A computer model for instructional purposes

M. H. Williams and H. L. Ossher

Department of Computer Science, Rhodes University, P.O. Box 94, Grahamstown, South Africa

This paper describes a computer simulator which is used as an aid to teaching certain aspects of
computer science. The properties of the computer to be simulated are determined by parameters
which are read in as data by the simulator. Once these are set up, further parameters are used to
enter a program coded in the machine code of the simulated computer. The program will be
executed with monitor printouts of specified registers or portions of memory.

(Received June 1974)

1. Introduction

A convenient method of communicating the basic principles
of operation of a particular computer is by specifying its
semantics in some suitable notation. Not only does this
provide the receiver with the essential information in a con-
veniently condensed form but it also causes the person pro-
viding the information to think carefully and to crystallise his
own ideas on the exact manner of operation of the particular
machine.

This technique is thus useful when one is studying the basic
manner of operation of a computer in courses such as machine
architecture, or as a background to the hardware required for
certain aspects of operating systems. However, if one is to use
such a system for teaching, it should preferably be both simple
and powerful. For example, one could express the semantics of
a computer in a system such as VDL (Lee, 1972); but while this
is powerful, it lacks simplicity and is certainly not the most
convenient system for this type of application.

The present paper describes a simulator which employs a
‘language’ (semantic notation) that is both simple and powerful.
The user provides parameters specifying the characteristics of
the particular computer he wants to simulate and the program
to be run on this computer. The simulator then simulates the
effect of running this program on the specified machine,
monitoring the contents of certain registers during the run.

It can thus be used to demonstrate hardware features of a wide
variety of existing or hypothetical computers, or to allow
students to design computers of their own to meet certain
specifications, or to implement their own interpretation of
existing computers. The language includes a certain amount of
duplication in parts (e.g. input/output) to allow it to be used to
teach students at different levels.

The data required by the simulator can be divided into two
categories, Viz.:

(@) COMPUTER DEFINITION PARAMETERS—defining
the properties of the computer to be simulated, and

(b)) PROGRAM DESCRIPTION PARAMETERS—defining
the machine code program to be run on the simulated
computer and providing ‘running instructions’ to control its
execution.

These two types of parameters are described in the following
two sections.

2. Computer definition parameters

The first set of parameters, the computer definition parameters,
define the structure of the machine in terms of the registers,
the machine code instruction set and the instruction set-up/
execute cycle. There are also parameters for defining the
peripherals and the character set of the simulated computer.
The set comprises seven parameter types in all, namely B, D,
L E, O, P and C parameters.

Volume 18 Number 4

2.1. The BEGIN parameter
Before a computer definition, the parameter

B
is used; this causes all pointers to be initialised. It is used singe

one may want to run several batches of data represent1@
different computers.

2.2. The definition of registers
The D parameter defines the registers of the computer. Ea

ng; papeo|

definition associates a name with a register or set of registersgf
a particular size as follows: 2
Dr:n defines a register r of length n bits, S
or Dr:nm defines a set r of m registers each of length§1
bits,
or Dr:nm,p defines a set r of p blocks, each contammg{in
registers of length n bits. 3

The first form is used to define single registers such as accum?i—
lators, next-address register, function register, etc. The seconﬂ
form can be used to define main memory, viz. a set of n
registers (numbered 0 to m — 1) of equal length while thy
third form is used to define auxiliary memories, such as dmc
or drum, consisting of p blocks or buckets, each contamu@
m words of length n bits apiece.

More than one definition may be punched on a card, in Whl@ﬂ
case one uses the form

Dd,;d,;...;d

where each d; is one of r:n, r:nym or r:n M,D- Ifa deﬁnmen
overflows onto a new card, the symbol ‘&’ in the first colmrgl
of the new card indicates the continuation. An example
shown in Fig. 1.

T7€O8t7

lidy 61 Uog

2.3. Definition of machine code instructions
The machine code instruction set (or possibly a subset of the
full instruction set) is set up by defining the effect of ea@
instruction on the appropriate registers of the computer
This is done by means of parameters of the form:

In:sg; 8y5...58;

where n is the instruction code in binary (preceded by the
symbol ‘#°) or decimal, and s,, s,, ..., 5; is a sequence of
substeps or statements representing the effect of the instruction
code n.

Statements may consist of any of the following

(a) Arithmetic: register = expression

(b) Data transfer: MOVE

(¢) Input: READ

(d) Condition: IF

(e) Unconditional transfer: GOTO

(f) Shift: SLL, SRL, SLC or SRC
(g) Halt: STOP or ILLEGAL

(a)

Main Memory Aux Memory
M X

Function Address Next-Instr

Register Register Register

CF] [N [

Accumulator

A |

(b)

B

D M:8,16

b X:8,8,16

D F:4 ;N:4;1:4
D A:16

Fig. 1 An illustration of how the registers of a simple hypothetical
computer can be defined using D-parameters.
(a) The registers of a simple hypothetical computer: main
memory (consisting of 16 8-bit words), auxiliary memory
(comprising 16 blocks or buckets, each containing eight 8-bit
words), function register, address register and next-instruction
register (each of four bits) and an accumulator (16-bits).
(b) The corresponding computer definition parameters
defining these registers.

(h) Execute:
(i) Subroutine call:
(j) Initiate I0:

EXECUTE
see section 2.5
see section 2.6

Arithmetic

An arithmetic statement is similar to the assignment statement
of many high-level languages. The contents of registers (simple
or subscripted) and integer constants may be combined by
means of +, —, *, / and parentheses in the usual way. An
example of an arithmetic statement is

A= —B+ CD)x2

which is interpreted as follows: add the contents of register B
and the contents of the register from the set C pointed to by
the register 7. Multiply the result by two, negate and store in
register A.

To access only a portion of a register, the bit positions of the
beginning and end of the required field must be specified in
square brackets after the register name, e.g.

A[1,5] = E[2,4] + C(I + D[3,7] .
The convention adopted here is that the least significant bit is
numbered zero.

