A general control language :

translation
R. J. Dakin

language structure and

Euratom-UKAEA Association for Fusion Research, Culham Laboratory, Abingdon, Oxon, OX14 3DB

This paper develops the structure of a common interface language for accessing the facilities of a
variety of operating systems. Major design criteria are the linguistic implications of job control
specification and ease of translation to existing job control languages with a view to implementation
on a satellite system connected to main frames via RJE links. The main features which emerge are
a generalisation of function calls in which the parameter list constitutes a separate entity, the use
of assignments of limited scope to provide a flexible means for handling options, a method for
controlling the sequence of generated JCL based on chained strings and a variety of facilities which
allow a user to modify the user image to suit his own requirements. The translator has been
implemented on two computers and used to generate JCL for three target systems; the imple-
mentations appear to be sufficiently economical in resource requirements for satellite use.

(Received October 1973)

This paper introduces a General Control Language (GCL)
which has been designed to provide a common means for
expressing job control information when submitting jobs to a
satellite computer for running on a main frame machine to
which it is linked.

The term ‘satellite’ is taken to mean that it interacts with main
frame systems via standard RJE interfaces so that, by and
large, no special software for the main frame system is required.
This implies that job control information (referred to later as
JCL) must be generated from GCL by a Job Language
Translator (JOLT) running on the satellite. Design implications
of this mode of operation are that GCL cannot assume any
close interaction with the target main frame system and that
the language should be such that the storage and CPU require-
ments for JOLT are modest.

Such considerations have led to a strong emphasis on the
development of a linguistic framework capable of dealing with
the variety and changeability of job control information while
retaining the structural simplicity necessary to allow economical
translation—an emphasis that seems to be particularly neces-
sary at present, since most available control languages appear to
suffer from the lack of a truly appropriate structure.

This paper develops the structure of GCL and the main
features of JOLT implementations rather than the actual user
image which will form the subject of a later paper. Examples
have been chosen with a job control flavour for illustrative
purposes and do not necessarily reflect the currently imple-
mented user image.

What emerges is a general translational system whose facilities
resemble those of a sophisticated macroprocessor with a
restricted input syntax but substantially greater run time
efficiency and flexibility in the sequencing of generated text than
a conventional macroprocessor. The scope of this system is
potentially wider than satellite job control.

1. Main structural features
1.1. Functional notation
The notation of mathematical functions forms a convenient
starting point for the development of GCL. It is very general
and syntactically simple. Moreover, one tends naturally to
think within a functional framework in the area of job control;
thus running a program, compiling a source module or printing
a body of text are all actions performed on objects—or
functions performed on parameters.

While the adoption of functional notation, brackets and all,
may not endear itself to all users, brackets have their advan-
tages; for example nested statements such as

324

RUN(LINK(COMPILE(SOURCE)), (INPUT, F),
(OUTPUT, PRINTER))

cannot be constructed if we drop the brackets. Some users o
might consider this would be no great loss (indeed, GCL =
provides the means for avoiding nested statements) but, as we u
shall see, the use of brackets allows some powerful =
generalisation of concepts.

Nested statements become a good deal more readable if more @
than one type of bracket is allowed. In GCL the inequality &
signs {) can be used interchangeably with the normal bracket 2
pair (); thus the above expression can be written

RUN(LINK{COMPILE(SOURCE)), <INPUT, F),
{OUTPUT, PRINTER)) .

Note that in this example the correct sequence of operations:

Yy WwoJj papeojumoq

wapeoe//:

compile
link edit and load
run program

is automatically followed if each parameter is evaluated before
entering the function to which it applies (as in ALGOL call by
value). This method of parameter passing is adopted for GCL.

1.2. Generality and hierarchy

Different operating systems frequently use different means to «
achieve similar ends. The translation from one target job o &
control language into another is therefore likely to involve o g
trying to infer from one JCL what the user intends, before _ 2
expressing it in the other—a task which may be difficult or >
impossible.

To avoid difficulties of this nature, GCL seeks to be ‘hlgh N
level’ in the sense that it allows the user to express what he =
intends to accomplish while remaining uncommitted as to ways
and means. To the extent that this is achievable then one is left
with the comparatively simpler task of mapping downwards on
to ways and means without the need for any prior reverse
mapping of the type implied by inferring the user’s intentions.

To be realistic it seems over-ambitious to base our approach
on the assumption that such an aim is achievable except for
fairly simple tasks; if we are to stretch a target system’s facilities
to its limit some reflection of ‘ways and means’ in the GCL user
image seems inevitable.

GCL provides the means to arrange the facilities of a given
target system implementation into a hierarchy. High level
facilities, which are substantially system independent, make use
of lower level facilities which are more flexible and increasingly
reflect the structure of the target system. Thus a user can employ
simple system-independent statements where his requirements

Aq SZO8V€/VZ€/V/8L/GIO!UE/IU[LUOO/LUOO'd

The Computer Journal

allow it but can resort to less convenient, more system depen-
dent, but syntactically similar statements where necessary.
In terms of the function structure, facility hierarchy is reflected
in function hierarchy in which a higher level function calls a
sequence of lower level functions.

The mechanisms which allow the construction of a function
comprising calls on other functions can, without additional
implementation effort, be made available to users who can thus
define their own functions to perform recurring tasks of similar
form. The addition of input stream switching functions adds
greatly to the value of such facilities; a session must start with
a statement in which a user introduces himself to the system and
the initialisation function can readily be made to invoke the
stream switching function to cause the contents of a local file
(whose name is determined from user identification) to be
inserted into the input stream. Stream switching statements in
this file can, in turn, cause further files to be inserted; this
allows users to share function definitions, thus creating a GCL
‘dialect’ which, since it is invoked automatically by session
initialisation, appears to be part of the system. This situation is
saved from anarchy by the requirement that different dialects
must map on to a common user image; it also has the unusual
virtue of being oriented towards what the user wants rather
than what a system designer thinks is good for him.

The use of hierarchically structured facilities seems to be
particularly well suited to learning and teaching purposes. A
user needs to know very little to get started—some simple
structure and a few high level statements. As his requirements
become more complex he can be progressively introduced to
other high level facilities and lower level facilities. If the struc-
ture is well conceived it should be possible to avoid the sub-
stantial learning barriers which occur in many (all?) other job
control languages—for example, when one first encounters a
task which cannot be readily handled by avallable catalogued
procedures in the IBM OS system.

