An algorithm for inverting certain translators of

context-free languages
D. T. Goodwin

Department of Computer Science, University of Keele, Keele, Staffs, ST5 5BG

This paper considers translators between related pairs of context-free languages. These translators
are defined as grammars for input to a syntax-directed translation system on the lines of Metcalfe
(1964) and Reeves (1967). By applying a simple algorithm to each of the production rules of sucha
grammar it is shown how to derive the inverse translator, under given conditions.

(Received February 1972, Revised March 1974)

Introduction

After the author had implemented a syntax-directed translation
system following Metcalfe (1964) and Reeves (1967), he con-
sidered whether it was possible to write inverse translators in
the same system, i.e. translators which took the former output
as input and produced the former input as output. This was
found to be possible in certain cases, and this led to the develop-
ment of an algorithm for automatically converting a translator
into its inverse. It is this work that is reported in this paper,
which may be read without prior knowledge of the Metcalfe-
Reeves system.

To write a translator from a CF (Context-free) language L to a
language S’ the user begins by writing a BNF-like grammar
for L. To every rule of this grammar he adds material in situ
which indicates the desired corresponding output in language
S’. The result is a ‘translator’ from L to S’, or more precisely,
from L to a subset S of S’. When the system has been loaded
with this translator it accepts a string of L-text and produces
as output the corresponding S-text. Under given conditions it
is shown below that S is context-free, that the grammars of
S and L are very similar, and that an S to L translator can be
derived automatically from the user’s L to S translator.

The inversion algorithm could be useful in cases where S is
such a large subset of S’ that it can be used in place of S’.
Once the L to S’ translator has been written, an S’ to L
translator is then available at little extra cost. Whether .S and
S’ are similar enough might be a matter of opinion, but this
similarity is likely only if S’ is context-free and similar to L.
An example might be when L and S’ are essentially the same
high-level programming language differing only in compiler-
dependent features, where only correct programs (which would
then conform to a CF-grammar) were being manipulated.

The earliest reference to the inversion of grammars known to
the author is in Evey (1963), where it is shown that a push-down
transducer may be used to ‘translate’ from one CF language to
another related CF language, and that the inverse translator
can be constructed simply. In this paper, however, it is not
necessary to assume anything about the internal construction
of the parser—only that its input and output are as described
in the next section. What is discussed here is a further trans-
formation of the parser output, used by Metcalfe, which is
stimulated by special operators, viz. the symbols X and C,
in the output language. These operators enable the translator-
writer to express concisely a wide range of transformations of
the input.

Notation

A CF grammar is defined in the usual way, and attention is
restricted to ‘reduced’ or ‘admissible’ grammars in which each
non-terminal is used individually in the derivation of at least
one string of the language. The notation used here is on the
lines of Ginsburg (1966). Let the translator be called T;s. It
has a set of ‘non-terminals’ {a, 8,y,...,7...,} including a

Volume 18 Number 4

‘top-level’ non-terminal ¢. Each ‘terminal symbol’ of Tjg
actually consists of a pair of symbols: the first symbol is one
of a set of input terminals {a, b, c, . . .} the terminal alphabet
of L, which also includes the empty mput symbol &. The second
symbol of the pair is one of a set of output terminals. Fors
clarity these are denoted by 4, B, C, . . . but there is no neces->
sity for the input and output marks to be distinct. The output§
alphabet also includes an empty symbol € and the special out-2
put terminal symbols X and C whose uses are described below.Z
Often the reader will find that the combinations ¢X and 3C3
are contracted to X and C respectively, since the latter are,O
never paired with any input symbol except .

5

Q

Q

Example)
L might have the rules %
o

o — abac . S

o — do 38

o€ . 3

Q

o

3

3

The possible input strings are abc, abdc, . . . abd"c, for all3.
integers n. By adding output symbols and an instance of ¢, the 5

following rules could be obtained for a translator T}: =
@

¢ — aAbeacD >

o — deack =

o—>eF . %

Then for input abd”c the output is Aee"FK" D which collapsesg
to AFK"D. In detail for n = 2, the input abddc leads to the<
parse-tree of Fig. 1. g
The output is the string of symbols AeeeFKKD arising frome
the terminal pairs occurring in the parse tree. 3

The T, grammar is thus a superposition of two CF grammarso
with the same rule-structure differing only in the partlcular—x
terminals used. One is the grammar of L and the other is thc>
grammar of an intermediate output language P, say, whose=
strings in general contain instances of X and C

¥20¢ I

Input a
Output A

Fig. 1 Parse tree for example input string

349

The edit stack

Following Metcalfe, the output (in language P) from the parser
is loaded symbol by symbol on to a push-down ‘edit-stack’.