If one wishes to propagate the sign bit of the number contained
in a register before using it in an expression or storing it-in
another register, the suffix

@(expression)

334

Table 1 Specification of a simple set of machine code instruc-
tions for a computer with registers as defined in Fig. 1.
(a) Description of instructions

Machine code Interpretation

Sunction

#0000 Load main memory register into acc., pro-
pagating sign

#0001 Store least significant 8 bits of acc. into main
memory

#0010 Add main memory register into accumulator

#0011 Subtract main memory register from accumu-
lator

#0100 Unconditional jump

40101 Jump if accumulator negative

#0110 Jump if accumulator is non-zero

#0111 if N # 0, CALL

if N = 0, EXIT

#1000 Fetch 8 words from auxiliary into main
memory from M (8), then call address 8 5

#1001 Dump 8 words from main memory to auxiliary g
memory

#1010 Fetch 8 words from auxiliary and exit to
address given in accumulator

$# 1011 Add into store

#1100 Shift left logical

41101 Shift right logical

#1110 Read n words into main memory

#1111 Stop

(b) The corresponding instruction definition parameters

I 40000: A = M(N)@(16)

I 40001 : M(N) = A[0, 7]

I 40010: A=A+ M(N)@(16)

I #0011: A =4 — M(N)@(16)

I 40100: I=N

I #0101 IF(A[15, 15].EQ.1), 1; I = N

I #0110: IF(A.NE.0),1; 7 = N

I #0111: IF(N.EQ.0), 2; I = A[0, 3];

& GOTOEND; A =I;1=N

I 4 1000: MOVE X(0, N), M(8), 8; A = I
& I=38

I 41001 MOVE M(8), X(0, N), 8

I #1010: MOVE X(0, N), M(8), 8; I = A[0, 3]
I #1011: M(N) = M(N) + A[0, 7]

I 4 1100: SLL 4, N

I #1101: SRL 4, N

I #1110: READ M (4), N

I #1111: STOP

is appended to the register name. The value of the expression
specifies the number of bits to be occupied by the result. For
example, if one wishes to add the contents of an 8-bit register
Z to the contents of the least significant 16 bits of a 24-bit
register Y and store the result in a 16-bit register X, propagating
the sign bit of Z before addition, one may write:

X = Y[0, 15] + Z@(16) .

Data transfer

To transfer a number of registers at a time, say from main
memory to auxiliary memory or main memory to main
memory, the statement

MOVE ry, ry, e

is used, where r, is a register from a set of registers,
r, is a register from the same or a different set
of registers,

and e is an expression specifying the number of

The Computer Journal

ludy 61 U0 1senB Aq YEOBYE/EEE/H/8 L/BIoIME/UlWO0/WOo" dNO"dIWaPEDE//:SARY WOl papeoju

N
o
N
=

registers to be transferred.
For example,
MOVE C(8), X(0, N), 8

transfers the contents of 8 registers starting at C(8) to the 8
registers starting at X (0, N).

Input
The statement
READ r,n

causes # data items to be read from the data cards and stored in
registers starting from register . This is used to obtain the effect
of peripheral transfers at a simple level (without using the P
parameter).

Condition
To obtain conditional execution of substeps, the statement

IF (condition), n
is used. A condition has the form
expression relation expression

where relation is one of the following: .GT., .GE., .EQ.,
.LE., .LT. or .NE., and n is a constant. For example,

IF(A[4, 7].NE.B[0, 1]J@(4) + C), 3

If the condition is true, then the next n substeps are to be
executed; otherwise they are to be skipped.

Unconditional transfer
The statement
GOTO n

(a)

N
~
H - . - w— - o -

(b)

E F=M(I)[4,7]; N=M(TI)[0,3];I=X+1;
& EXECUTE F

Fig. 2 (a) The instruction set-up/execute cycle for the machine of
Fig. 1: fetch contents of main memory word pointed to by I
and separate function and address components into registers
F and N; increment register I and then execute the instruction
in F.

(b) The corresponding instruction set-up/execute parameter for
the simulation program.

where n is a constant, causes control to be transferred to the nth
substep of that instruction definition. Similarly

GOTO END

causes all further substeps of the instruction definition to be
skipped.

Logical or circular shift

Statements of form
SLL r,e
SRL r,e
SLC r,e

or SRC r, e

are used for left or right logical or circular shifts. In each case r
is the register to be shifted and e an expression specifying the
number of places it is to be shifted.

Halt
The statement
STOP -
halts the simulated computer. The statement %
ILLEGAL n 9
Q.
halts the simulated computer and prints a suitable message on
the line printer. 3
3
Execute §
The statement =
EXECUTE e S
causes e to be evaluated and the result to be interpreted as%n

instruction code. This instruction code is then executgd.
Finally control returns to the substep following the EXECUS"E
statement.

A simple set of machine code instructions is 1llustrated31n
Table 1.

1Je/julwooy

2.4. Definition of instruction set-up/execute cycle
The E parameter is used to define the process mvolvedom
fetching an instruction from main memory, resolving

separate fields into separate registers, determining the modiﬁ'%d
address if indexing or indirect addressing is allowed, updating
the next-instruction register and finally executing the 1nstr&
tion. It has the form

€081

Esy;855...58;

where 815825+ - . 5; is a sequence of substeps of the same fo?m
as used in 1nstruct10n definitions. For a simple example, gee
Fig. 2.

61 U0 159

2.5. Definition of subroutines and overflow conditions
Where sequences of substeps occur repeatedly, subroutiges

coq I!

e
S RESETL,

N v(urunntmo LIS PELH r«(s) Ll
S M) r«m(onon | EE IR

MU RO IR, DU
'r . — '

n(u:nndfuoo; ST TATCOT 00N ACEITE

3 1-..».0\.'1-1411 vnunnw uu1u1111u BI00160C0: 7011000047 i557 B
N el

TR

s w11101010 a1o(1(u1o o,:oow(wn #00616011, #10000000

uuwno.nonunn F11119507, 5100

b »

G0 HGT00GTT T

£ 11(01&1") 15,7#00010010,14, fl)l)010()11:ﬂ100l|)100,k 0 .
£ 1, FT1001179, 601161100, 001001191, 0, 669100010, 00070070, k‘HruUO‘l()\

£ 1,8116G10001,091101101,4,210100010,200010001, £10000110,0
£ 0, ETI0GCO0T, Tu001000(, 3,R00111117, 200010011, 710000111,
L E 3, l"l‘l‘l(1100:lul'1l140(‘\():#1"(!'\0100,0 0,0

£ »u0uvr0100,2, :000101:01 5,#01.010000 Wer1u100610,0
LA FLYS VY. N

Fig. 3 Program Description Parameters to set up and execute a
bootstrap loader program which loads a binary loader which
in turn loads a large program in the hypothetical computer of
Figs. 1 and 2 and Table 1.