1.3. Options and defaults

A comprehensive operating system generally requires a great
deal of information from the user to allow it to allocate re-
sources, make sensible scheduling decisions and provide those
facilities that the user requires. It may also require a good deal
of essentially redundant information to make its own task
easier. To cut down on the amount of information a user must
explicitly specify, the system can provide much of the infor-
mation itself on the understanding that default settings are to
be used for items which the user omits.

The notion of defaults is a useful one, but is not without its
pitfalls when we come down to detail. First, there is the
syntactic problem of how specific items and their settings are
to be associated in a way that allows the user to omit items and,
secondly, there is the problem of what the default settings
should be. A set of defaults essentially defines a ‘normal’ mode
of operation. If a particular user’s requirements always differ
from those defined by some ‘standard’ set of defaults then he
must always override some defaults with identical settings
whenever he prepares a job for presentation to the system.
If default values are to be of maximum value then it should be
possible to tailor them to a single user or group of users.

One solution to the syntactic problem is to extend normal
functional notation to allow the omission of parameters which
are defaulted. Thus

F(A,, B)

specifies that parameter 2 = A, parameter 4 = B and that
parameters 1, 3, 5, 6, 7, . . . are to be defaulted. Its main draw-
back is that it is subject to clerical and memory errors when the
number of parameters is large.

Another approach is to use key words rather than position to

Volume 18 Number 4

define the significance of parameters which can, then, appear
in any order. For example

RUN(PROG=ANAL,INP=CARDS,OUTP=PRINTER)

By this means anything corresponding to an absent keyword
can be defaulted. This seems to be a cleaner way to handle
default specifications but is irksome for parameters which
cannot be defaulted.

GCL seeks to get the best of both worlds by making a clear
distinction between ‘parameters’, which are positionally
defined and specify information which must be present, and
‘options’, which are keyword defined and can be defaulted.
Thus in a function call, a parameter list may be followed by an
option list, the two being separated by a colon within the
parameter brackets. For example:

RUN(ANAL, <{INPUT, CARDS)», (OUTPUT, PRINTER)
:STORE = 200);

An important question is whether the names of options which
are used in this way should ‘belong’ to a particular function or
whether they should be globally defined. The use of globalS
option names may 1mpose some load on the implementor’ s3
imagination and the user’s memory in cases where similar butm
distinct concepts arise in different functions, since dlstmct">
names must be used; such difficulties have not been great in3
practice to date. Localised option names, on the other hand i
seem to have overwhelming dlsadvantages in the context of”
function hierarchy. £

Suppose, for example, that an option called STORE belongsm
to the function RUNB; a function RUN which calls RUNB‘l
will, in all probablhty, make the same option available to3
users: this is most straightforwardly accomplished by creatmgo
an option, also called STORE but belonging to RUN, whlchU
has the same significance as RUNB’s STORE and is cxphc1tly3
handed down by RUN when it calls RUNB. The awkwardness3
of this explicit handing on of options is, I trust, evident, espec1-
ally if there are other options called, say, TLIM, PRIORITY@

. in the same category as STORE; but the real crunch comesz
when we consider another function called CATALOGUE, say,2
which also has an option called STORE which is, however, %
semantically distinct from RUNB’s STORE. If RUN now callsss
CATALOGUE as well as RUNB, it cannot make both RUNB’sJ>
and CATALOGUE’s option STORE available in the stralght-
forward manner described above. Renaming one of them seems S
to be a recipe for confusion, but if we insist that a given optlong
name be tied to a particular semantic significance we might Just@
as well use global optxon names. No other solution will, mﬂ>
general, avoid this impasse if we are to allow users to deﬁneo
their own functions.

Thus, in GCL, option names are globally defined. This ma.kes;‘>
it possible to allow option settings to appear as separateZ.
statements which have the effect of resetting the default value.’ S
For example, the two statements N

STORE = 200

followed by

RUN(ANAL, {INPUT, CARDS), (OUTPUT, PRINTER))
cause the same action as the single statement in the previous
example but with the additional effect that the default value of
the STORE option is still set to 200 when executing subsequent
statements. Since the default setting statements associated with
a particular user and/or group of users can be automatically
invoked at session initialisation by the means described in
section 1.2, the second of the requirements which we laid down
for default specification has been met.

1.4. Commenting and layout
Control languages, no less than any other computing languages,
should provide freedom of layout and the ability to add com-

325

ments to allow one to produce a readable document. To this end
GCL adopts the following rules on input.

(a) A line may contain more than one statement or a single
statement may span several lines.

(b) The slash character (/) acts as logical end of line—allowing
comment to follow it. Note that comment may be inserted
in the middle of a statement by this means.

(c) The space character is used, where necessary, to delimit
elements such as identifiers and integers and is significant
in character strings. Otherwise spaces are insignificant.

(d) A GCL statement is terminated by a semicolon.

Example
STORE = 200;/(RUN WITH 150 GAVE
MEMORY VIOLATION)
RUN(PROGFILE¢‘REDUCE’},/COMPILED 17/1/73
<INPUT, DATA), | FROM CARDS —
COMPLETE UP TO 30/6/73
(OUTPUT, PRINTER});

GCL also includes the ability to accept bodies of source and
data text, in line with control statements, in which text is
accepted in a transparent manner and hence the above rules
cannot apply. A truly global rule is, however, applied to all
input lines:

(e) Any line commencing with the two characters + + causes
the remainder of the line (and following lines if the state-
ment spans more than one line) to be interpreted as a GCL
statement and executed immediately. After executing this
statement the translator normally discards the rest of the
line on which the statement terminates and reverts to
whatever activity it was which caused the + + line to be
read.

The purpose of this last facility is twofold—it allows one to
invoke channel switching facilities while reading text, thus
effectively replacing the + + statement by the contents of a
file and, secondly, it provides a means of protecting one user
from the errors of the preceding one in a system in which
succeeding sessions follow each other in a single stream. If
the session initialisation statement is in a line commencing
with + + then it is certain to be executed, regardless of whether
or not the previous session was correctly terminated, thus
allowing appropriate action to be taken if it was not.