When an X is encountered in the parser-output, it is not loaded,

however, but is used as a command to interchange the items
in the top two cells of the stack. When a C is encountered it is
not loaded, but is used as a command to concatenate the top
two items; the effect is that they become one item and that the
stack is nested up one position. Each ‘cell’ on the stack is
capable of holding a string of arbitrary length. At the end of
the process, the final output is taken from the bottom of the
stack upwards, ignoring the divisions between the items. Fig. 2
shows an outline of the system. The flow of symbols is shown
going from right to left so as to suggest that a language P
string ABC . . . is processed in the order 4, then B, then C,
and so on.

Example
Suppose T, has the one rule:

o - aAbBXcCCdDXeE .

Then from the L-strmg abcde the parser machine yields
ABXCCDXE which is then applied symbol by symbol to the
edit stack as follows:

Stack Contents (top at right) String yet to be applied to the

stuck

ABXCCDXE
A BXCCDXE
AB XCCDXE
BA CCDXE
BAC CDXE
B AC . DXE
BAC D XE
BDAC E

BDACE

The final output is BDACE.

The effect of the editing is thus to execute a permutation of
the ordinary output symbols in the P-language string and to
delete the special X and C symbols.

It is a useful convention that the instances of € in the P-string
are not annihilated until they are combined with other items
on the edit stack by the use of C, or if this does not occur,
until the edit stack is unloaded, when they are ignored.

Some string operations
Now defined are some operations on strings of symbols such as
might arise on the right-hand side of a rule of Tjg.

N(...): Delete all the instances of the pairs ¢X or ¢C, (or of
the single symbols X, C if no input symbols occur
in the operand-string).

I(..): Delete all output symbols from the terminal pairs.

O(...): Delete all input symbols from terminal pairs.

0"(...): As O(...) but also add the suffix ” to each non-
terminal.

R(...): Reverse the L-symbol and the S-symbol in each
non-special terminal pair.
Now if a rule of T, be written

Tofi.. Sioo o Sm

where each of the f; is a terminal pair or a non-terminal, then
the corresponding rule of L is

T IWNUy - fa)
and the corresponding rule of P is
Tt 0(f1...[-
Suppose now that the string O(f; . . . f,,) be loaded on to the

edit stack, with the non-terminal f; just being regarded as
individual symbols. The result is a permutation =, say, of the

Not X, €
Parser Machine Input String
X, | Output string embodying TLS in Language L
€ | in language P
X, C

operations

Edit Stack Al

)
]
'
[}
'
'
]
'

Final output [string

in Language S

Fig. 2 L to S translation

ordinary symbols of O(f; ... f,) i.e.
NQO(fy - .. fw)) -

Example
Suppose Ty g contains a rule
o — aABXC .
Then the corresponding rule of L is
o — I(N(aABXC))
= I(aAp)
=ap .
The corresponding rule of P is
o — 0@ABXC)
= ABXC .
The expression n(N(0O(aApXC)))
= n(N(ABXC))
= n(AP)
= BA , because XC yields an interchange of
and B.

OO/LUOO'd:ﬁb "olWepeo.//:sd)y Wol) papeojumoq

‘Unitary’ translators
The inversion algorithm is first considered for a subset of alg
translators which is now defined. Later it is shown to appl)m
more widely.
A non-terminal is said to be ‘unitary’ if each of its termmal%
strings, when loaded on to the edit stack, forms exactly one.m
item and does not change the previous contents of the stackﬁ
apart from nesting them down one cell.

1014

Examples

o is unitary in the following grammars:
o —aAd
¢ — aAbBXC

o — aAd
o - xXyYzZCC
¢ is not unitary in the following:
o — aAbB
o — aAd
o — CadbB .

A translator is said to be unitary if all its non-terminals are
unitary. When writing a translator it is natural to think in terms
of items on the edit stack, and hence in terms of non-terminals
which form single-items. Unitary translators therefore form an
important subset of all translators.

Two simple algorithms are now presented which together
determine whether a given translator is unitary. The possibility
of recursive rules makes this problem non-trivial. The proofs of
the algorithms are long enough to make a major digression if
given here—another article which includes them is in
preparation.