Volume 18 Number 4

ton s e e - - . e e e MONITOR PRINY A

r e RAMPLE e e e e o
: ivotn ‘”f“"r"'ﬂ-"" ."”.” o 1 WATN MEMORY : - :.n--n..-...--.....n...n.nn.n-u...u..u-.-...n...nn.:
: xr:.n s * AUIIL“I;DniIuI 518G REG . N o -
Fihina: + INSTHUCTION PRUCESSING REGS .)
g ate “rec1r * veu PKOCESSING REGISTERS ' T e B RO 1
1 Aw o T LO0A .
1I -og:n;: H(N)-Alu.]:"',' + "0" . o — L £-g00rnat 1 : LOAD . 15
€00101 AnenCnIB + . .
: :3(:;;! Asasin(n)ac16) T T + wuuu T e —= e R £-1101000 #3 . READ 8
N + sump . .
: -n:g;: ;:::u:,;zliuln.u 1eN + j':‘ . JuMp 1F nruv'l’" . e A £ 4001000 1T —’T'DUMPA -3.
0 1 L1 T INZ = JUmP. IF NONZER -
: ;)i wvo ENDTASITION T:Au (utlz) /oexat (nn"’ ", T nea 24 . . LOAD 0
1t CALL AUXILIARY (CALLA 3 -
1 H VOVE M(B) . X(O0n 1 T OUMR T ADKTLIARY T T (bumpAY 5 mi2) £-00100011 - - ADD 3
1 #1010: MOVE XC(O,N),M(8),8: -Aln.!) T EX1Y l\'llllll' _(EXITA)
: F10115 P ON) M ON) oAL0,7) - ’""o'A" <Thoo INTO sTORE T s o 100010011 1o —STORE 3
211001 SLL AN st
: ':;(‘n: ‘"D"(_’_”,,, R = - 7¢3) £.10000000. . - CALLA O
#1101 READ MAY N + READ . :
. atto e + atap - w“a 499001119 T :_L.OAD 14
:7:::;::?‘/) NaPC1) (0,305 Imtets t INSTRUCTION FETCH/EXECUTE CYC . u(9) 0011111 63 .. SuB 15
M - o 8
s . .
N LTI GTTT Ry RO RO TATIUTO0 RSy TAOUTLc00T 6y TE s e rooouire 3+ STORE 14
Ea ::1:::0:00«005 153 . KO, £ 01011110 9% - JNEG 14
VRN, . .
S — . _#10010000 . Y4 _,:_DU MPA O
........................ 97 1
 esesss seseane ceses o
. 0
. Weoy 711101000 8 - ououn0es— e
0 .
: 3 LN 706001300 210 — A
——t o
. w2 T00066060
: w5 ¥ 00000001 1 ! -
. £ U0010100,1%,#09010390,74, 800010011, "0/‘0(‘100'0,
. WO 7 TTT07000 8 £10m 110011 a 11011 20, 010811 110 £ 20100010, 200010010, 410000101
L] £ 1,#11010001,3017101101,4 100010, 800010007, 810660110,
’ BLIEY ¥ 10070000 o £ oI 1009001 u2A1 400D, uea i1 11101 e U0 D011, AT OUINNI
Ll £) 201101100, 4, 810193010, 812000100,0,0,0
. W) +"60000070 2 € P0UNI0IN0L2 0T UR0100HT x5 402014204 A IINEONDN.
. CIE2A ¥ 01000000]
. . . .
. g . o . . D
. .
. %9 # 00000090 0 . g
. ‘ .
: WCT0Y] N - M@ 300050000 . . =]
. . 2
— ATy 7T v v . ug1) 269001191 15 8
. . .
. WO 0 v : e M@)o _mAMQMGO 8 %
. .
: wOE ¥ 4 R e w o _waconteor a5 .. DUMPA 9 o
. . . .
v ROTEY 7] ; . FYoy) - » 03006602 o« LOAD o g‘
. . .
: WSy g [0 : I n(s) - £.0G100011 . 35 _+ ADD 3 3
- *’:"‘" ¥ 70000 U : - S (8). 409610911 - 19 + STORE 3 =5
: 70000 g : w) £.10000002 1] .g
— T 70017 3 : [SR 'Y} IS 0¥ T 1.0 1L KT S VI 14 @
—— o e = M y =
3 ¥ ¥ o : et WGL L roennn 15 o
o vesenesene . —r . 09011170 _ 14 8
— AR seoreset — ——— _e oo 14 %
. .
() I ® 10050000 ‘0 3
€ 14,#00111119:£00011110:001011114381£61500054011900013555:3 . 3
WM . __» 01100001 1 o
Fig 4 (a) S SN 7T VS SR L PLLERLY 8
5 £
I STt 7 00091000 ©
- . i3 PIRELTY 8
—— 1 S - LR R AR 3
. . =
. A P ATTDANMMIN 8
—aveweo. ez . READ 3 : et iene et 3
cocoreny & e 8 - e 3
— e = 0CL00GNY " - [+] Q\>
N =N
e tawewwa 1+ LOAD 1 Fig. 4 A simulation run using the parameters shown in Flgs 1to3=
S PR T . o
: w e READ 8 and Table 1. The contents of registers are printed in binary @
: - # 10t10000 o N -
: e s oo 2 and decimal form. ®
. 183 e E_0100000y [+] @3
———m> 3 e @
— LB, - »_00uy1110.) ((:;
: roy i may be used to reduce repetition. A subroutine without dummy &
. ¥(10) ¥ 00011110 4 3 . B
. waany £ wrosany variables is defined as follows: &
LTI R T
. w
. P, o
. b2 # 10010000 ___ 0 Asn 1813825 . s Sk ~
.. LICRi} 201100001 - o
’ — . . : <
. ¥ 0ut1u11) 1992y ¢+ ¢ « Ok «
: where sn is the subroutine name and s,, s s, is a sequence
. n(1%) . 1 3 3 1 <
: e of substeps which constitutes the subroutine body. A sub- o
: 1 0000,) 28
: routine with dummy variables is defined by a parameter of J
#etsvevteatenennonee 2