Should the + + marker prove to be inconvenient (because it
occurs naturally in text) then some other string could be
selected. Under circumstances where no character string can
be regarded as sacrosanct then the immediate execution marker
could be made a user option, but at the cost of losing some of the
protection against previous user faults given by a fixed marker
system. This does not matter if separate sessions are in separate
streams of input, where premature termination of the input
stream can be taken to indicate the absence of proper session
termination.

1.5. Primitive functions
At the base of the function hierarchy are ‘primitive functions’
which do not comprise calls on other functions but form an
integral part of the translation system. A feature of these
functions is that they are quite independent of any target
system; in fact they are indepencent of any job control concepts
whatsoever, so that the basic translation system is not neces-
sarily limited to job control applications.

There are currently 21 primitive functions which are summar-
ised in Appendix 2. Two groups of primitives are of particular
interest—text generating primitives and control primitives.

1.5.1. Text generating primitives

The generating of different target JCL from a common GCL
involves sequencing problems which rule out a simple linear
generation of output text. For example some systems (such as
the IBM OS system) require JCL to be interleaved with source
code and data, while in others (such as CDC SCOPE) essen-
tially all JCL for a session precedes source code and data.
There are many more detailed differences in structure which
could be cited; it suffices to say that, in general, a single GCL
statement may give rise to the insertion of JCL at more than
one place.

The necessary flexibility has been achieved by generating JCL
in the form of a forward chained list of character strings which
we shall call the ‘output chain’. Each entry in the list comprises
a header, consisting of a string count and a pointer to the next
entry in the list packed into one word, and up to eight pointers
to strings. Any number of pointers into the output chain may
be retained, allowing insertions to be made between any two
previously generated entries. The primitive function which
generates an entry is called GEN and allows one to eight
strings to be inserted following a specified entry.

For the sake of efficiency the output chain is retained in
primary storage, but the strings themselves could be kept on o
secondary storage without substantially degrading per- 2
formance. The scheme is, however, quite economical in string 5
storage since repetitions of a string in the output chain mvolve 3
repeated pointers to the same string.

Source and data text are buffered in local (satellite) ﬁles, 2
their positions in the output chain are indicated by special
strings, as described in Section 2.3.

papeojumog

sdpy

dnoo!Luepeoe

1.5.2. The IF and LOOP primitives
In most languages conditional and repetitive operations are S
expressed by special syntactic forms. In the interests of S 3
implementation economy, GCL sticks to functional notation, §
but at some cost in clarity. Since most users should only use IF=.
and LOOP functions indirectly via higher level functions, this = S
loss of clarity does not appreciably affect the user image.
For both functions the first parameter is an integer Whlch‘D
controls the evaluation of subsequent parameters, which are 2
GCL functions. The notation is simplified by allowing query (?) &
as a parameter separator which is equivalent to enclosing the &
following parameter in function brackets (see Section 2.6).
The IF statement interprets the first parameter as a truth value
with the convention that true and false are represented by the o
<
integers 0 and 1 respectively, which cause the second or thirde
parameter, respectively, to be evaluated and returned as the<D
value of the IF statement. There can be only two parameters, g
in which case a first parameter value of 1 (false) causes a null 2
value to be returned. In any case, parameters which are not
selected by the first parameter value are not evaluated, so that9
any resulting side effects do not occur. The first parameter can o
be greater than 1 in which case it generalises to a species of case
statement which allows the selective evaluation of one of any
number of functions.

/eloIE/

€208Y¢

Examples
IF(EQ<A, 3)>? FAIL{15);RETURNCD);/FAIL15 & EXITIFA = 3
IF(N?’ZERO’?’ONE'?’TWO’);/RETURN NAME OF N’s VALUE

The LOOP statement interprets its first parameter as a repe-
tition count; the second parameter is then evaluated this number
of times. The asterisk symbol (*) appearing in the second state-
ment is the current cycle count. In other contexts * has a
different significance as we shall see.

Example
LOOP(3? F(*)>;/EXECUTE F(1), F(2) & F(3)

The Computer Journal

1.6. Named constants
Internal conventions such as the true/false representations in
the previous section can be masked from the user by attaching
names to constants. Named constants also help to safeguard
system integrity.

For example, the integer constants 0 and 1 can be represented
by the names YES and NO respectively, allowing option
settings such as

REFERENCES = YES;

A function body might, then, access the REFERENCES
option in a statement such as

IFCREFERENCES!GEN(ATCUR,’,MAP’)>;

1.7. Identifiers, declarations and assignments

Since function names, option names and constant names are
all global in extent, they are accessed via a single dictionary in
JOLT. Primitive functions and other predefined entities are
associated with identifiers in a more or less fixed manner;
further identifiers are declared and associated with higher level
functions, options and constants in ‘mapping statements’
which are syntactically identical to user statements.

Thus users can introduce their own identifiers if required.
Substantial developments along these lines could, however, be
hindered by the fact that identifiers are globally defined. An
individual user would find it difficult enough to avoid identifiers
which occur in a growing list of reserved system names, while
a co-operating group of users would face the additional problem
of mutual clashes.

GCL goes some way towards meeting this problem by adopt-
ing naming conventions. System identifiers are completely
alphabetic and at least two characters long. An individual user
can avoid clashes with system names by using single character
identifiers or multiple character identifiers containing numerics
or the ampersand (&) symbol, which is treated as an alphabetic
letter. Groups of co-operating users could adopt further con-
ventions to avoid mutual name clashes. Given an adequate
user image defined by system mapping statements the need for
superimposing user facilities should be minimal, and the above
conventions should provide an adequate framework. This
position may need to be reviewed in the light of experience. The
implementation of nested scopes would be quite costly in
terms of satellite resources and may not solve all the problems,
but one can envisage less drastic changes which would improve
the situation.

GCL avoids the need for separate declaration statements,
while retaining the protection against mis-spellings and similar
errors afforded by declarations, by insisting that an identifier
must be preceded by an exclamation mark (!) the first time it
appears in the text. On being declared in this way it is initialised
to a null value but may subsequently be associated with any
other entity via assignment. References to undeclared identi-
fiers or multiple declarations of the same identifier will generate
failures. An identifier is defined at all times subsequent to its
declaration. It can be declared in any GCL statement.

