive states
In the extended entry table given in Fig. 21 the second condition
has three states which were mutually exclusive and exhaustive.
The first condition is shown by the table to have four mutually
exclusive states which, in the development of the sequential
testing procedure shown in Fig. 22, have been assumed to be
exhaustive. Thus the procedure would not handle a situation in
which the value of type was other than one of the four values
stated in the table which must, therefore, be precluded by the
context in which the table appears. It is necessary that such
information be supplied to the processor with the table since if
values of type other than the four which appear explicitly can
occur then there must also be an ‘other values’ path leading
from C, in addition to the four shown. In the second condition,
however, we see that the three mutually exclusive states are
necessarily exhaustive and no other state is possible.

A basic assumption required by the process we are describing
is that all possible states of the condition can be resolved into

mutually exclusive sets of values or states. Suppose we have the
first condition of Fig. 21 but without the restriction that the
four values shown explicitly are the only values which can
occur. In these circumstances a useful notational device is to
use a special symbol, which we show here as @, to denote all
of those states which are logically possible but do not appear as
explicit entries elsewhere in the condition row. The use of @
to denote ‘other possible states’ of a condition should not be
confused with the ‘error’ or ‘else’ rule which frequently appears
in earlier published work on decision tables but which, in our
view, is a rather unsatisfactory concept.

In the table shown in Fig. 23 we illustrate the use of the @
symbol and distinguish it from the use of the ignore symbol
If we consider a transaction for which the type has the value2
‘Mines’ and for which dividends are paid then this transaction=
will satisfy the rule with action set 45 since the type is not oneg
of the values explicitly mentioned. A transaction with valuea
‘Metals’ and the divs. paid marker set specifies only 4, it doesS
not specify 4. Note that the table is complete but ambiguous =
since a transaction can satisfy both the second and last rules.c 2
The first stage in the derivation of a sequential testing pro-=
cedure from this table is illustrated in Fig. 24, the subsequent
development being straightforward.

&

//4N
C|Y N (4 G|Y N G|Y N G|Y N
|A1 ds |4, a5 4, 45 lag 4,

Fig. 24

z /8 | /olo1ue/|ulwoo/woo dnoolwepede/

In Fig. 24 it is seen that the value @ for the first condition 1s®
treated in exactly the same way as the other states of this®
condition. By its definition it becomes simply another of th&o
mutually exclusive states.

Extended entry conditions with overlapping states

An illustration of a table with an extended entry condition wi
overlapping states is given by Fisher (1966), and reproduced3
here as Fig. 25 with the action sets shown in abbreviated form.©
The context of the table ensures that CLASS NR can only beo
one of six distinct values (2, 3, 4, 5, 6, or 7) but that the states,

Er’
07senb Aq G/

vcod

TR-CODE EQCLASSNR | 2 3456 3,6 36 45 7

RCD FIELD EQ ZEROS — N Y Y Y —
TR FIELD EQ RANGE —~ — Y N — —
Fig. 25 A, A, Ay A, As Ag
¢
2

3 4 5 6

Type = Foods Property Metals Trusts @ -— C|— GiIN Y Y C[N Y CIN Y C|N Y Y Cy|—
DiVS.Paid Y - Y Y Y N ——C3——YNC3—‘_C3_‘_C3—YNC3

‘ Al AZ A3 A4 A5 A6 IAl IAZ A3 A4 |A2 A5 Az AS |A2 A3 A4 [AG
Fig. 23 Fig. 26
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which require to be recognised for satisfaction of four of the
rules are combinations of these six distinct states.

With initial bifurcation on the first condition the partially
developed sequential testing procedure shown in Fig. 26 is
obtained. We see that from the initial node there is a branch
corresponding to each of the recognisable mutually exclusive
states and that, in the table editing process to obtain the suc-
cessor subtables, a rule is only deleted for a particular branch if
the primitive state, which that branch represents, is not included
among the primitive states which make up the state required
for the rule to be satisfied. Thus we see that the second rule in
the table of Fig. 25 remains in four of the subtables and is only
deleted for the branches corresponding to the values 2 and 7.
It is seen that the successor subtables for the 4 and 5 branches
are identical and these two branches could be recognised as
common and linked in the way previously described.

A particular type of condition which gives rise to overlapping

Age < | 18 60 65 —
Age> | — 18 60 65

| 4, 4, 4, 4,
Fig. 27

states and is widely used in practice, involves the use of the
numeric relational operators >, >, <, and <. These type of
conditions often occur in pairs and we give a simple illustration
of such a case in Fig. 27.