0 96sn(pys Pos - - - PD) P S15 825+ -5 S >
where p,, p,, . . . p; is a list of dummy variables, each of form =
S....................'........................ ? letter g
: : » ,mi o ,': “fjo;o is Subroutines are called by statements of form
. 111010 8 %sn if the subroutine has no dummy
E .::: : 10010010 . 146 ,,__DUMPA g Variables
: rsy + oor09an1 3 or ¥%sn (actual parameters) if the subroutine has dummy
: bea) +_osnioant 3 variables.
: v e 3{3'&? ?4 Overflow conditions are treated as a special form of sub-
: Mo eetiin s SUB 15 routine call. An assignment statement which tests for overflow
: + 8901310 -3+ STORE 14 is written in the form
. BO11) -2_01211110 9 . UNEG 14 . .
: i) + 1obrooco e DUMPA - 0 register ! sn,r = expression
: -~ e apNz where sn is the name of the overflow subroutine concerned,
: p1s) »ausosa0n .+ 8 and r is the register to be set on overflow.
: L 200 ST This is interpreted as: evaluate the expression on the right hand
T T T R T T TR AT TR T TR T side, test for overflow (by calling subroutine sn) setting register
OIS TS TS B a1 — : r as required and store the result in the register on the left hand
S - — side.

Fig. 4 (b) An overflow subroutine is defined with three dummy vari-

336 The Computer Journal

Main Memory

C
Memory Address Odd-Even Memory Data
Register Register Register

a_ | [=] [o |
Next-Instr Accum Function Modifier Address
Register Register Register Register Register
I N T I I T O

Processor Carry Overflow

Register Register Register

P | [o] [v]

Fig. 5 A simple model of some of the registers of the ICL 1901A.

ables. When it is called, the register on the Lh.s., the overflow
register (r) and the value of the expression on the r.h.s. will be
substituted as actual parameters in their place.

Examples of subroutines and overflow routines can be seen
in Figs. 6 and 8.

2.6. Definition of peripherals
To demonstrate independent I/O and processing, details of
each peripheral must be specified by means of P parameters.
These have the form
Pa,c,r,h,n:s,;5,;...;5;
where a is the absolute peripheral number (used in the 10
statement),

¢ is the channel number,

r is the name of a single register into which each
character being ‘read’ by the device is stored or from
which each character is ‘written’,

h is a measure of the delay time between requests for
hesitations (cycle stealing), which is specified as the
number of substeps of the simulated program to be
executed between requests,

n is the number of characters in the record to be read or
written,

and sy,s,,...s; is a sequence of substeps defining the action
to be taken when the peripheral is activated by an

I0a

statement in an / parameter or a subroutine.
The sequence of substeps s, . ..s; in a P parameter should
contain either the statement

INITIATEREAD
or INITIATEWRITE

An INITIATEREAD statement causes control to be returned
to the main program sequence, to the substep after the IO
statement. After this all substeps executed are counted. When
h substeps have been executed, the character read will be stored
in the register r and control passed back to the substep after
the INITIATEREAD in the peripheral definition. The sub-
steps after the INITIATEREAD could check for parity errors
and set the hesitation register. If more characters are to be read,

Volume 18 Number 4

one should branch back to the INITIATEREAD, otherwise
exit normally. Similarly for INITIATEWRITE.
An example of this is shown in Fig. 8.

2.7. Definition of character set
The parameter € is used to define the internal character codes
of the computer to be simulated. It has the form

C “‘character”

where i is the code for the character specified in quotation
marks. As with the D parameter, any number of these character
definitions may be punched on a single card using the form:

Ccy” iy %y tigs e 3% 00y
3. Program description parameters
This set consists of five parameter types, namely S, R, M, £
-and T. These control the setup of a program (S), the execution
(running) of a given number of instructions (R), the printing
of monitor printouts (M), the data required by the program (£)
and finally the termination of the simulation (7).

)

3.1. Setting up a program %
A program is set up by specifying the contents of each registef
of the simulated computer. The parameter §
S RESET g

sets all registers to zero, while the parameter g
Sr:n g

sets up the value n (a decimal or binary number) into the;
register r. Again, more than one register-value pair may bg.
punched on a card using the form:

Sriingrying; .. rin; .

/W09 dno-oIW

3.2. Executing a program
To control the simulated execution of the program, one has thg

parameters
Rn execute n machine code instructions (or, morq;
strictly, n setup/execute cycles) rl
and M list print the contents of the registers specified in thex

list (List items may consist of single registe%
names, names of sets of registers or componentéﬁ
of form r; : TO : r,, where r, and r, are registerss
of a set of registers),

interspersed with the data parameters which have the form
£n,;n,;...;n;where ny, n,, .. .n; is a sequence of number

TA963a = LOX,ADX, ST, LOXC,ADXC AND €TOC INSTRUCTIONS
. T T INSTRUCTION PROCESSING REGS
* DATA PPOCESSING REGISTEKS
T MEMURY REFERENCE REGISTERS

(1 ANFL . - . -
8 37a00,11)22000,11)
Llunh’a 2022 LEC (\1..1“.'-! J_cJJJ 10,8 ‘,L UYLTYPE 3 = M S.NALF_ADX
& TFCPL11,1) B0 011,11 IGUTO 6578
& i2a=2C
0 204(74,28, 1() 20=70(19,11)
- 10)=20(0,10)