An assignment is a construct of the form
{identifier) = (expression)

(where the symbols) are here used as meta brackets in the
usual BNF manner—see Appendix 1). The effect of an assign-
ment is limited in scope, to provide the required option default
and override behaviour, by the following rule:

An assignment is effective only while executing the function
or statement in which it occurs; thereafter the identifier
reverts to its previous setting.

Thus, an assignment in an option list is effective only while
executing the function called. An assignment which occurs as a
separate statement inside a function is only effective while

Volume 18 Number 4

executing the function. Outside of function bodies separate
assignments have unlimited scope.

Apart from the required option default override behaviour,
this arrangement goes a long way towards providing local
variable facilities in the language. Thus one can use the identi-
fier TEMP, say, to hold intermediate results in any number of
functions without risk of mutual interference. It differs from a
set of truly local variables in that it is declared only once and has
a well defined initial value (see Section 2.1). A number of identi-
fiers can be reserved for local use by all functions.

Limited assignment scope makes it impossible to write a
function which uses assignments to initialise identifier values,
since any assignments inside the function are nullified on exit.
To overcome this limitation an alternative form of assignment
with unlimited scope is provided by the SET primitive function.
Note however that the effect of a SET will be nullified once
control goes outside the scope of a previous ordinary assign-
ment to the same identifier.

Examples

ILANGUAGE = FORTRAN; /SYSTEM OPTION
/ 'LANGUAGE’ SET TO DEFAULT OF FORTRAN

1I&MYNAME = 'DAKIN’;/USER IDENTIFIER
/ &MYNAME INITIALISED TO ‘DAKIN’ .

2. Data types
We have so far encountered entities as disparate as integers, S
character strings and functions which can be associated w1th
identifiers. Each of these (and a number of others) are regarded
as GCL data types. GCL gains a great deal of flexibility, while®
retaining adequate means for internal checking, by assoc1at1ng
data type with values explicitly and allowing the type assom-
ated with an identifier to vary dynamically at run time.
Internally a value is represented by two words which represent=
quantity and type. For integers, the quantity is the internal3

sdpy wouy papeojumoq

=

(')
[]

o

'o
3
e}

(binary) representation of the integer itself. For more complex=

values the quantity is a pointer to an appropriate data structures

W)

which represents the value. The type of a value can be accessedo

in GCL expressions using the TYPE primitive.

L/

A constant may be of any type; the fact that it is a constant i 1s4>
indicated by a flag in the type word of the identifier value whlchw
causes any assignment to the identifier to generate a failure.>
The constant flag is not passed on when an identifier is accessed &
but must be generated as part of a constant setting by the§

primitive function CONST. g
«Q

For example: <
IYES = CONST(0);/YES IS THE CONSTANT 0 5
1A = YES; J/USER IDENTIFIER A INITIALISED_

/ TO 0 (NOT CONSTANT)

The complete set of GCL data types follows. Most have an_,
explicit form, others are predefined and preass1gned to par-
ticular identifiers. All are ‘“first class citizens’ in the sense that”
they can be assigned to identifiers, returned as the result of
function evaluations, passed on as call parameters and gener-
ally accessed in exactly the same way.

2.1. Null

This type provides a means of indicating that nothing has
happened. Thus, an identifier is set to a null value on being
declared, and can be returned as the result of function evalu-
ation to indicate that no value is returned (there being no other
formal distinction between functions and procedures). There is
no explicit form other than a newly declared identifier.

2.2, Integer

GCL allows unsigned integers only. The explicit form is a string
of digits. Several examples have appeared already.

327

dv 6

Z M

2.3. String

Character strings are used to represent information destined
for insertion in the output chain. The explicit form is a set of
characters enclosed in primes (’).

Inside an explicit string slash retains its significance of line
terminator (allowing a string to span several lines) and semi-
colon retains its significance as statement terminator (allowing
the detection of unterminated strings—an error which might
otherwise cause a host of irrelevant failure indications). The
asterisk has an overriding effect which causes the character
which follows it to be accepted, willy nilly, as part of the string
and interpreted in a particular way (a very useful device bor-
rowed from CPL). Thus, inside a string,

* is represented by **,

' by ¥,

/ by */,

; by *;,
new line by *N and
buffered

text marker by *F.

The effect of *F on output is to cause the remainder of the
string in which it occurs to be ignored and the following string
to be expanded into the name of a local file containing buffered
text (as set up by the OPENOUT and COPYTO primitives).

2.4. List

At a small additional cost in terms of implementation the
parameter passing mechanism of JOLT has been generalised
to allow what has been so far called a parameter list to con-
stitute a separate data type. The explicit form of a list is that of
a parameter list. Thus, a list can be assigned to an identifier
and can itself be a list element. Lists provide a powerful
structure building mechanism and constitute the principle
means for creating data structures to represent such job control
concepts as devices, libraries and the like.

Example
RUN(ANAL, CARDS, PRINTER);

is equivalent to

1&MYJOB = (ANAL, CARDS, PRINTER);
RUN &MYIJOB;

Elements of a list can be indexed via constructs of the form

(list) (index})

where {index) may be an expression returning a value of type
integer. The index parentheses can be dropped where no
ambiguity results. A zero index is allowed and returns an
integer value equal to the length of the list.

Example
IL = ('ONE’, 'TWO’, 'THREE");
L 2; L(2);/BOTH RETURN 'TWO’
IN = L(0);/SETSNto3 .

2.5. Primitive function

A primitive has no explicit form as it constitutes an integral
part of JOLT. It can, however, be handled in the same way as
other values. A function itself is distinguished from an evalu-
ation of the function by the presence or absence of call para-
meters; if no call parameters are required the null list () is used
to cause evaluation. For implementation convenience the IF,
LOOP and VAL primitives are treated internally as separate
value types.

Example
1A = ADD; /ASSIGN ADD PRIMITIVE TO A
IS=A(B,C); /SETSTOB + C .

2.6. GCL function

The explicit form of a function is a sequence of statements
enclosed between an initial @ and a terminating 4 character.
The semicolon terminator on the last statement in a function is
optional. No special exit statement is required at the end of the
function, but conditional exit from the middle of a function
can be effected by use of the RETURN primitive. The value
returned by a function is the value generated by the last
statement in the function or the RETURN call parameter. A
function is only evaluated when it is applied to a parameter
list or acted on by the IF, LOOP or VAL primitives.

