Software functional variability

Gill Ringland

Computer Analysts and Programmers Ltd, 14-15 Great James Street, London WC1N 3DY

A strategy of design for reliability in dedicated real-time systems is defined. Reliability of this type
of system implies the ability to vary operating system functions and application program functions
online: the software structure described uses a nucleus of fixed code to support a modifiable system.
The conditions under which such modifications may be safely made are discussed, and the hardware

and software requirements for the system outlined.

(Received October 1973)

This paper is concerned with a problem which is of vital
importance to current and future realtime systems. The
problem is how to maintain such a system, after the date it goes
live. If the date of obsolescence can be postponed by designing
the software appropriately, or by using the hardware with this
aim in mind, then real money can be saved and the disenchant-
ment of the user community reduced.

We do not have a solution ‘at a stroke’. What this paper does
contain is a suggested framework within which dedicated real-
time systems can be constructed, so that they can in all prob-
ability be more easily modified without losing reliability.

The next section discusses why the problem of modifying
realtime programs arises, and defines the term ‘Functional
variability’. The following section describes the design strategy
and the software structure which is proposed to implement it.
The use of the structure for failure handling and for varying
the function of a realtime system is described, and the problems
of sharing hardware and software for testing and live running
are briefly discussed. Finally the implications of the strategy
are considered in terms of hardware resources, software pro-
duction, operational aspects of failure handling, and techniques
for modification.

The use of this strategy for building a pilot system is discussed
in a companion paper (Ringland et al., 1975).

The nature of the problem

The problem may be briefly stated. Realtime systems, like
batch systems, need to be modified after they go live. However
the techniques developed to test and introduce modifications
into batch systems cannot be applied directly to online systems.
In this section we discuss the particular problems in maintaining
reliability in a realtime environment. First, however, it should
be made clear that this work is in a sense orthogonal to that
aimed at proving the ‘correctness’ of programs (see, for instance,
Elspas et al., 1972). This work starts with the assumption that
programs have bugs, and attempts to establish methods by
which the effect of these may be contained—by fault tolerance,
and by providing methods of correcting online software.

The number of such errors expected increases faster than the
volume of code, because of problems in communication on
large projects. On such projects, therefore, a greater proportion
of the total development effort should be devoted to testing,
compared with smaller projects. Realtime programs, however,
pose an additional inherent problem, namely, that of the non-
repeatability of errors (Fergus and Taylor, 1971). This com-
bination of difficulties means that large realtime programs will
almost certainly go live while containing errors.

At the same time, users of such programs expect that realtime
systems should above all be dependable. Hence the need is
apparent for methods to correct such initial software errors
after the system has gone live. It is often not possible to delay
the application processing while the corrections are introduced

312

into the software. This means that, to improve the reliability of

realtime systems, it is necessary to develop techniques for vary-

ing the software while sustaining system operations.

Reliability in a realtime environment

Reliability may be measured by the inverse of the frequency

with which the user receives unsatlsfactory service.

ojumoq

W)

pap

In batch processing applications, it is possible to mcrease—h
reliability by repeating work which may have been faulty. TheS
method relies on restarting a coherent batch of work from a~

checkpoint or a suitable dump (Wilkes, 1968).

/:sd

In realtime applications, it is not possible to define a batch i mm
the same way. The jobs are started in response to requests from 2 S
the outside world, and they share access to data. Reliability i 1n3
a realtime system is, therefore, provided by protectmg theo
current data against loss or corruption, and by ensuring thats
the software as a whole can continue to function despite theo

presence of errors.

If an error is detected, a small unit of work, identifiable in userg
terms, should be failed. This may mean that some data is no=
longer valid, and should be recovered—for instance, by use of %
an audit trail. The achievement is that the software structurem

STARTING AND ENDING JOBS

CONTROLLING THE PROGRESS OF EACH JOB

ACTING ON EXCEPTIONAL CONDITIONS,
SUCH AS PROTECTICN VICLATION AND
MACHINE ERRORS

ALLOCATION OF HARDWARE RESOURCES,
SUCH AS INPUT/OUTPUT DEVICES

ALLOCATION OF SOFTWARE RESOURCES.,
SUCH AS FILES., COMPILERS

PROVIDING PROTECTION OF INFORMATION

COMMUNICATING BETWEEN PARTS OF THE
SOFTWARE AS REQUIRED

¥20z 1udy 61 U0 1senb Aq 686/¥E/ZLE/VISLI

Fig. 1 Functions of an operating system

The Computer Journal

survives; or, in the rare cases when this is not possible, that the
software will be restored to a well-defined state in a delay time
which is acceptable to the users.