If we consider the first condition in isolation we can re-express
it as illustrated in Fig. 28 where we see that we now have four
mutually exclusive states. The condition now has the same
characteristics as the first condition of the table shown in Fig.
25 and can therefore be treated similarly in the derivation of
sequential testing procedures.

state = | sy 5,8, 81, 82,8 —
state ~ value
K A< 18
Sy 18 < 4 <60
S3 60 < 4 < 65
Sa 65< 4

Fig. 28

A single condition involving a relational operator can always
be treated in this manner. If we treat the second condition
shown in Fig. 27 similarly we see that the states already listed
suffice and the table shown in Fig. 29(a) is obtained which can
be readily simplified to the table in Fig. 29(b).

state = | 5, S1s S2 815 83, 83 —
state = | — 53,583,854 53,5, Sy
A, A, A, Ay

(a)
state = Sl s2 S3 S4
A, A, A3 A,

' ©®)

Fig. 29

It would seem from the example discussed above that the
present commonly used conventions for expressing conditions
in decision tables involving relational operators could be
considerably improved. Probably because of the frequently
adopted approach of implementing decision table software in
the form of a pre-processor to one of the commonly used
language compilers the expressions permitted in the condition
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section of a table have been constrained by the logical and
conditional expressions permitted in the programming lan-
guages concerned. ‘A condition of the form 18 < Age < 60
frequently arises in the real world problems under consideration
and it seems a defect of the currently used programming
languages that it is required to be rendered in a form such as
18 < Age AND Age < 60. We suggest here that this constraint
should not continue to apply to decision table conventions and
would recommend that conditions of the form 18 < Age < 60
should be freely adopted in limited entry tables and a corres-
ponding form of notation be developed for extended entry
tables. We suggest a form the notation might take in Fig. 30
where the table of Fig. 27 is re-expressed.

< Age < :18 18:60 60:65 65:
g

|4, 4, 4, 4,
Fig. 30

If such a notation is adopted the states expressed will frequently
become mutually exclusive. Where, however, the notation 150
used to specify overlapping intervals then decision table soft-3
ware can readily be designed to resolve the intervals expressedd
into a set of non-overlapping states and the table treated in theZ
way illustrated for the table of Fig. 25.

Logical relations among extended entry conditions
Logical relations among extended entry conditions can, inS
general, be treated in a similar way to those for limited entry=
conditions. We assume that the states for a particular extendedg
entry condition have been resolved into a primitive set of®
mutually exclusive states and that the logical relations areg
expressed in terms of these primitive states. A simple illus-2

tration is given in Fig. 31 where, by virtue of the loglcal relatlonso
expressed between the conditions, the table is seen to be3
complete.

B//sdny wouy pa

TYPE = A A B B C
< WT < :5 5:10 5:10 10: (103)

A A, A3 A, As

(TYPE = A) IMPLIES (WT < 5) OR (5 < WT < 10)
(TYPE = B) IMPLIES (5 < WT < 10) OR (10 < WT)
(TYPE = C) IMPLIES (10 < WT) .
Fig. 31

Logical relations expressed in the form of an implication canZ
have the right hand side expressed in either a positive way asy
shown in Fig. 31 or alternatively in a negative sense. Thus theS

first of the conditions could alternatively be expressed in thes
form:

d GL6.7E/862/7/81/0101He/|ulody

(TYPE = A) IMPLIES NOT (10 < WT) .

In the fifth rule of Fig. 31 we see that the entry for the secon
condition is bracketed to show that the entry is implied by, in
this case, the other entry for this rule.

¥ Iudy

Conclusions
Hitherto methods for the derivation of sequential testing
procedures from decision tables have depended upon the tables
satisfying completeness and non-ambiguity constraints. These
methods could not be used for tables conforming to a multi-rule
convention and with no requirement that they should be
complete. Harrison (1973) has suggested that more general
methods than those presently available present difficulties.
In this paper a method has been described in detail which
resolves such difficulties and can be readily implemented.
Suggestions have also been made for improving the concepts
and notations for extended entry tables. Using this approach to
extended entry tables the methods for decision table processor
construction described for limited entry tables can be readily
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developed to deal also with extended entry tables and the
general lines of this development have been indicated. It is
thought that the methods described provide the basic frame-
work within which the various optimising methods described
in the literature can be further improved and developed.

Appendix

A note on the use of propositional calculus notation for expressing
the relationships among conditions

The truth or falsity of the implication p — ¢ (to be read as
‘p implies ¢°) is given by the truth table:

p q p—q
T T T
T F F
F T T
F F T

When an implication is associated with a decision table it is
being implicitly stated that the implication is necessarily always
true. The first, third, and fourth lines only of the above truth
table are, therefore, relevant to our discussion. In general p
and g will be statements of values which one or more of the
conditions can take, e.g. C; A 71C, or equivalently, in a notation
more suitable for use in a Cobol context, (C;, Y) AND
(Cz, N).
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