Firstly, for any terminal string s define:

(a) its ‘length’, denoted by I(s), to be the net increase in the
number of items on the edit stack as counted before and

20z Indy 61 uo 3senb Aq | 2087¢/6

The Computer Journal

immediately after the deposition of s

(b) its degree of interference, denoted by d(s), to be the number
of items previously on the edit stack which are changed,
perhaps in their order only, during the deposition of s.

The simplest string s is a single terminal, for which the /(s) and
d(s) values are given in Table 1.

Table 1

Type of terminal l-value d-value
Ordinary terminal 1 0

C -1 2

X 0 2

A non-terminal t possesses a set of / and d values, which
includes one /-value and one d-value for every terminal expan-
sion of . It is easy to see that 7 is unitary if for every terminal
expansion of 7, I(t) = 1 and d(z7) = 0.

To test a translator for ‘unitary-ness’
(a) For everyrule t — f; ... f;. .. f, form the sum

¥ 1)

on the assumption that if f; is a non-terminal then I(f;) = 1.
If the sum is 1 for every rule then /(t) = 1 for every 7.

(b) Assume that /(r) = 1 for every . Now for each rule in turn
calculate

i-1
max (40,400 - 3 16))
1<i<m ji=1
on the assumption that if f; is a non-terminal then
d(f) =0, 1 < k < m.If the expression is zero for every

rule then d(z) = O for every 7 and the translator is unitary.

Theorem 1:

If T, 5 is a unitary translator, then S, the set of all possible out-
put strings, is a CF language. There exist related grammars for
L and S such that for each rule 7 — f; ...f,, of T.g there
corresponds an L-rule 7 - I(N(f;...f,)) and an S-rule

T - Ny ...)

Proof:
The proof is taken in two stages:

Lemma 1:
Each string in S conforms to the given CF grammar so that S
is a subset of a CF language S”.

Lemma 2:
Every string in S” is shown to be the possible output of some
input string, and is therefore in S, so that S” is a subset of S.

Having proved these lemmas it follows at once that S and S”
are the same set.

Proof of Lemma 1:
Choose a string s in S. Then there is a parse-tree of g, the top-
level non-terminal of T;5, whose output terminals, when pro-
cessed on the edit stack, form the string s. Consider a particular
instance of a non-terminal t which occurs in some node of the
tree. The next nodes down from this 7 contain the individual
symbols fi, f2, ... fmof somerulet — f; ... fi... f of Ty,
Now consider what happens when the parser output string is
loaded on to the edit stack. Because 7} is unitary then so is ,
and the terminal substring which is an expansion of 7 loads

Volume 18 Number 4

on to the edit stack as a single item. Call this item 7”. Again
because T is unitary, all the non-terminal f; are unitary and
yield single items f7’, say, so that " is a constant permutation
(and concatenation) of the f;’, whether they are ordinary
terminals or non-terminals i.e.

T =nNO (... Sw)) -

Then since the grammars of L and P are reduced, every t
must appear in the parse tree for some eventual output string s.
Thus for every rule T — I(N(f; . . . f,,)) of L there is a corres-
ponding relationship " = a(N(O"(f; . . . f,,))) of substrings
in the final output. Thus s is a string of a CF-language S” whose
rules, by a trivial change of notation, are as required.

Proof of Lemma 2:

Let s be a string of S”. Then a parse-tree of s exists according
to the grammar of S”. By applying the inverse permutations
n~! to the rule-instances in this tree, we derive a parse-tree of
P and hence of T;g from which the final output string s could
be derived. By using the input symbols in the terminal pairs in
the T, ¢-tree an input string is obtained from which s could be
derived. Hence s is in S.

Note on Theorem 1: The word ‘possible’ in the statement of
Theorem 1 is necessary when L is ambiguous. For then one
input string could give rise to two distinct output strings and
whether or not one of them ever appeared would be a matter of
parser design.

Inverse translators

An implementation is now developed for the inverse translation

process of Lemma 2, which was:

(1) Parse the input string s with respect to the grammar of S.

(2) Apply the appropriate inverse permutations to the tree
branches.

(3) Replace the symbols of .S with the corresponding symbols of
L and take the resulting L-string as the output.

Notice that the same L-string is obtained whether the S-symbols

are placed by L-symbols before or after permutations of the

branches. Thus the above scheme may be re-written:

(1) Parse the input string s.