Such a system is said to be reliable.

Reliable operating systems

Operating systems can be described (Denning, 1971) as those
parts of the total software that control the computer itself, as
distinct from user programs that process the application. The
functions of an operating system are summarised in Fig. 1.
While the user programs are expected to change to reflect
variations in the application, the operating system is often
assumed to change only rarely, to correct faults found after the
system has gone live.

Experience shows that faults in the operating system are often
more difficult to locate, and more far-reaching in their effect,
than faults in user programs. They are also difficult to correct for
most configurations without causing a break in service. In
addition, it is important to be able to extend the operating
system to deal with new devices or to service changes in the
user programs. Thus, to ensure the reliability of the system as
a whole, it is necessary to develop techniques to vary the opera-
ting systems on-line.

Among the theoretical work on operating systems (e.g. ACM,
1969) little is concerned primarily with reliability. An important
current idea which has, however, been adopted in the approach
to the problem is that of a small nucleus of code. This nucleus
has been defined to be itself invariant, and to provide the rules
by which a variable structure can be built.

Functional variability

By this term we mean a methodology for achieving reliability in
computer software by permitting online enhancement. The
methodology may be used to add functions to the software
structure as well as to maintain it: this is absolutely
fundamental. v

The idea of functional variability was first formulated about
five years ago by d’Agapeyeff and Clark (1968; 1970). They
outlined why maintenance techniques for on-line systems were
at least as important as initial development techniques, and the
differences between on-line and batch systems in this respect.
Since then our work in the field of reliability has shown that it
is not only necessary to correct faults to maintain reliability,
but also to be able to handle extensions. It can happen, for
instance, that a system reaches early obsolescence because many
small extensions have caused a breakdown in the original
structure. If these extensions can be accommodated within the
structure of the existing software, the date of obselescence can
be postponed.

The variations to be expected in a system during its lifetime
can be of three types. The requirement may change in a way
that implies more processing of the same type as before—for
instance, a higher message density. This may require extra
hardware to be added to the configuration. It may be required
to add functions to the software or new hardware to the con-
figuration. For additions of this type, testing facilities must be
provided in a manner which decreases the probability of the
live system being corrupted while testing is in progress.
Although a different hardware configuration has been tradition-
ally used for testing and for live running, BEA’s CALC Cargo
Allocation system successfully uses the same equipment for
both functions. Thirdly, it may be required to extend the soft-
ware or hardware in a way which alters basic features of the
computer organisation. This type of change usually involves a
rewrite of a large part of the system software.

A functionally variable system can accommodate changes of
the first two types, and go some way towards accommodating
changes of the last type.

Volume 18 Number 4

The structure of the approach

The scope

A general strategy for creating functionally variable realtime
systems does not exist and has not been attempted. We had two
reasons for adopting a more particular approach. The first
reason is that a theory divorced from practical application
considerations was not regarded as suitable for solving real
problems in a given environment: it can be more constructive
to alleviate the more urgent problems with realistic constraints.
Secondly, reliability is by its nature a relative rather than an
absolute or general concept. That is, by introducing redun-
dancy, validity checks and so on, the reliability is increased
until it is acceptable to the users.

Functional variability was described above as a methodology
for designing a reliable realtime system, which can be modified.
This paper concentrates on a strategy for a class of applications
and a model configuration. The application of the methodology
to a particular application and hardware is described in a
subsequent paper (Ringland and Trice, 1975).

The strategy has three aspects. The first is to recognise the
unit of work in the system being designed. This unit will be
recognisable in user terms, so that in the case of failure the
unit(s) affected may easily be reported by the system. The
second is to unify the techniques used for error recovery and for
introducing changes into the system. If these are considered
together when the system is designed, it is expected that
simplifications will result. The third aspect is to define tech-
niques for sharing common resources—code, devices, data—
between a trusted or live system, and a test system. The re-
sponse observed on the live system should ideally not be de-
graded by the existence and use of a test system: the advantage
of sharing resources is the extent to which modifications can be
tested in a realistic environment.