20z Indy 61 U0 }senBRq $£08Y

A1, 110%0 * iiv.vvvr o WUSLWALE CoINSTH

S0, DT3,81:N012,16120L0,2)F F1F nnvcn s
2.8 02110k CHANEL0D, 8 LE_NOT,STURE /N = TEST MOD
Ex1;A54;05C(20 ‘4().7’".I'ﬂrblt(l'l'() F(‘I “1'0(0 21; t EVALUATE MUDIFIED ADOD

&_nzp: —
& €=1; I=1e%; t:scuvr 3 T UPDATE NI AND EXECUT

009 _l-n_l_u‘s_u A*E2EDins0; -t CALL_= STOWE_LASI Il lm L
Vidsviof u 'bllo DLOL2)=1112,14); ¢ <~ SET uP V,0

il= 1 __= $YORE ustl 0 V.l

FC2eneErn0
SC(2eAtE)DIER0; 2 10
ARN:C(20AsE) 2D

09,02Pen; CC20AsE) X0 E20; TADXC _
0106, a-nn;n)-a-n-o .
REL o

9 50)
~_§_u%zumﬂmmm Q0330114568540 -u;unuuoﬂo €(552:0
.
_u_mu 170:€(5),C(20):10:C(55) B S —— i

Fig. 6 (a)

337

000000000009
3 G777 a veowovnavene
» 090000000009

“# 000000000000

#7000000000000

0000000300A0

¥ 00000000v060 "
TTE@YTT T T ovuneongoont

4 006000600000 "

“Ta 00000006000y 7
TR T o

€@ T T T i

7T 060000000000

000000000000 ™"

¥ 006000006060
"4 006000060161
£ 00000000v000
" 000000000009
£ 0000VVO0LLNO
" 5 000000000000

¥ 000000000000

" 3000000u0000 "
" 4 061011100000
T # 000000010100
T 0v01mr000100 T T
00000vVUVVOL
» 010000020060
T 00000000101y
7 100000610610
#7000000001011

011000000010

0001010

“»7100000010110

™ e 100000001101

7011300000110

Ty " 2 000000001100

20

10
11(2)
10(2)
13(2)

12(2)

000000007011

XeBoNp1,C00);70;609) 02010, CL2u001)

tGo 1000001100107 T 2098 -
essen Jstoc 4 152
. s 5606000001111) is
T €52y T W 0110001000107 T ysra 5
[«|STO 3 14(2)
00000001110 "“ . .
Two00r011101000 T T T T g0 7 5 ¢
.. [N JJEXIT 1 0
0V0P000VLO0O L] [}
0
R B I -
- PYSTT . L.
B PP . . - e
W KN 1 CLE Y0 C () 6 (200 R - .-
S S A S,
F - O SR
£42) LR 09
e3> _® 000000010011
£4).. .© & ooo0000p00d0»
452 2000000000000 " (]
€Ca0) #_010000000000 24 2 16
I 001010 e
. n .
.
L) I
R R AR CHA PR e P T) v
70000000 T TTT
w a7000000000001670 T T T
. 1 " 000010107 .
Tty ¥ 00000ud00000 .
. Ay # 900000000060
. .
. 000600000000 T
.
. ey #7000000070017 T 19
. TR T T 000060000000
#750000000000
7100000010010 . Lo :
N - ..+|JLDXC 4 11(2)

©)

NUNITOR PRIWT

. .
ETH 3 . 3

. » 0000000 0 . LDX
N .. 000C0000U001011 " .
1 # 000000000010111 2 .
wwwe % e . CWO) . . .8 0O000VO00V00O .0, T
€y L, # 000000000000) 3
L. *. . . €@ .. #0C000000000C0 o T
e % e, T3 # 000000010011 BRLI 3
RKIGH . # 00000VOOVVOD N +
. o u . €3 _ ..# 000000000001 I 3

0
€e) ... # 00000000000 _ "0 j
.
L e # 000000000000 [

0

PR 7 ¢} Dot ICIRRRRREEETE N L2087 .

€9 PRTEITRIEETET N L4096

L2070 __

€Ceo)__ . % 190000010110 _

€472 __ 4 000vudv0Iter (L

e
W XN 1, E0)ITO

" wowitor

essenns

" " 000000000001110

% 000000000011000 " T

B L U1 R TTTTTTT Y ITT

T E T e 00v00v000060” T

cc2) 7w 00000vdu000 I

€t3) 7777 v oounovotuedy T T T
T T 8 00600vovouey o C
ces) # 0000000000C1 AR
TTTTTTeT T TTTEEY T T T TiT00000000uced T T T T
T # 000000000000 T T N o

T 7w T 7 600000000000 © T

Tewd) T Teocoogovoovuty T T Ty

car) T # 011000000110 T TTse

ceees

€av) ™" " » 0000006VI100

7] 8388606

'_—flexc 4 13(2)

@

€(9),Cl2210,CC20001)

. MONITOR_ PRINT

] o 8 0000001

e ¥ . 1101 N | I
H -
. I | s M0 -
. 3 .
L2 €Oy .y S
.
. ___.€€1)____ 000000000000 ' _ ' 0 S
B
. # 000000000000 -
.

000000010011

i
i
i

»f l‘l -:. n‘n - .Inln - .‘-‘lo . -I.‘

000000090011

100000110010

298 - Elsm
000000001011 A5 .

e 84820

WoC(30):TU1C{STI

o
oF

__NONITOR PRINY .7

U

8,010
1110000

0. -
000000000000 e 9 P
Ce31) - mou000bUOVLONY | o L 1 .

cs2) * CUOULLUILLOD
(1333 # 1Cu000000011

.
-
‘o
.
.
.
.
.

C 4 15(2)

20z udy 61 U0 188n6 AQ YE0BYE/EEE/F/81/B10ME/ULOd/WO00"dNO"oILSPEDE//:SARY W) PAPEOUMOQ

(e)

Fig. 6 A simulation run demonstrating certain aspects of the oper-
ation of the ICL 1901A. These include the half-word concept,
various types of overflow, different instruction formats for
different instructions and relative addressing. The contents of

registers are printed in binary and decimal form.