(2) Replace S-symbols by L-symbols.

(3) Apply the inverse permutations to give the output string.

The first two steps are now exactly what the parser does when

using ;s except that the roles of L and S are interchanged.

Call this new translator Tg;. Then for everyrulet — f; ... f,

of Ts there is a rule t — a(N(O(f; . . . f,)) of S, which, by

reversing pairs instead of just selecting the output symbols

yields a rule T —» a(N(R(f; . . . f)) for Tg;. This T, is not yet

completely correct, because, although parsing and symbol

replacement are done, there is as yet no way of performing the

inverse permutations of step 3.

Example

Suppose the rules of T, are
¢ - aA6XCbBXC
8 — eEgGXC
0 »fF .

Then T is unitary and the input string aegb of L leads to
parser output AEGXCXCBXC which when edited becomes
BGEA. Now by applying R(. . .) to all rules and N(...) and
n(. . .) to the first two rules the following rules for T, are
obtained: .

o — BbdAa
6 - GgEe
o Ff.

Input BGEA to this Ty; would result in output bgea which is
not the same as the input to 7.

351

20z udy 61 U0 188n6 AQ | L087E/67E/7/81/51014E/|UfL00/W0d"dNO"oILLSPEDE//:SARY W) PAPEOUMOQ

One might hope that it would be possible to add X and C
symbols to the rules of a T; so as to obtain the required inverse
permutations. However this cannot be done in general because
there exist permutations which can be implemented using X
and C but whose inverses cannot. An example is
bination of X and C it is easy to show that the inverse rule
cannot be constructed. Some other technique is therefore
necessary, and the author’s proposal is to make reversible the
process of applying a string to the edit stack. The stack is
redefined so that one cell holds only one symbol. The new
action of the C operator is just to add a new D symbol to the
stack. The new action of the X operator is to interchange the
top two items on the stack and then to add a new Y symbol to
the stack. A stack item is now defined by:

(item):: ={normal output symbol, possibly empty)
[<item){item) D
[Citem) Y

where the top of the stack is at the right. An item can thus be
determined by considering its symbols one by one starting at
the top of the stack.

Examples of items

Unedited string 4 ABC AACBBCC ABXC EBXCECAXC
Item on stack A ABD AADBBDD BAYD ABEYDEDYD
It is easy to see that items created like this contain the same
sequence of normal output symbols as they would have done
under the former stack definition.

Lemma 3:
The editing process is now reversible.

Proof:

The editing process consists of a sequence of actions, one for
each symbol of the string to be edited. The whole sequence is
reversible if each action in the sequence can be proved reversible.
There are three types of action, depending on whether the next
symbol is a C, X or a normal symbol. Each type leaves on the
top of the stack a distinguishing symbol which indicates what
the reverse action should be. This can always be performed.

Definition
Let mp(. . .) denote the editing process just described, with the
new Y and D symbols retained in the final output string.

Theorem 2:
If Ty is unitary with a typical rule T — f] . . . f,,, then the rules
of T, are the corresponding rules T — ny(R(f; . . . fi))

Proof

The translation scheme to be validated is illustrated in Fig. 3.
The output from the parser is loaded en bloc on to the stack
and then is unloaded using the Y and D operators. The string
thus unloaded, with C and X removed, is the alleged final
output string.

Now the input language to the T§; parser is S because for
each rule, np(. . .) and =(N(. . .)) give the same permutation of
the non-special f;. It remains to be shown that the parser output
is reverse-edited into the appropriate L-string, i.e. that for
each non-terminal instance in the parser tree the correct inverse
permutation is carried out.

This is true provided that:

(a) the editing process is reversible—proved by Lemma 3.

(b) any expansion of a non-terminal f; (of Ts;) acts as one item
on the stack so that the Y operator works correctly. This is
true because the corresponding f; in Ty is unitary from the
condition of the theorem. All expansions of this latter f;

352

—_— L-string in L-order

L-string in Parser S-String
S-order embodying TSL

is loaded

en bloc

is un-
loaded

)
Edit Stack b AJ \L Edit Stack
|

using ?,)

Fig. 3 S to L translation

become single items on the stack. However these items are
the expansions of the f; in Tg; (except that S-symbols
appear in place of L-symbols, but this does not affect the
number of items).