The class of applications can be categorised as those for which
a large number of relatively low density peripherals interrogate
or update a volatile database, and for which acceptable response
times and down times are of the order of seconds. The nature
and number of peripherals indicate variable input/output =
handling. Volatile databases need security precautions and @
recovery facilities totally different from those relevant for more &
static databases. The timing requirements imply that recovery S
procedures should be automatic, and that algorithms for &
defining which subset of the data is in main store are necessary.
Minimum assumptions have been made about the hardware S
configuration to be used for an implementation. The strategy o
may be used on any configuration with fast backing store such o
as disc, with terminals, and with some form of storage protec- ¢
tion. Some computers are provided with an operating system, o
which together with the hardware forms the effective machine -
for the user. In some cases, the operating system may be tailored
to the requirements of the application by using middleware <.
(Spooner, 1971). In other cases, the operating system might 13
not be usable in this way. For machines supplied without i
operating systems, the functionally variable system would be
designed directly on to the hardware.

g/|ulwoo/wWwoo dno-olwapese//:sdny WoJj papeojumoq

JA%S

n

The importance of software structure

The importance of structure in programming was first realised
when high level languages were introduced to decouple the soft-
ware from the hardware. For example, several languages had a
lexicographic block-like structure which aided the construction
of parameterisable procedures and functions.

More recently, it has been realised that the structure of the
executed code is also very important and entirely distinct from
its lexicographic order. For example, in realtime systems, unlike
batch processing, the separate programs are not identifiable as
separate units of execution. Instead, there exists an array of
functions with many possible sequences of use. Thus, the real-
time work of a system can be thought of as being the sum of a

313

number of independent ‘routes’ where a route is an execution
path through the array of processes. Each route would corre-
spond, in user terms, to a job. In the type of dedicated real-
time system considered, this would correspond to an operator
data entry and reply, which we will refer to as a transaction
job.

JThe trend of modern operating systems is away from the
monolithic structure which has been used in the past. This
approach has its roots in the Atlas supervisor, as discussed by
Spooner (1971). However, the cost of maintaining complex
programs has been shown to increase with the disorder of the
software (Belady et al., 1972). Therefore, the design strategy of
the functionally varlable system is to use an ordered structure
for the operating system as well as the user programs. This
structure has advantages for maintenance and hence reliability,
as well as variability, and is based on the pioneering work of
Djikstra (1968).

The proposed structure

The software structure proposed divides into two parts. One
part is relatively small, and fixed (the nucleus). It defines the
construction rules and control paths for the second part. This
second part defines the application system.

This split is different from the general operating system/
applications program split, which has been developed (historic-
ally) to deal with an ‘average’ work profile. For instance a job
shop with a mix of compilation, testing and running, where all
jobs are separate but may use facilities provided by the opera-
ting system, is often used to define the profile.

The F-V structure for dedicated systems assume that functions
traditionally within the operating system as well as those in the
application programs may be varied. The small, fixed part of
the code does not contain information about the configuration:
1/0 is handled within the variable system. Similarly, contention
for resources is handled within the application, or variable
system. The functions of the fixed part of the system are to
enforce the rules and extend the user facilities—for instance,
passing control between different parts of the application
system. It also, and very importantly, contains the basis of the
error detection mechanism.

This basis is a pair of independent clocks which crosscheck
each other. On quite general arguments it is easy to see that, if
two independent clocks are serviced by execution of two separ-
ate software code sections which include a check that the other
clock has interrupted since last entry, a failure in either can be
detected. This means, unless each is positively reassured of the
continued functioning of the other, a restart using a fresh copy
of the core must be attempted. However it also means that,
while the cross checks are functioning, the timer-based checks
which are initiated by the clock routines are dependable. Also
the housekeeping functions such as checkpointing, can be
relied on (0 maintain the system integrity.

The application system covers both functions normally
thought of as operating system functions, and those thought of
as user or application functions. The nucleus also, as mentioned
above, validates transfer of control between parts of the appli-
cation system. To understand the rules it uses, we introduce
the terms:

process, to mean a code section with well defined entry and
exit points and function, and with associated data areas;

job base, to mean a collection of processes and other
resources such as peripherals, which are compiled together
and form a machine.