The first, second ... call parameters can be accessed as
$1,$2,...; $0 represents the number of call parameters. The
parameter list is automatically assigned to the identifier
PARAM on entry, allowing the more general list accessing
mechanism to be employed for parameters (useful for sequential
access via the LOOP primitive) and permitting the entire
parameter list to be handed on to a lower level function.

Example

IDOUBLERUN = /FUNCTION ASSIGNED TO
DOUBLERUN

@ /%1 IS THE DATA,

/$2 IS THE PROGRAM FOR THE

/ PREPROCESS RUN

/%3 IS A PROGRAM WHICH USES

/ PREPROCESSED DATA

/ TO PRODUCE THE FINAL RESULTS

RUN (82, $1, TEMP); /PREPROCESS
RUN (83, TEMP, OUTPUT); /MAIN RUN
OUTPUT # / RETURN OUTPUT

;/ (TERMINATES ASSIGNMENT TO DOUBLERUN)
| EXAMPLE OF FUNCTION CALL:
PRINT(DOUBLERUN(DATA,REDUCE,ANALYSE));

When a function is an element of a list the notation can be
simplified, as described in Section 1.5.2.

2.7. Output chain pointer

There is no explicit form, a single pointer being pre-assigned
to the identifier CURPTR by the system. Thereafter any
number of different pointer values can be retained by assign-
ment at appropriate times. A call on the GEN primitive up-
dates a specified identifier to point to the output chain entry
which is generated.

3. Some generalisations and uses of GCL structure
3.1. Extended form of GCL expressions
The GCL expression

F(Q3)

could represent function evaluation if the value of F is of type
function (or primitive function), but if F is a list it would
represent the third element of F. If F is of any other type the
expression is invalid. It follows that it is impossible in general
to distinguish between function evaluation, list indexing and
invalid expressions by syntactic means. In any case we say
that F is ‘applied’ to (3), with the understanding that it might
represent an illegal application which is detected at execution
time. Thus, a GCL expression consists of either a single element
(an element being an identifier, call parameter or the explicit
form of one of the data types) or one element applied to another.

This has been generalised to allow an expression to consist
of a sequence of any number of elements, evaluated by applying
the first element to the second, the result of this application
to the third, and so on.

The Computer Journal

20z udy 61 U0 189nB AQ £Z08YE/PZE /81 /B1014E/|UfL00/WO0d"dNO" oIS PEDE//:SARY W) PAPEOUMOQ

Example

IFORTRAN = CONST (1);/LANGUAGE INDICES—
/ FORTRAN
IALGOL = CONST (2);/ —ALGOL
'LANGUAGE = FORTRAN;/DEFAULT LANGUAGE
ICOMPILE = CONST@/FUNCTION TO GENERATE
/ JCL
/TO COMPILE A SOURCE MODULE (SUPPLIED AS $1).
JFCOMP AND ACOMP ARE PREVIOUSLY DEFINED
/ FUNCTIONS.
/WHICH GENERATE JCL FOR FORTRAN AND ALGOL
/COMPILATION RESPECTIVELY.
(FCOMP, ACOMP)LANGUAGE(S1);

/SELECT APPROPRIATE
/ FUNCTION AND APPLY TO /$1
4 ; JEND OF COMPILE

Application can be generalised to other data types, where this
is meaningful and useful. One such generalisation has been
implemented: the characters of a string can be indexed, thus
allowing a string to be checked for syntax.

Example

IF(GT{STRING(0), 6) ? FAIL<99); /[FAIL 99 IF STRING
/ LONGER THAN 6

Another generalisation of dubious value has been made—
to allow the dropping of parameter brackets where this can be
done without ambiguity. Thus, if F is a function, F ‘AB’ has
the same effect as F("AB’). This can be dangerous at user level,
since a user may not know that, say, files are represented
internally by lists; if A is a list then F A is not equivalent to
F(A). The facility has been used in constructing mapping
statements but is not described in user documentation.

3.2. Option hierarchy

We have previously discussed the advantages of structuring
GCL facilities in a hierarchy. In terms of language constructs
these considerations apply no less to options than to functions.

A typical example of the need for option hierarchy is provided
by ‘streams’ in the Multijob operating system. A stream is a
fixed partition of main storage. Each stream may or may
not be rolled in and out from secondary storage (mainly for
interactive purposes) and is associated with specific I/O
devices; such characteristics are fixed when a particular
system is configured. Most remote users should not need to
know about streams and configuration details except insofar
as they affect available storage and other resources. Mapping
functions should automatically select a stream appropriate to
user requirements. Nevertheless, a user with unusual require-
ments not catered for by the mapping functions should be
allowed to specify a particular stream directly.

GCL option hierarchy is implemented in the following way.
Low level (system dependent) options, such as Multijob
stream specification, are set to default values which are

-functions which would normally involve higher level options.
When a low level option is accessed, the VAL primitive is
applied to it to evaluate the function and thus generate the
option value appropriate to the higher level option settings
which are then current. The VAL primitive can, however, be
applied to values of type other than GCL function, in which
case it simply returns the value itself; thus a user can directly
override a low level option with a specific value.

Example

ISTREAM = @ IF (INTERACTIVE? '‘B'7E') %/

| DEFAULT-INTERACTIVE RUNS IN STREAM B,

| OTHERWISE E
GEN(ATCUR,VAL(STREAM));/EXAMPLE OF ACCESS

Volume 18 Number 4
«

/ TO STREAM OPTION
RUN(PROGRAM,DATA,PRINTER :STREAM = ‘A’);/
/ EXAMPLE OF LOW LEVEL OPTION OVERRIDE

3.3. Avoidance of nested statements

The provision of user declared identifiers allows a user to
select between nested function calls and a more step-wise
approach, according to taste. Thus the actions specified by

RUN(LINK(COMPILE(SOURCE),{INPUT,CARDS),
{OUTPUT,PRINTER));

could be expressed by the statements:

'R = COMPILE(SOURCE);

R = LINK(R);
RUN(R,{INPUT,CARDS),{OUTPUT,PRINTER));

A more convenient, though less general, means for achieving
the same end is provided by the ‘refer-back’ symbol asterisk (*)
which stands for the value returned by the previous statement.
Thus, the above example could be expressed by the statements:

COMPILE(SOURCE);
LINK(*);
RUN(*,{INPUT,CARDS),{OUTPUT,PRINTER });

Note that asterisk is used somewhat differently in the secondy
parameter of the LOOP primitive, as described in Section 1.5. 2=

pSpeojumog

dpy wosj

3.4. User information facilities
Layout and commentmg facilities can be used in the mappmg
functions just as in user statements. The text of mapping
functions can, then, be made to form a readable documenic%:}
which is made available to users in some form—for example bg
selective interactive interrogation of a file containing the texto
Since this text contains the information that is actually used t&
set up the translation it is automatically up to date—a mos@
unusual feature in user documentation.