Example
As before, let the rules of T; 5 be
o - a46XCbBXC
6 —» eEgGXC
6 > fF.
Applying mp(R(. . .)) to each rule gives
o — Bb6AaYDYD
8 — GgEeYD
o - Ff.
as the grammar of Ts,_
Input aegb to Ty gives final output BGEA. Using this as inputs
to Ty, the parser output is bgeYDaYDYD which is placed o
the stack. The unloading goes as follows:
Stack contents (top at right) Final output
bgeYDaYDYD
bgeYDaYDY
geYDaYDb
geYDaYD
geYDaY
ageYD
ageY
aeg
— aeg

(Mapeoe//:sdny woJj papeojumoq

q LLO8V€/6V€/W8L/GIO!UE/IU[LUOQ/LUOO'an%

Automation of the algorithm
The algorithm of Theorem 2 can itself be expressed as a transo
lator, the input and output of which are an arbitrary umtary‘D
T,_s and its corresponding T, respectively. Such a 7- -grammarg
is referred to as an ‘inverter’ 7, and the part of it which mani-_
pulates the right-hand side of one rule is given below. To>
improve readability a BNF-like notation is used:

(RULE RHS) ::= geceeceee(ELEMENT STRING)CCCC
(ELEMENT STRING) ::= ({TERMINAL PAIR)
(ELEMENT STRING)C
|{NON-TERMINAL){ELEMENT STRING)C
| X¢{X)C(ELEMENT STRING)
|C{CYC{ELEMENT STRING)¢e
lee
(TERMINAL PAIR) ::= {(L-TERMINAL)
{S-TERMINAL}XC

20z Iud

where
{L- TERMINAL)} accept any L or S terminal respectively

{S-TERMINAL) and generate the same terminal.
{NON-TERMINAL) accepts and generates any non-terminal.
(X accepts X and generates Y

C> accepts C and generates D, i.e., there is

assumed to be a distinction between the
edit codes X etc. of I and the data-

The Computer Journal

symbols X, etc. of Tysand Ty, suericea
below for clarity.

The action of (ELEMENT STRING) when processmg a rule
T fi ... fn is to examine each f,, f, ... in turn and send
them to the edit stack suitably modified so that p(R(f1 - - - f)
is performed.

It is interesting to consider inverting I itself whose grammar
contains one rule with d = 2 (for X) and one with d = 1
(for C).

X{X)C{ELEMENT STRING)
leads to parser machine output

which leads to final output
Y{X>D{ELEMENT STRING)
where (X) now accepts Y, and generates X,.
Similartly
C{C)C{ELEMENT STRING)ee
leads to final output

D(CYD(ELEMENT STRING >ee

where (C) now accepts Dy, and generates Cp, and & proceeds to
the stack before being regarded as a dummy.

Since these inverted rules work perfectly well, it can be
considered how to relax the condition d = 0 for the working
of the algorithm in Theorem 2. However, consider

o — aAbBp
B—-X
with which the input string ab yields output BA.
The algorithm inverts the first rule into
o — AaBbp

which does not accept BA. The trouble is that the X is not
explicit and is therefore not taken into account by the inversion
algorithm. This leads to the simple (but not all-embracing) rule
that where an X interchanges items already on the stack
before the activation of the rule containing the X, they must
have been placed there by two identical elements for which
I=1andd=0,e.g

a— adadAf or [a— ypp
B—X - X
y—>ad .

(Note that the rule (RULE RHS) . .. is written to cater for
the inversion of right-hand sides with d < 3. The reader is
invited to attempt its use for t - CCC and 1 - CCCC).

An extension to Theorem 2
Another relaxation of the ‘unitary-ness’ condition is given
below as Theorem 3 and is simple to prove.

Definition:
Inarulet - f;...f,, asymbol f; ‘is in the range of an X’ if
there exists j, m > j > i for which f; = X and such that when
the symbols f; ... f;_, are applied to the stack, f; then inter-
changes two items, one of which includes f;.

Notice here that the f; are treated as symbols, so that the
predicate ‘is in the range of an X’ is readily evaluated by
inspection of the individual rule involved.

Theorem 3:

A translator T is invertible using the algorithm of Theorem 2
if

(a) d(tr) = 0 for every ©

(b) I(r) = 0 for all which are in the range of an X in any rule.