In most configurations, one job base would form ‘the applica-
tion system’, with one database, a set of peripherals, and pro-
cesses to service the messages entered into the system. The
processes would include those performing ‘system’ activities,
e.g. I/O, and ‘application’ activities, e.g. calculations of algor-

314

ithms. This is referred to as the live job base. There would
probably also be a job base which could be used for testing new
devices or code modifications. This might use code, or share
processes, or read data, which is part of the live job base.
Other job bases could be used for compilation or unit tests.
These are collectively referred to as test job bases.

Transaction jobs in the functionally variable system are
short-lived. Most live jobs may access the application data, but
the jobs are required to be as independent as possible to prevent
errors spreading through the system. These somewhat con-
flicting requirements have been reconciled by structuring the
job so that the application data may only be updated at the end
of a job. It is thus possible to ensure that all the processing is
satisfactory before the data is changed, and to limit the time for
which a failure in the job could prejudice the integrity of the
database.

The applications data area, containing the database, is thus
protected against corruption. The methods used for granting
access to items of application data ensure that all jobs see a
consistent set of data items. Thus the recovery procedure, which
combines a job base with the latest check point of the appli<
cations data area, leads to a reconstituted system containin
only the effects of finished jobs.

The job bases form a hierarchy, the aim of which is to ensureg_
that the live system is not degraded by the operation of the testy
system. Thus, jobs on the live job base use facilities from the3
nucleus—the fixed code. Test jobs can use facilities—such asg
the data entered by operators—of the live job base; the tech-”
niques used for this are discussed later, under ‘sharing ol‘?—%
resources’. The importance of this hierarchy for failure handling:
is discussed below.

O

Failure handling and recovery
It is necessary to consider how to:

(a) detect errors
(b) localise errors
(c) recover from errors.

[onJe/jufod/woo dnoolw

The detection of errors in any collection of programs will to ac
large extent depend on validity and redundancy checks on datao\o
fields. In addition, it is necessary to detect loops madvertently\
caused. In systems of co-operating processes in parucular, it 193
necessary to provide a mechanism for detecting errors ansmgﬁ
from improper co-ordination of the asynchronous threads. It is3
for these two latter cases that time-based checks are used. &

Given that an error is detected, how can it best be localised 75
The transaction job described above, corresponding for instance‘vf,
to a message and answer, is the natural unit. By separatings
code and data throughout, it is possible to be confident that an”.
erroneous job has not corrupted code, or data used by another,
job, except for two cases. The first is that of the application data=.
area discussed above, the second is data, local to a process}3
which is nevertheless read by subsequent jobs using that pro-X
cess. Such data might be, for instance, the disc directory.

It is necessary to design the software so that the system can
recover—albeit inefficiently—should this data be erroneous.

Recovery of job can in principle be manual, automatic, or not
required. While automatic recovery is probably appropriate for
jobs started in response to messages conveyed by noisy lines—
the message has perhaps been corrupted in transit—it is less so
for local operators engaged in complex interactions. In the latter
case it is more probable that the operator has made an error,
which he would not repeat. Jobs started in response to scans of
input channels on a continuous basis, may be appropriately
‘lost’ in favour of the next scan.

There are, however, some situations in which it is not possible
to attribute an error to a transaction job—for instance, if the
code to scan the dispatcher queue containing several jobs finds
that a housekeeping count differs from the number of jobs

The Computer Journal

actually seen. Then if this code is on a test job base, that job
base is failed. If the code is on the live job base, this and any
test job base in existence are failed. If the code is in the nucleus
and this type of logic error is detected, the nucleus and all
dependent job bases are failed.

The implications of a job base being failed are several. The
first is that all jobs active on the job base are lost. If the job base
is for testing, recovery action is left to the users to initiate. If,
however, the live job base is failed, then to maintain reliability
it is necessary to automatically reinstate the job base. This is
done by reading from backing store a copy of the code of the
job base, and combining it with a check point of the appli-
cations data area, to represent completed jobs. Then from the
job numbers, the operators whose jobs have been lost are
notified. If the check point is taken frequently, the number of
jobs lost will obviously be lower although the overload will be
higher. It is also important to note the importance of using the
smallest unit which the operator can recognise, as a job.