The Computer Journal

Peripheral 1 Peripheral 2 Peripheral 3

Char Buffer Char Buffer Char Buffer
[1] [« 1]
State State State

.
A
:

Hes Switch Hes Switch Hes Switch

Data Line

:

Hesitation FF Hes Source
Next-Instr Accum Function Modifier Address
] [x1 [F1 [m1 "]
Mem Addr Mem Data Overflow Carry Processor

[a] [o] [v] [od [r

Main Memory

Fig. 7 A simple model of the registers of the ICL 1901A, including
three peripherals.

as read from the input device by a READ
statement,
and data cards read by an INITIATEREAD statement.

3.3. Terminating a program
A program is terminated when a new B parameter is read. This
announces the start of a new computer definition. Alternatively,
the parameter

T

may be used to terminate the simulation run completely.
A typical set of program description parameters is shown in
Fig. 3.

4. Other facilities available on the simulator
Comments may be included at any point on a card. They are
simply preceded by the symbol ‘}>. Upon reaching such a
symbol, the simulator will ignore the rest of the card.

There are various other facilities which are available on the
simulator but which cannot be described here for lack of
space. These include tracing facilities controlled by parameters

$TRACE
and - $NOTRACE

and a set of auxiliary variables which are similar in format to
dummy variables.

5. Examples
The simulation run for the computer program defined in Figs.
1-3 and Table 1 is shown in Fig. 4. This example illustrates the
concept of a simple bootstrap loader program loading a more
complex loader program which in turn loads the program of
interest. This is done within the framework of a very simple
machine.

The next example demonstrates some simple aspects of the

Volume 18 Number 4

EXANPLE S

T [nmﬁ STTULUSTWATION 0F 171 NS TRUETIGN

FHAIN MFACRY
1t MEMURY REFEMENCE REGISTFRS

£ ——

TTDATA PAUCESSING RELISTEN
* INSTHUCTION PRUCESSING WEGS

HESN PLIPFLOP MESN SUUKCE
* DATA LINE _TU PERIPHEKALS
T CHAKACTEN RUFFERS
+ DEVICE STATES -
THESITATION SVITER

1+ YEMPUKLRY WEGISTE® FOR WESNS
WE FUR INPUT
UTO15: * IF PERIPHERALY REAVESTS WES
OFOI5: T TE PERIPHERAL -
t IF PERIPNENAL 3

TEH HES,CONTROL WukD EXTRACT W & CA

aL;C(A)D; ¢ STORE CNARACTER INTO MAIN MEKURY
FTFETCW HES, CuMTAUL WUKD UPLATE ADTRESS
t_UPDATE CUUNT AND STORE
TYTF COUNT ZERU, INFURM PERTPWENAL
3 PERIPHERAL 1
T Pi(lb*(ﬂ(\ 4

. RIPHEK,
g NETHe o nivuu_r‘mnu nul’rﬂu-s“uurl—-r-“‘—
't-xvn(nnl DESCRIPTIONS

1301,9,€0, 605 1FCV,€0,0010000) ,2:usk (05 Sot0LwD; 4 PERIPKERALY = SEND Q=STATUS
TFlw. o, -o!uninu TFECO 14,37 Yy ll ECALT2: T TLUEC TF n!vn‘.’i OFF -

; wv = INITIATE RE
’ o.u)-' T OF STILL llllf.tltt FOR WE

#u—-ﬂ.-vaATnu---mh o)

stoflh 41-1 nuvoruo T TAEN MAK TE
TLLEGAL 1 + FOR ANY OTWER VALUES = ILLEGA -
TV T K99 BOT TR (R, u ¥010000) 23 n.-un sntvno T PERIFAENALZ = SEND G-STATUS
1) "0
)
8 ,FJ!A,E_L_ML vOR WE_
CE v RER €S
s L1y Gisaiariootoennt 3 THER mpax OBERABLE
¥ TULEGAL 1 T FOR ANY OTHEN VALUES - TULEGA
P 15,1,L,00,40;: TF(H,FO A0T0LG03,2;WRE(2) ;GUTOEND: t PERIFNERALS = SEMD 0=STATUS
T xs o, H0TICIT) 15T TV ECEITA7 ST, WE.5) s TITEGAL 25 t TLLEG TF nsvut‘uri‘

037m=22091:002,2)8V5F(2)06,6)20;usi101: ¢ = INITIATE REA|
IhlIlAYEhEAu TF(GI2,27.€0,9) 2inaisRie,20n05 T IF STICL EAARS,(ALL FON WE
6),1:6 + KEPEAT 80 TIMES
T T TNEN MARK CPEKAELE
LLLEGAL 1 1 _FUK ANY UTHER VALUES = ILLEGA
SET-UP /7 EXECUTE CVCLE

H‘ Ea V) 1IRAES - N " lf Dl l 5(7 FElFUlN dlilVA‘lhl
2 121,231 TRUCT 10|

|

n-o->-
°
=

1
P
e s
c

TAw
1 xcl IF(N fa, 1)

-qo--‘—w'una.d--n-

1_#1000000

: . +
T A1UU1000: AEX;OCCAIZTF(NCIO, VT EQ, 1,05 Sll o, *lo 0) X SWIFT LEFT INSTK
TFANE10,91),E0.0),1:5LC D, NL0,9):CCAISS