Proof:

To prove invertibility it is sufficient to show that np(. . .) applies

Volume 18 Number 4

the same permutation to R(f; . . . f,) at the time of inversion
of Ty as w does to an expansion of f; . . . f,, at the time of use
of T;s. The only rearrangement operator is X and the permu-
tations are the same if /(t) = 1 and d(t) = 0 in the range of
every instance of X in f; . .. f,,.. The condition d(z) = 0 for
every T not in the range of an X simply avoids the compli-
cations of the last section.

The use of ambiguous grammars

The processes described above need clarification if either or
both of L and S have ambiguous grammars, for then translation
followed by inverse translation will not necessarily result in the
original input string. It is supposed that the writer of the trans-
lators is aware of all the ambiguities. He allows them only
because the different outputs derived from different parses of a
given string ‘mean the same’ in every case, in some sense
known to him. This can be developed as follows:

Definition:
Consider a (poss1bly infinite) sequence of language stringsy
81582 - .. S, ... in which the odd-indexed strings are in L ancg
the even- 1ndexed strings are in S. Let translations s, = 5,43
exist for each r > 0 for which s, ; exists. Then for any integer%
P, q such that p < g and s, ex1sts the relationship between s
and s, is ‘s, means the same as s,

Corollary 1:

Given any strings s, s' and s” such that
(a) s” means the same as s’

(b) s’ means the same as s

then s” means the same as s. This follows immediately from the:
definition.

8 o1wepeoe;/isdpy wdl, p

Corollary 2:

If s’ means the same as s then s means the same as s'.

It is sufficient to prove the inverse for each translatio
S, = i1 (whether r is odd or even).

But this is what the main part of the paper demonstrates,~
using the given algorithm and edit stack arrangement.

Thus each string of the sequence s,, S, . . . means the same as?
all the others. (Note however that if an L-strmg and an S—strmg%
mean the same there is not necessarxly a translation betweenoo
them—for consider the strings ‘@’ and ‘B’ and the translators
o — aA,c - bA, ¢ - bB). g

If, for example, from input s; the parser derives output s,, 1@
is of no great concern whether the inverse parser derives s; o}
s3 from s,. (The only concern would be brevity and humamns
readability).

7S/v/8Y/ a|o!u5'/|u[woo/w00'dn

©
=
Example: . =
Using a form of BNF again for clarity and letting both input3
and output characters be chosen from the FORTRAN Set:
{exp) ::= {opy)+ +XCC
{op) ::= (letter)|(e{op))eCC
(letter) ::= AA|BB .

Then all the inputs 4 + B, (4) + (B), ((4)) + B and many
more all translate into AB+. The inverse grammar is

<exp ::= {op) {op) + + YDD
{op) ::= (letter)|e({op)e)DD
(letter) ::= AA|BB

which is ambiguous. Given an input string (such as 4B+) the
different parses lead to different outputs depending on how
many times the second alternative of {op) is used. All these
outputs, 4 + B, (4) + (B) etc., have an obvious constant
meaning. 4 + B is the shortest and most readable.

353

Implementation

Following Professor Reeves’ clear description of his parser
and editor machines, the author implemented a similar system
in POP-2. Little change to the meta-language was found
necessary to permit the writing of an invertible meta-grammar
and an invertible inverter. With only a few alterations, all the
various elements of the metalanguage were found to be invert-
ible, including some context-sensitive features. Further infor-
mation can be given on request.

References

Acknowledgements

The author wishes to thank the Journal’s referees and also
Professor Reeves and Dr. R. Housden for their constructive
and very helpful criticism. He is also grateful to Professor
Reeves for his kind provision of extra documentation, and to
Mr. R. Bowman for his help with the POP-2 language and its
ICL 4130 implementation. Thanks are also due to Mrs. C.
Goulding and Miss A. Kozaryn for their patient typing of
many drafts.

ALPIAR, R, (1971). Double Syntax oriented processing. The Computer Journal, Vol. 14, pp. 25-37.

Evey, R. J. (1963). The Theory and Application of Pushdown Store Machines, in Mathematical Linguistics and Automatic Translation,
Harvard University Computation Laboratory Report, NSF-10, pp. 2.31-2.64.

GINSBURG, 8. (1966). Mathematical Theory of Context-free Languages, New York: McGraw Hill Book Co.

MEtcALFg, H. H. (1964). A parameterised compiler based on mechanical linguistics, Annual Review in Automatic Programming, Vol. 4,

pp. 125-165. (R. Goodman, Editor), Pergamon Press.

REeEvEs, C. M. (1967). Description of a syntax-directed translator. The Computer Journal, Vol. 10, pp. 244-255.