The recovery mechanism is similar for errors detected in the
nucleus: for reloading the nucleus, a section of code called the
fallback code is used. This code section is sumchecked and
stored in duplicate, so that occurrences of failure in fallback
should be rare.

Varying the function
-It may be required to vary the code or the database structure,
either for maintenance purposes or to extend the function of the
system. In this case the job base is the relevant unit.

The first step is to compose the job base, off-line, from the
amended code and data descriptions. This activity consists of
linking the compiled code segments and of testing the base for
compatibility with the existing bases. The composed job base is
labelled for easy user access later, and filed on backing store.
For instance, if the main store required is more than is avail-
able, this can be established before any attempt to use the job
base for live data.

The second step is to run the amended job base as a test job
base, which may be used to perform compilations or module
tests. It may also be run in parallel with the live job base, using
some or all of the same input messages as the live job base.

Thirdly, when the amended job base has proved satisfactory

TEST JOB BASE

Route of
— e —
Test Job

_ T "

]
|
i

Route of

Live Job

(LIVE JOB
BASE

ALLOCATION OF I/0
INSPECTION FOR ERRORS
CONTROLLING EACH JoB

FIXED SOFTWARE

STARTS J0B
(NUCLEUS)

ACTS ON MACHINE ERRORS.
PROVIDES PROTECTION

Fig. 2 Structure of the software

Volume 18 Number 4

under test, it may be introduced as a new live job base. A
terminal language is defined which enables the operator to
fetch a labelled job base from backing store. This job base may
take the place of the existing live job base in servicing data with
a delay time of a few seconds. Moreover, there are no user jobs
lost. This combination, that of small delay time and no job
loss, is possible when the job is of typically short time scale.

This treatment highlights the difference between the structure
proposed, for dedicated operating systems, and that employed
in conventional operating systems which run independent user
jobs. In our structure, the data is discarded if errors occur
during processing and the code is kept. (Once the applications
data area has been updated, and a checkpoint taken, the data
is then ‘permanent’ in the same way the code is.) In conven-
tional operating systems under similar conditions the code is
deleted though the effects of the job—its data—will probably
not be deleted.

Sharing resources
The test job bases need to be able to share resources which
belong to the live system. For instance, to save main store spaceY
it may be required that the test job bases use either pure code, =
or processes, which are bound in the live job base. The sharing;
of code (where the queues and data areas of the test systemm
are separate from those of the live job base) provides more =
security for the live base than the sharing of processes, andS
reduces the possibility that the live system’s performance may~—
be degraded through a malfunctioning test job base. w
This method cannot be used for some types of device handlers. m
If the device is local to the job base, it is appropriate that the%
process to service it, is local to the job base. If it is desired to test 3
a job base by routing input data to it from the live job base, this 2
may be done by a ritual of requests from the test job base,<
avoiding the mixing of data from the two job bases on the same &
queue. The use of shared output is the case in which shared g
processes, rather than shared code, must be used. This isS 3
because co-ordination of requests from the bases sharing the =
output device must be performed by the process ltself——toz
ensure, for instance, that a complete message is transmitted & o
before another is accepted.
Another resource which is shared is the dispatcher ors 5
scheduler. The requirement that the test systems should not be N
able to degrade the live system leads to the adoption of ab
priority system, so that outstanding tasks for the live system ©
lead to the adoption of a priority system, so that outstanding ©
tasks for the live system are always scheduled first. The;
requirement also implies that a time slice system be used, so 5 &
that the test system may be interrupted to deal with activities g
for the live system.

1Z5°1%

Implications of the approach
Hardware resources

The minimum configuration for a functionally variable system
includes enough main store and processor power to allow for
testing as well as for running the application. The nature of the
technique used for varying the system—that of job base
replacement—demands a fast form of backing store with
access to files. Multiprocessors with access to a common area
of main store are advantageous for reliability and efficient use
of redundant hardware. The software could, however, be
implemented on a single processor configuration if the lack of
reliability implied were acceptable. We have not investigated
cold start methods from standby machines, which would
probably be needed if a single processor were used.