The idea of rigidly linking user information to the systeng
itself was suggested to me by Mr D. E. T. F. Ashby of Culham}
Laboratory. An example of the type of user documentatlom
which can be produced in this way is given in Appendix 3Q
which is a section of the mapping functions for the ICIao
Multijob System.

8YE/IVCEIV/

4. 1mplementation
The JOLT job language translator for GCL has been 1mple%
mented for two machines—the ICL 4-70 and the CTL Modulai}’
One. These comprlse essentially a single implementation, as wg
shall see. Its main features will now be described.

| Uojsen

4.1. The identifier dictionary

Identifiers are kept in a dictionary of three word entries, eacli
comprising a pointer to the identifier string and its curreng.
(two word) value. The dictionary is accessed by hash coding3
the identifier and using Hopgood and Davenport’s quadratié
search method (Hopgood and Davenport, 1972) to resolve
clashes; this technique requires a dictionary capacity which is
a power of two. The need for precomputed hash tables is
avoided by insisting that a set of mapping functions commence
with a set of statements, each declaring a single identifier that
is to be initialised to a primitive function or other preset value
in a predetermined sequence. These are read and alloted
dictionary slots via the normal compilation mechanism. In this
way, primitive function and other preset identifiers are not
integral to JOLT but can be altered by changing the mapping
functions.

4.2. Statement execution

Each statement is first compiled into an internal form and then
interpreted. The internal form—in which all data types have
been already stored and identifiers have been replaced by

329

pointers into the dictionary—can be interpreted rapidly. Since
function bodies and literal expressions are stored internally
in this form, a highly nested function structure can be executed
much faster than would be the case if statements were directly
interpreted from their character representation as in most
macroprocessors. JOLT could be regarded as a species of
macroprocessor in which calls on lower level macros are
invoked via direct internal linkages to the lower level macro
bodies rather than via the generation and interpretation of
macro calls in character form.

Since GCL structure can be nested, both the compiler and
interpreter are used recursively.

4.3. Store organisation

The general approach to store organisation for JOLT is to
avoid the need for complicated garbage collection mechanisms
by using stacks (themselves a simple form of garbage collection)
where possible and otherwise economising on off-stack
storage.

The storage of lists and function bodies provides a particularly
interesting case. While parameter lists and functions which
comprise list elements are most economically stored in a stack,
their elevation to first class citizenship creates problems since
they can persist after the stack has been overwritten. The
placing of all lists and function bodies in permanent storage
would, in the absence of garbage collection, be very expensive
and is in any case quite unnecessary where lists are used simply
for parameter passing. The JOLT implementation adopts a
composite solution.

Lists and function bodies are always stacked when they are
initially formed. If a stacked list or function is assigned it is
automatically copied to permanent storage. Since stacked
list elements can themselves be stacked lists or functions, the
copying process is recursive.

Nested assignment scopes are implemented by holding a
reset stack of dictionary pointers and pre-assignment values.
Wherever the interpreter finishes evaluating an expression the
stack level is restored to its value before the evaluation com-
menced and any intervening resets are performed in reverse
order (to cope with multiple assignments to the same identifier).
An assignment always causes a new reset entry to be generated
before the assignment is performed. The SET primitive does hot
generate a reset entry.

4.4. Implementation language and portability

JOLT has been implemented in the CLSD language
(Calderbank and Calderbank, 1973), which provides convenient
and efficient recursive and pointer facilities which make it
very suitable for this purpose. The design of CLSD allows it to
be macroprocessed into assembly code via the Stage 2 macro-
processor (Waite, 1970). CLSD can be implemented on a new
machine in under three man months.

JOLT was first implemented on the ICL 4-70 running under
Multijob and later moved to the Modular One, CLSD macros
being already available for both machines. The time taken to
move it to the Modular One, at the same time writing and
testing a number of utility routines and text buffering facilities
not previously included in the 4-70 version (about 120 additional
CLSD statements), was under three man weeks.

The Modular One version requires 3,500 16-bit words of code
and a variable amount of data storage, depending on mapping
functions and user statements. Some 4,000 words of data are
required to map a somewhat limited GCL user image on to
JCL for the IBM OS system. This is an early version of JOLT
which does not include input stream switching (which would
not be practicable with the limited filing system used). The
Multijob version includes all the facilities described.

330

4.5. Mapping functions

Three sets of mapping functions have been developed, pro-
ducing JCL for the ICL Multijob operating system at Culham,
the ICL George 3/4 system, and the IBM OS system, accessed
via HASP, at the Harwell Atomic Energy Research Establish-
ment. The user image itself will be described in another paper,
but some general observations are appropriate here.

The Multijob mapping functions are by far the most com-
prehensive. They include facilities for compiling, link editing
and running programs written in FORTRAN, ALGOL,
COBOL, Assembly Code and CLSD as well as facilities for
creating, updating and using private subroutine libraries, and
a number of file manipulation facilities. The facilities for
compiling CLSD are particularly interesting in that they are
not integrated into the Multijob operating system as are the
other compilers. This fact is not, however, apparent in the user
image: the option setting LANGUAGE = CLSD causes the
entire sequence of preprocess, macroprocess and assembly code
compilation to be automatically invoked as required. Thus one

can envisage the development of systems with a minimum of

integrated ‘system’ facilities which nevertheless can present a2
sophisticated user image by using JOLT, or something like it,=

to invoke appropriate utility routines.