T
L3 PROGRAM
K3 B

5 c(2): z:x 16

Tcui‘uuwnum anun GRFAEAS LY

@

.
o, .
. G
. €0 #_0un: o 0000 VoD .
- T - 0
..... ..) L vewo .
. - -
e € »_0unan0000y v vou2 . 2
. e D
s €3 5_000060000000uyA0C vooe .
- - .
. (4¢3) ’ 0600 L]
3 0
. ces) . 000y .
. 90000000000
O
I cce) #_0000000000V0000000008N0 600G .
.) . veee .
. N -
. cea) . vooe :
N o - .
L] ce9) " LD .
. c10) . voou .
v 0
can . 0c00 .
. .
. cu2)) wove .
€13y #_0U0U00101000000000011011 orus . 5/27-
e 1y 000 . .
€3y . 0vu0 Lo
: : B
ca16) # 0011006600000006000100%90 <ov - LDN 1
.
can #_001111100100L90000001101 700 <171 1
can # 0011010L100060000611000y whop - ERN 1
. ca9) ¥ 001010101000L00000011010 hue - BNZ 1
O
. cq20) # 001100000000000000011001 v - LDN 1
L] €21 # 00111110010000000 1 2 :
: 0000041101 700 . 171 1
. €c22) ® 0UI10100106000! 0 =5 .
s v vU00000000101 03 B ERN 1
e ce23) # 001010101000600000011010 1400 « BNZ 1
. cc24) # 010150100 a : 5 . .
: 0100006012000001000 -8 : SLL 2
. #_010010101000060000011000_ * "wGC_ - BNZ 2
[ocoe .
g
. 0e00 .
5 g
L] uhuo

XN
TaT 1000000

10000

T G00U0000G0W000006010000 T T T

.
. Tean ¢ 2 091111900160000000061 101

T T Y Ty TP P YT YT T YRR

()
RN e,

180n6 Aq $E08FE/CEE/F/81/BI0IME/UlWO0 /WO dNnb oILBPEDE//:SARY WO PAPEOUMOQ

......

: x . 001 1 . |
€ . PA111001, ,,7‘,,J1....._,_,_:__171
s N . Mo ees .+ 13
.) €9y 40090 110000 voor .
C18) 2 09110100 110909 =20p 3 ERN 1 #60

NONITOR pRINT

X - B ¥ 001 1

¥ ¥ 1010010 [

' n < 000u00000110000 T wep’ T
. [RY Goaundnvovoiadoonvuoovey T 000 T
e T T T 6010101 0100000006001100 7T ykge T 26
—— X NN IR |
,.__E 3 01010110 .___.Ii._,,;fv:._B.N z
— oyl) ovogortora____aoe o 26
€€1) £l $000000000 0000 .
(11T — 5001 11009 <00). . LDN 1 #31
.
¥ T » 001 v
[. o s 1000000 T
T T T T T T T T T T 0000690001100 e T
""" TT e T T 4 0une00000000000000011001 T T UGBY .
B T e T T 511101001 0000u000001 101 BT T ';'171 1 13

..

l""‘l i e e

PHOIPAERAL 13 . 1 : peq Gx :
moKEaRCeD e

Fig. 8 A simulation run demonstrating how the 171 instruction (an
Executive mode instruction) is used first to test the state of a
peripheral and then to initiate a peripheral transfer on an

- - .
5 g o 7 g -
3 7001] T 1

T
.
- DR EERITS] v]
i . - : Al
—— W ¥ 0000U600600TIATT o= (B
T S T T T Y T T T T T T E 006000600950606009000161 >N~”66ii§"-’__*'_“" .
. il .
R €22y T 0017010 0100000000000 .ltn 305 E H’N 1 5
.. . T . . . EAC R . et .
.......
B s
N XGF N CC1),CL13),CC1),C(20)
MONITOR _PRINY [
. N N
x . . 001 1 . 1
[3 ® 0101010 L) . BNZ
0
. . 1010 aoe . 26
- 0
) ca) L 0000 :
cas # 100000011000000000011011 800¢ . 3[27 ‘2 -
< 9
ce24) 4:010100100010010000001000_- €8 . SLL 2.8
N -
[1¢14) # 19100010010 00 HEVO .
.
..........
WK T T Dt cen
WONTTOR PRINT v
|w)
B o
. S
X w070 T2 e 2 =3
¥ # 0101010 [R BNZ 8
160 0¢ . Q.
¥ d i 24 9
- @y " 6000001 080 -y o
e tan T 116000G100G¢G00000011077 P uv : 2/21.3 . g‘
T 5 TTOTO0TGU0C 41 TO00BGVOT0 [C) TR X
e g) ‘SLL 28 S
. ca@n- % 10C00100101701106060000 FFLC v =
- ~ - 42 —
0 =
NP AR AN IEP eI eReeRelaierTeedtasteerty g
! =
(30 ™
® X0F.C(13),C(27),6(28) o
WONITOR FRINT 10 g_
[0}
BT T T T e e P T T T T A P e TP T ey 3
P =.
v o
. M a0 o
.
. e » V101010 %
e . #.0100000000000000V0011100 04, e P
.
JETRR S 1 £ 1.2 SO __¥_101000196101101100101100 SRR e S
LE@HD e 1011 100e000eueu00n000ny vron 5
X o
............... Hresbeeatuaieenitietiitatitetnettccnetatandenieiiatoitnes 3
T =

ICL 1901A. The handlmg of hesitations is also shown The contents;
of registers are printed in binary and character form.

L/319

ICL 1901A. This is a 24-bit word machine, which actually
works on a half-word principle. Furthermore there are two
different add instructions for adding from store into an
accumulator:
ADXC (used for adding together the least significant halves of
two double-length numbers) always leaves the most significant
bit zeroised;
ADX (used for adding together the most significant
halves of two double-length numbers, or for adding together
two single-length numbers) retains the most significant bit,
whether O or 1.
This results in three different types of overflow condition:
(@) on adding the least significant 12 bits of any two 24-bit
words (type 1)

(b) on adding the most significant 12 bits of the least significant
halves of two double-length numbers (type 4), and

(¢) on adding the most significant 12 bits of the most significant
halves of two double-length numbers (type 3).

Besides the two add instructions, the 1901A also has two load
instructions (LDX and LDXC), two store instructions (STO
and STOC), etc. A simple model of this aspect of the 1901A
and a program to illustrate it, are shown in Figs. 5 and 6.
This model also demonstrates the idea of relative addressing,
the implementation of branch type instructions (CALL and
EXIT) and of different instruction formats for different types of
instruction.