The size of the software will increase as functions are added
and changes are made to the software. By reorganising the
software, this growth in size can be kept in check. However,
once this is done, fallback is no longer possible. There is there-
fore a straight tradeoff between recoverable changes and in

0z ludy 6 u

315

creating size. Fig. 3 shows the effect on software size of changing
requirements and reorganisation.

Software

The techniques used to achieve reliability have been chosen to
minimise the overheads. The method of timer assurance, for
instance, is designed to detect malfunction in an efficient way
and enable corrective action to be taken before the software
has deteriorated. Failure localisation and error immunisation
rely on a formalisation of methods of passing control from one
part of the software structure to another. These methods have
an execution time overhead, but are unavoidable in a structure
designed for reliability. The separation of current data and
composed job base has been defined to speed the check-
pointing process. The time spent in check-pointing will depend
on the volume of the application data and the device used to
store it: a drum being an order of magnitude faster than a disc,
and the transfer time being the major single item.

Software variability has been achieved through the job base
structure. This is an efficient structure for any dedicated
application with a common database. Access rate to the data-
base is a crucial factor in determining the response time of a
system. The development of algorithms, for accessing the

active subset of a database which is held in core, appears to
have been neglected. Cheap mass storage devices may well,
however, revolutionise this area.

The software could be written in any high level language
which can be extended, by macros or procedures. The standard
features of a compiler, assembler and linkage editor are
necessary. The job base composer must additionally provide
the labels used for fast access while replacing a job base during
changeover or fall-back.

Streamlining of failure handling

The techniques for failure handling are dedicated to isolating
errors to within one job, or ‘event’, for example by accessing
common data only through a special handler.

The message passing mechanism is structured to prevent
errors propagating from a faulty code section to an illegal
destination. Since it is assumed that the job base as a whole is
unaffected by errors localised to within a job, failed jobs
may be repeated. This may be done manually by operators,
automatically if from remote stations, or by abandoning the
data received from continuous scan devices. The decision
to repeat the job, or to reload the system if many user jobs
were failing could thus be taken by the operator.

Functionally
Variablie
Software System

Size

2

Period 'of”
— On-line— .

Maintenance

Fallback to
Previous System

/
-/

I

Growth for
New
Requirements

Extra
Code.~
~

1

Removed

System Designed

for Immediate Needs

Point of Software
Reorganization,
Superceded Code

Fig. 3 Development by phases

316

The Computer Journal

|w)
<]
S
S

202 1udy 61 U0 }sanb Aq 686/ 1€/21.€/1/8 |/3101KE/|uliod/Wo0 dnoolWapede//:sdiy Woly papeo)

There are two conditions which make it necessary to abort the
live job base. Firstly, errors which cannot be attributed to a
user job on the live job base must cause the job base to fail,
since it is possible that the errors are due to code corruption.
Secondly, the live job base must also be aborted if a job fails
after it has gained access to the application data, because the
data may have been corrupted by the job. In both cases,
recovery is initiated.

The automatic recovery of the live job base after system loss
corresponds to a warm start. Jobs current during system loss
are cancelled. The delay time is of the order of seconds before
new jobs are again accepted, operators being notified of jobs
which have not been completed due to systems loss. Recovery
may use this job base issue or possibly a previous issue.

Phased development

There are two ways in which the software structure may be
varied. The technique is the same in both cases, namely, the
new job base is introduced from backing store, but the impli-
cations are different. One method implies secure reversion to an
old and trusted job base, the other precludes this. The methods
together provide for phased development.

The conditions under which reversion is possible may be
summarised as: the new job base must contain the code and
data of the old, and must continue to update all data items
which were updated by the old job base. It is anticipated that
job base modifications of this type would be introduced to the
system as a regular maintenance tool. The software structure
grows by accretion when the function is varied in this manner.

It has been mentioned earlier that a general theory of func-
tional variability had been rejected. The problem of growth by
accretion provides an interesting illustration of the scope of the
general theory. It is possible to show that in general nothing
can ever be deleted from the software. Consider for instance a
job base issue n, the last to require for application purposes a
particular code segment. If we delete the code segment after j
more issues, the applications data items which were updated
by the segment (if any) will no longer have the same relation
as on job base 7 to the real world. Then, if job base (n + j), the
latest, fails and a cascade of errors forces the system back to
using job base n, the application data and code will be incon-
sistent. In particular cases, of course, it is possible to show that
successful reversion will not be affected by deletion of given
items. For instance, when all the devices of a particular type
have been removed, the code to handle them is redundant.
Thus, in this case the conclusions of the general theory need
modifying for a particular situation.