The OS mapping functions produce, for the main part, calls
on catalogued procedures. Since catalogued procedures are
limited to a single level and therefore rather specialised in

S
o

o

=
o

woJy pape

=

function, this approach does not lend itself readily to a well§“

structured hierarchical GCL implementation but presents a >
useful subset of facilities and has the advantages of rapid§

implementation and minimal maintenance, since any changes

gy
Q

[©)

in local practice tend to be incorporated in catalogued pro- &

cedures and thus require no change to the mapping functions. 2
The George implementation caters for FORTRAN programs
only, but is otherwise falrly comprehensive.
The Multljob version is available to users at Culham, butd

c

O

O/WO!

o

while it is simply an alternative to Multijob JCL, which most§

users have already mastered, it has been slow to catch on. We
can expect GCL usage to accelerate once it becomes available
as a truly general control language within a satellite system.
User reactions have so far been generally encouraging.

5. Conclusions

The GCL structure which has been described seems to go a
long way towards meeting the objectives of a general control

(
QO

208YvE/VCE/V/8LIBIOW

O
(;J

o
language which presents an acceptable user image and can be

implemented within the resources of a satellite computer of
moderate size and power.

Acknowledgements

In the course of this work I have had many discussions whlch
have given rise to valuable comment, criticism, suggestions and
encouragement. I am particularly indebted to Dr. M. D. Poole
(now at Oxford Regional Hospital Board), Mr. D. Ashby,
Dr. M. Calderbank and Dr. T. Lang for their comments.

Dr. Poole also started the Stable User Image project at Culham.’

An internal report by him, which surveys the job control area,
provided a useful starting point for this work. Mr. Ashby also
carried out preliminary investigations of user requirements at
Culham. Mr. N. Risidore, a student from Brunel University,
implemented a number of improvements and extensions to the
original version of JOLT, and extended the Multijob mapping
functions to cover ALGOL, COBOL, Assembler and CLSD
compilation. Another sandwich course student, Mr. G.
Benson from North Staffs. Polytechnic, constructed the George
mappings; Mr. Benson is attached to ICL who supported him
during his work at Culham.

The design of GCL has been influenced in a general way by
the work of Jackson (1970) and Stoy and Strachey (1972).

The Computer Journal

o

judy g1 UO 10

O

Appendix1 Formal syntax
The syntax shall be expressed in the following version of
Backus-Naur notation.

Syntactic constructs are denoted by lower case words inside
the meta brackets (. Repetition of a construct is indicated by a
superscript asterisk (0 or more repetitions) or circled plus sign
(1 or more repetitions) following the construct. A sequence of
constructs to be considered as a single unit for repetition or
when specifying alternatives is enclosed in the meta brackets
{}. For clarity, we shall take as read the conventions that spaces
can act as delimiters but are otherwise insignificant outside
strings, that the slash character acts as logical end of line, that
physical end of line terminates comment but is otherwise with-
out significance in statements and that + + at the start of a
line indicates immediate execution regardless of context. Only
statement syntax is specified, there being no larger syntactic
unit.

(letter) ::= A|B|C|D|E|F|G|H|I|J|K|L|M|N|O|P|Q|R|S|T|
UIVIWIX|Y|Z| &

(digit) ::= 0|1]2]3]4/5|6|7]8]|9

(identifier) ::= (letter)<letter or digit)>*

{declaration) ::= !(identifier)

(integer) ::= {digit) ®

{formal parameter) ::= $<integer)

{special string character) ::= *|'|;|/ ..

{string element) ::= {any character except a special string
character)|*F|*N|**|*'|*;|*/

(string) ::= '{string element)*’

(element) ::= (identifier|{declaration}|{integer}|{formal
parameter)|(string|*|<list)|(function)

{expression) ::= {element)P

{assignment) :: = {{identifier)|{declaration)} = {expression)

(statement) ::= {expression);|{assignment);

(function) ::= @(statement)@ #

(list separator) ::= ,|?

(list body) ::= (null)|{expression){list separator)

{expression) }*
:= (null}|, {assignment){(,assignment) }*
:{assignment) {,(assignment) } *
(Klist body){option list})|
{(list body)<{option list})

{option list) :

(list) ::=

Implementation restrictions
The current implementation imposes the following restrictions
on the above syntax:
1. An identifier may not be more than 12 characters long.
2. An integer i must lie in the range
0 <i< 32767 .
3. A list cannot contain more than 127 elements (excluding the
option list).
4. An option list may not contain more than 15 elements.

5. A string may not contain more than 255 characters (including
all asterisks but excluding the bracketing primes).

Appendix 2 Primitive functions

The following table contains the complete set of current primi-
tive functions; this set is open ended and further functions can
be (and have been) added quite easily as required. It should be
emphasised that these functions are part of the translation
scheme and do not constitute the user image.

Parameters Action

$1, $2—integers Return a string $2 characters

$3—(optional) long starting with $3 (if

string present), the remainder of
the string being the least

Function
INTCH

Volume 18 Number 4

GEN

LOGOUT

OPENOUT

COPYTO

SWITCH

IF

LOOP

VAL

RETURN

TYPE

EQ

GT

ADD
RANDOM
CONST

HOLD

SET

$1—function
of form @

significant digits of $1 (no
Zero suppression).

$2, /$3, ... form an entry
which is inserted in the

output pointer 3 output chain following the

$2,%3,..
$1—string
$1—string
$1—string
$1—string
$1—integer
$2, $3,...—
functions
$1—integer

$2—function

$1—function or

other value

$1—any
$1—any
$1, $2—any

$1, $2—integers

$1, %2,
integers
$1—integer
$1—any

$1—list

. strings entry pointed to by

VAL($1). The output
pointer is updated to point
to the last string inserted.
Output as specified by the
output chain is generated
and written to a local file
specified by $1. If any
failures have been detected,
output is diverted to an
error stream.

The previous text buffering
file (if any) is closed and a
new file, specified by $1, is
opened.

Lines are copied from the
input stream to the current
text buffer file until a line
starting with $1 is found.
Input is switched to a loca
file specified by $1. On
termination of this file,
input reverts to the current:
input stream.

Evaluate and return $2,
$3,...if$1 =0,1,..

01} papeojumoq

Pt

-

ve/vzs/wsL/aloweuu[wOO/LuOO'an'O!LuepBOE// sdpy w

Evaluate $2, $1 times,
setting the ‘previous state-
ment’ value * successfully
tol,2,..

Evaluate and return the
result of $1 if itis a
function—otherwise return
$1 itself.

Exit from function, which
returns $1 as its value.
(RETURN is not required &
at the end of a function.)
Return an integer 1ndlcatm§
the type of $1.