The final example illustrates how the simulator can be used to
demonstrate certain hardware features of a machine as might
be useful in a course on operating systems. The example

340

(Figs. 7 and 8) demonstrates the operation of the 171 mstructlon\
within Executive for an ICL 1901A computer. This 1nstruct10nw
can be used either to test the status of a peripheral or to mmate\
a transfer on the peripheral. In this example, the program ﬁrstoo
calls for the status of the peripheral and checks that it is equalw
to 60, and then initiates a transfer. The reply is checked to seez
whether the command has been accepted by the peripheral, andn
the program (Executive) then continues, with hes1tat10ns‘D
(cycle-stealing) being handled at fixed points in the set-up/o
execute cycle. The i mcommg characters are stored in the correct
locations and the count is updated on each hesitation (as seen>
in Monitor Print 8 to 10).

The example can be modified quite simply to illustrate theg
effect of two or more peripherals operating simultaneously.*
The streams of characters to and from different peripherals are
handled by the simulator while the effects of crisis times can
clearly be seen if the hesitation rates (%) in the P parameters are
too small.

Other examples have been run on the simulator illustrating a
host of other machine concepts; however, most of these
examples are too large to print in a paper such as this.

After submitting this paper our attention was drawn to the
similarity of our notation to that of ISP (Bell and Newell,
1971).

6. Conclusion

This simulation program, written in FORTRAN and PLAN,
allows one to simulate the functioning of a variety of actual or
theoretical computers. It is useful in teaching basic concepts of
machine architecture and in illustrating hardware design con-

The Computer Journal

cepts necessary to understand operating systems—for example,
hesitations, interrupts, various addressing techniques (such as
relative, indirect and two-component addressing—with page
and word registers), storage protection techniques such as
base-limit or protect key systems, privileged and unprivileged

References

modes, program status word, interrupt priorities, handling of
multiple interrupts, stack machines, etc. In general, we have
found it an extremely useful aid to teaching these aspects of
computer science.

BELL, C. G., and NEWELL, A. (1971). Computer Structures Readings and Examples, McGraw-Hill.
Leg, J. A. N. (1972). Computer Semantics, New York: Van Nostrand Reinhold Co.

Book reviews

Computer Aided Control System Design, 1973; 244 pages. (IEE
Conference Publication No. 96, £8-30)

This publication consists of a set of papers presented at an IEE
Conference on Computer Control System Design, 2-4 April 1973,
and represents the state of work in this field in the UK at that time.
The papers can be split into roughly three sections: (i) identification
and modelling, (ii) design, and (iii) simulation, which correspond to
the three main activities of the design engineer. The number of
papers which fall into each of these categories are, respectively,
eight, nineteen and three.

The papers on identification and modelling include descriptions of
three comprehensive packages of interactive programs for identi-
fication (Clarke, Shellswell and Young, Goodwin et al), the latter
incorporating an optimal test signal design method. The remaining
papers in this area are concerned with various techniques for the
reduction of high order system models, a survey of the field being
given by Towill. An interesting discussion of some practical model-
ling problems in relation to steel rolling mills is given by McClure.

Several papers describe comprehensive interactive design program
packages and CAD techniques for: (i) linear single input, single
output (siso) systems (Allen and Atkinson, Shearer et al, Webb,
Woodward and Daly), (ii) nonlinear siso systems (Gray and
Savvides), (iii) linear multivariable systems (Belletrutti, Fallside ez al,
MacFarlane, Mayne and Chuang, Munro and Ibrahim, Seraji,
Young et al), and (iv) optimal control (Brown, Burt, Elkin and Daly,
Healey and Jones, Mayne, Mobley and Paddison, Weislander).
Clearly these areas could be further subdivided to display their
specialisations. Two noticeable unifying features are the extensive
use of interactive programming techniques, and the importance of
graphical presentation of results, features which will undoubtedly
form the basis of all control systems CAD programs in the future.

Simulation methods in design are described by Harris and Miles,
and Revett. A survey of continuous system simulation languages,
with particular emphasis on their industrial usage, is given by
Gulland.

As a whole this set of papers describes, or makes reference to, most
of the work done in CAD in this field in the 1970-73 period. There
is a nice balance between papers which describe successfully imple-
mented packages, and those concerned with future projects. Implicit
in their descriptions are the essential features of CAD programs in
this area: interactive, command driven, graphical. The only notice-

Volume 18 Number 4

able shortcoming is the absence of any papers which describe real
problems which have been approached and solved making use of
CAD programs. This can be taken as an indication of the state of
acceptance of these design tools by industry, a situation which one
would hope will be improved in the future. Another 1mportanto
feature which is absent from many papers is a deep appreciation of 2 z
the numerical problems implicit in many of the proposed algorithms, =
especially in relation to implementation on machines with short word ol
length.

M. J. DenAM (London) 5

Hy w

Human Congenital Malformations, the Design of a Computer-aidedz
Study by E. Gal and 1. Gal. 1975; 194 pages. (The Butterworths
Group, £7)

Iweped

This is an excellent book in almost all respects except its unfortunate _6
title, in which the emphasis is quite misleading. The object is to
©

explain how to design and carry out computer-aided studies ando
surveys. Since the authors took part in one such study on human S 3
congenital malformations, it is used partly as an example to illustrate S
the points: but other examp]es are used too.
The central theme is how to make sure that data obtained for=
future analysis, is useful, relevant and above all completely reliable. 2
Thus the forms or questionnaires on which the information isg o
recorded should be both as acceptable as possible to the specialist - =
in the field and easy for the card-punch operator to use. It is essential =
to have advice from experts to know what information is useful and &
relevant. It is equally important to have the questions vetted byg
laymen and others to make sure that they are easy to understand, & @
unambiguous, and likely to result in truthful answers. Methods of @ ®
checkmg the accuracy of the information in various stages (when o
it is obtained and recorded, when it is punched, and when it isq
processed) are outlined. The emphasis is on seemingly simple andm
commonsense precautions which can be easily and dlsastrously over-= S
looked. For technical details, such as programming or statxstxcal3
methods, the advice is to consult professional programmers and©
statisticians. &
Anyone but the most seasoned expert considering a survey type of 5
investigation in any field (medical, psychological, social) would be S
well-advised to read this book first. R

e julwo:

A. B. SmMitH (London)

341

} pop