Atintervals, it will become convenient to make a discontinuous
structural change to the software. This is essential if the con-
figuration becomes no longer valid—for instance, the terminals
are regrouped—or if the database is reorganised. (The latter
case could, for instance, correspond to the addition of an
airport to a network of air lanes, to adding a new branch to an

References

online enquiry system for a group of shops, or to a new one-way
system in a road control scheme.) It is anticipated that changes
of this type will be less frequent than changes for which rever-
sion is possible.

Conclusion

The problem may be stated as that of maintaining reliability of
realtime control systems. The aim is to avoid breaks in service
because of errors in the software, to enable the errors to be
corrected while sustaining service, and to enable the software
to be enhanced while the system is live.

The need to design an operating system, concentrating on
factors for extreme reliability, has been apparent for some time.
A pilot implementation is being performed to establish that the
techniques defined combine to form a reliable system (Ringland
and Trice, 1975), and further details of the strategy have been
published as a CAP report (1972).

The approach is based on the adoption of a structure. Failures
are localised to the smallest unit possible to prevent disruption

" of the rest of the structure. The structure used to recover the

system after fatal errors is used to facilitate the variation of the
function of the system.

Some of the structural elements in the software could be
applied in the context of existing software suites. These are the
job structure, the techniques for separating code and data, and
those to increase the security of the application data. It is
anticipated that the effectiveness of this type of analysis would
be demonstrated by the increased reliability of modules
implemented in this manner.

In software terms, the key to the response time of realtime
systems is the handling of the large volume of volatile data
describing the application. The data must be secure but acces-
sible from many jobs. It is obvious that a directory system is
necessary, to achieve the flexibility demanded by the applica-
tion. But further analysis is needed of the problems associated
with the application data in the context of the theory and
practice of in-core databases.

The second paper in this series (Ringland and Trice, 1975) will
describe the use of a Modular 1 to implement these ideas, and
analyse the implications of using this structure to design a
demonstration suite with Air Traffic Control-like properties.

Acknowledgements

The work described was commissioned by MOD(PE), and the
the paper is published with the permission of MOD(PE). The
author wishes to acknowledge helpful discussions with members
of the staff of MOD(PE).

The author is writing as representative of the CAP team which
included E. Hart, R. Jones, A Gough and R. Hill. The ideas
expressed were evolved jointly: faults in exposition are the
author’s.

This paper summarises the CAP report 1972, published as
MOD(PE) Report JF/A/0183.

ACM (1969). Proceedings of the 2nd Symposium on Operating Systems Principles.
BeLADY, L., ef al. (1972). System growth dynamics, Imperial College preprint.
CAP (1972). Software functional variability: A methodology for reliability in Computer Systems.

CLARK, K. (1970). Middleware, CAP Report.

d’AGAPEYEFF, A., and CLARK, K. (1968). Functional Variability in large on-line systems, CAP Report.

DENNING, P. J. (1971). Third Generation Computer Systems, Computing Surveys, Vol. 3, pp. 176-216.

DJIKSTRA, E. W. (1968). Structure of the Multiprogramming System, CACM, Vol. 11, pp. 341-346.

ELspas, B., et al. (1972). An assessment of techniques for proving program correctness, ACM Computing Surveys, Vol. 4, pp. 97-147.
FERGUS, P. J. B., and TAYLOR, J. M. (1971). High Integrity Systems, UKAEA. Report HL71/5799.

RINGLAND, G. M., and TRICE, A. R. (to be published). A pilot implementation of software functional variability.

SPOONER, C. R. (1971) A Software Architecture for the 70’s, Part 1, Software Practice and Experience, Vol. 1, pp. 5-38.

WILKES, M. V. (1968). Time Sharing Computer Systems, McDonald.

Volume 18 Number 4

317

20 udy 61 U0 159n6 AQ 686.FE/ZLE/7/81/B1014E/|UfLOD/W0Y"dNO"oILEPEDE//:SARY W) PAPEOUMOQ