Book reviews

Definition of Programming Languages by Interpreting Automata, by
Alexander Ollongren, 1975; 290 pages. (Academic Press, £9-00)

‘The major part of this work is devoted to the semantic definition of
programming languages, and is based very closely on the work of
IBM at Vienna. There is, in addition, an introductory chapter on
mathematical foundations, and two chapters on syntactic aspects.
These two chapters give a brief survey of formal languages, finite
automata and parsing. The intended readership includes teachers
and students of computer science, mathematics graduate students
and senior programmers. The book is claimed ‘to adopt a gentle
tutorial style throughout,” and I read it as someone who wishes to
learn rather than as an expert.

From this standpoint, I found the book very hard to read. The main
problem is with the use of English, which is presumably not the
author’s native language. At best, the sentence structure is awkward
and, at worst, ambiguous or tending towards incomprehensibility.
Sometimes, moreover, there is a looseness of definition that appears
to go deeper than a maladroit use of English. The following extract
from the book, which is taken from the very start of Chapter I, may
serve as an illustration: ‘A basic notion in all branches of logic is an
assertion which is either true or false. An assertion can take the
form of a sequence of words in a natural language; it is then a
sentence, which necessarily must be declarative and non-ambiguous.
An assertion can take the form of a sequence of mathematical
symbols (standing for variables, relational operators and so on), for
instance if the assertion is a theorem. Assertions which are either
true or false are called statements or propositions, independent of the
form in which they are presented. All previous sentences are pro-
positions’. (To give the author due credit, some examples follow this
explanation, and these help clarify the concept.)

Another problem for the non-expert reader is that the book is
uneven in what it assumes he knows. For example, grammars are
explained from scratch, but it is assumed that the reader knows what
a ‘rooted acyclic directed graph’ is.

For the expert reader, the book may have some merit. Some of the
material towards the end of the book may be of particular interest.
Topics covered include: (a) the separation of control information
from other data used by interpreting automata; (b) the relationship
between interpreting automata and real compilers; and (c) parallel-
ism. At the end of each chapter is an extensive survey of the relevant
literature, many of the citations being to IBM Vienna work.

P. J. BRowN (Boulder, Colorado)

Fortran Codes for Mathematical Programming, by A. Land and
S. Powell, 1973; 249 pages. (Wiley, £4.75)

0.} popEOJUMOQ

The authors have realised that there are a considerable number of=3
people, both inside and outside the universities, who do not requircg
the standard mathematical programming algorithms but want to®
modify these algorithms for their own specific purposes. As mostg
users are unable to get inside commercially available mathematical®
programming packages, a'large variety of generally mefﬁcmnt,g
‘home-grown’ programs have been developed and also a lot ofo
untested new algorithms have been published. The rationale for this2
book is therefore simple; namely to provide detailed descrnptnonsﬁ
and listings of robust, well-tested computer programs of the linear, 3 3
quadratic and discrete programming algorithms.

The first chapter briefly describes the mathematical background toB
each algorithm. The next five chapters detail the listings of the i m-m
dividual algorithms, i.e. a revised simplex algorithm with upper=
bounding for linear programs, Beale’s algorithm for quadratic
programming, Gomory’s method of integer forms for integerg
programs, Land and Doig’s algorithm for mixed integer programs =
and finally, a parametric linear programming algorithm. These ¥
chapters also contain complete descriptions of the inter-relationships g
between the computer programs, the exact function of each sub—
routine together with lists of each routine called and the necessary\:
COMMON variables. The final chapter is all-important as it deals o
with problems that may be encountered in either moving the routme<Q
onto a new computer (the programs were developed on a CDC 6600) & @
or altering the size of problems that may be solved. This chapterg
contains sections on suggested overlay structures, setting of the =
various tolerances and the places that they appear through the ©
programs, storage requirements for each array as a function of theU
size of the problem, and some indication of the algorithms’ per—;
formances on some test problems. The four appendices contain
indexes of the routines and the COMMON variables, a description R
of the data input format and some further test problems.

The impression that the reader must immediately get from this book
is that the authors have taken enormous pain to smooth the path of
potential users. Reliable and adaptable are the keywords to describe
the programs and the documentation is superb. The book should
be on the shelves of all mathematical programmers to dissuade them
from ever having to start programming an algorlthm on a computer
from scratch again.

R. B. FLAVELL (London)

The Computer Journal