Return integer O (true) if $L
and $2 are equal in quantit§
and type—otherwise return EB

€20

(false). 9
Return truth value of N
$1 > $2. §

Return $1 + $2 +

Return random integer in
the range 0 to ($1—1).
Return $1 with ‘constant’
flag attached.

Copy $1 into permanent
storage and return this
copied list (an explicit form
of the automatic facility
described in the paper).

(i) $1—function $2 is assigned to the

of form

identifier in $1, the

@identifier # assignment being not

$2—any

limited in scope.

331

(i) $1—Tist

$2—integer
$3—any
FAIL $1—integer

LINECOUNT $1—integer

JOIN $1, 82, .. . lists

Element number $2 of $1 is
assigned the value $3.

A failure message indicating
failure number $1 is
generated.

Reset the line count, used in
failure messages, to $1 and
return the previous line
count (used to exclude
mapping functions from the
line count for user failure
messages.)

Return the list formed by
concatenating $1, 82,

Appendix 3 User documentation

The following extract from the mapping functions for the ICL
Multijob system provides an example of the type of user
information which can be provided from this source.

/44+4444444+4++4+44+0PTIONS ~ SETTINGS AND DEFAULTSH++4++++++4+++4++4++

/

/

/ .

/========== (1) - COMPILE OPTIONS
/

'LANGUAGE = FORTRAN3/

/

ICLTIME =203/

/

!CLSTORE =@IF(!MANYNAMES»200,128)\3/
/

/

¢SOURCELIST =YES$/
1OBJECTLIST =NO3/
!DEBUG =NO3/
¢REFERENCES =NO3/

References

BARRON, D. W., and JacksoN, I. R. (1972). The Evolution of Job Control Languages, Software, Vol. 2, pp. 143-164.
CALDERBANK, M., and CALDERBANK, V. J. (1973). A Portable Language for System Development, Software, Vol. 3, pp. 309-321.
Hopgoop, F. R. A., and DAVENPORT, J. (1972). The Quadratic hash method when the table size is a power of 2, The Computer Journal,

Vol. 15, pp. 314-315.

Jackson, L. R. (1970). The Design and Implementation of Command Languages for Digital Computers, Ph.D. dissertation, University o

SOURCE CODE LANGUAGE- ALSO @
=ALGOLs COBOLs UCODE OR LSD
TIME LIMIT FOR COMPILE & LINK
IN ETU (1 ETU =3.5 SKC. CPU)
STORE FOR COMPILE & LINK EDIT
IN 512 BYTE UNITS; DEFAULT IS
128 FOR FTRAN4, OTHERWISE 200
COMPILER SOURCE LISTING
COMPILER OBJECT CODE LISTING
COMPILER ETC. DIAGNOSTICS
=YES FOR COMPILER SYMBOL TABLES

Cambridge (reproduced as NTIS no. DB 197307).

MCcGREGOR, D. R. (1972). The Culham Job Control Language, SIN 2/72, UKAEA Culham Laboratory, Abingdon, Berks.
RICHARDS, M. (1969). BCPL: A Tool for Compiler Writing and System Programming, SJCC, pp. 557-566.
Stoy, J. E., and STRACHEY, C. (1972). OS 6—An experimental Operating System for a small computer. Part I: General Principles an

Structure, The Computer Journal, Vol. 15, pp. 117-124.
WAITE, W. M. (1970). The Mobile Programming System: STAGE 2, CACM, Vol. 13, pp. 415-421.

’

/=====(1.1)- FORTRAN OPTIONS
MANYNANES =NO3/

/

/=====(1.2)- ALGOL OPTIONS

'ENTRY =@$1 4\3/

'ALGBUG ="ROUTE,ASSIGN®$/

/

/

/=====(1.3)- COBOL OPTIONS
1COBMAP ='MAPsXREF'3/

/

/=====(1.4)- USERCODE OPTIONS
IMACLIB =°"SYSTEM'3/

/

/=====(1.5)- LSD OPTIONS
'GENTIME =503/

'GERSTOR E=300 3/
INEWIO =YES3/

/

’

'LSDD =°DKCL°3/

ILSDE ="EXTS's/

'LSDSTACK=1003/

IMAIN =YES3/

'LSDU ="MICCSS'3/

'LSDG =°‘NEWLSD'3/

ILSDP ='PROG'3/

/

/

/========== (2) - LINK EDIT OPTIONS
/ .

{PROGMAP =YES3/
'MAPLEVEL ="MAP'3/ .

/

/

SLET =YES3/,

/

‘ERREX =KO3/
'EXTO ="DUMMY'3/
/

YPROGSAVE =@!PROGFILE(NONAMEI\3/
!LIBLIST =()3/
/

=YES FOR LARGE TABLE COMPILER

INTRY NAME(DEFAULT IS FILENAME)
ALGOL DEBUG FACILITIES
(INVOKED IF DEBUG= YES)

COBOL REFERENCES SPECIFICATION

MACRO LIBRARY

MACROGENERATION TIME LIMIT (ETU)

MACROGEN. STORE LIM«(512 B) .

- OPEN FN. USED FOR ALL STREANS
=NO -FOR OLD I/0 = PRINT &
READ OPENED AUTOMATICALLY

LSD GLOBALS IN USER:CROUP.LSDD(S)

EXTPROCS IN USER:GROUP.LSDE(S)

SIZE OF LSD STACK

=NO IF NOT MAIN MODULE

USER NAME FOR LSD ROUTINES

GROUP FOR LSD ROUTINES

LSD PROGRAM NAME

PROGRAM MAP (SEE MAPLEVEL)
THIS GIVES MODULE MAP-
=°*XREF’ ADDS CROSS REFS.
(NO EFFECT IF PROGMAP =NO)
=NO FAILS LINK EDIT IF ANY
UNSATISFIED REFERENCES
=YES FOR ERROR EXIT FACILITY
ERROR EXIT LABEL (LINKED TO
UNSATISFIED REFERENCES)
FILE TO BOLD LINKED PROGRAM
LIST OF SUBROUTINE LIBRARIES
TO BE USED IN LINK EDIT

/31014e/|ulwoo/woo dno olwapese//:sdjy Woll PapEojuMO(]

/7181

332

20z 1udy 61 U 1s8n6 Aq £E08YE/vZE

The Computer Journal

