Rational interpolation and extrapolation for SUMT
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Two explicit formulae for rational interpolation are given and compared, with a special reference
to a subroutine using only function values for a linear search in the SUMT (Sequential Unconstrained
Minimisation Technique) transformation. Different forms of rational functions for extrapolation

purposes are also considered.
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1. Rational interpolation
By a constrained minimisation will be understood the following
problem:

Find a point x* which locally minimises a scalar function f(x)
of a vector argument x € R" and satisfies the system of
inequalities

g(x*=0. M

It is assumed that such a point exists and f(x*) is finite. Any
point satisfying (1) will be called feasible.

The SUMT method transforms the difficult problem of a
constrained minimisation into a sequence of simpler uncon-
strained problems which, under some conditions, converges
to the solution of the original problem. To be more specific,
let us consider the interior point algorithm with the inverse
function for the penalty term (Fiacco, McCormick, 1968). This
is where the rational interpolation in a linear search is likely to
be most efficient due to the preservation of the differentiability
order of the transformed function and because the region of
definition of the inverse barrier function includes also unfeasible
points which may be therefore used for locating the minimum
inside the feasible region. This is not possible for a polynomial
approximation.

Let r be a small positive number and define the transformation

FOr) = f(x) + r Z é%x) . )

Then,

min f(x) = lim min F(x, r)
gi(x)=20 r-0%

where the last minimisation is unconstrained for a small

neighbourhood of the minimising point.

In practice, one chooses a sequence r; > ry,; > 0 and mini-
mises numerically F(x, r,) to obtain xF. For most procedures
this requires the use of an one-dimensional minimisation
subroutine, i.e. a linear search along a direction d has to be
repeatedly carried out to find a scalar w* minimising
F(x, + wd, r) subject to g,(x0 w*d) = 0.

When y; = F(x;,r), j=0,1,2,... have been computed
from (2) for different points x; = xo + wid, Wo = 0, then,
given a suitable function y(w), one can use the pairs (w;, y;) to
estimate both w* and the tentative value y* of y(w*) which is
useful for an accuracy check. The simplest and most often

)4
used function is ‘a polynomial y(w) = > a,w™. As well as
m=0

being rather inefficient for this particular application due to a
perverse behaviour of F near the constraints, it requires
gi(x;) = 0, i.e., only feasible points may be used. Kowalik and
Osborne (1968) used a golden-section algorithm and Fox
(1971), suggested the following rational form of y(.).

4-point rational approximation

(€)

yw) = ay + ayw + p
To determine four coefficients in (3) one could employ any ofD
the standard algorithms for rational interpolation (Larkm,a
1967). The first algorithm due to Stoer (1961) has been pro-m
grammed in FORTRAN and it was found that it wouldS
require, for the present problem, 75 multiplications and 308
additions. This was thought to be a prohibitive computatlonalj
burden and therefore a direct algebraic solution of the systems

yw) =y i=01,23

was carried out. After a lengthy mampulatlon the corres-%
ponding expressions were obtained as given by (4). Some of theZ.

Speoe//:sa)

C= —W W,W; g
Wy — wa)yy + (W3 — w)y, + (W, — wa)y; %
[wiwa(wy — wy) + wiws(ws — wy) +/ (4a)§

waws(Wy — w3)1yo — wows(wy, — w3)y, -/
wiws(ws — W)y, — wiwy (W — W) 3

3
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w* = ¢ + sign (b) \/ b 4d)8
al g
«Q
w* 5
* — + 4
y* = yo + aw* = c) ( e)§

coefficients in equations (4) were precomputed for a fewo
commonly used values of triples w;, j = 1,2, 3 and stored as
constants.

A sign check has to be made before taking the square root 1n\;
(4d) and, if the number is negative, some emergency action has~
to be taken (e.g. restart of the linear search from the best
feasible point with w;’s reduced).

zuﬁv

3-point rational approximation

y(w) = u(w) + z(w) (59)
u(w) = ag, + aw (5b)
z(w) = @y, + ” li . (5¢)

The two functions in (2) are approximated independently with
u; = f(xo + w;d) and

1
r— ———————————————— 12 '_0
% r::g(x0+wd) =0 o
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The function u(w) in (5b) was chosen linear since a quadratic
polynomial would lead to a cubic equation in w*. One possible
way of determining a,; and a, in (5b) is a least-squares fit of
u(w) to three points u; = u(w;). The approach used here,
however, is to fit the three points with a quadratic polynomial
and then replace this by its tangent at some point x, + Wwd
This procedure gives rise to equations (6): w is chosen as
follows.

22 b 21
c=ww (6a
1 wa(zo — z1) — wi(z0 — 23) )
b= =9, -z (6b)
(W, — w))wy + wy — 2W)u° +/
al = WZ(WZ - 2W)u1 - Wl(wl - 2W)u2 (60)
wiwa (W, — wy)
Ww* = ¢ + sign (b) A/ L2 (6d)
a;
* * w*
y =u0+20+alw +E(V,7—*_——c)b (66)

To nullify the effect of replacing the quadratic polynomial by
its tangent one would like to carry out the linearisation about
w*, i.e. to have w = w*(w). From the special nature of the
problem, the iterative solution of equations (6¢c-d) written as

Wiy = w*(W) Q)

may be expected to converge fast for small values of r. The
following scheme has been found satisfactory

1.set wy = 0,
2. compute w, and W, using (7),
3. estimate w* = w32/(2w; — W,) by 4>-method.

This method gave results superior to the least-squares fit and
it was programmed with 23 multiplications, 18 additions and
5 divisions.

2. Comparison of the 4-point and 3-point algorithms

Different minimisation procedures are often compared on the
basis of a number of function evaluations necessary to achieve
the same accuracy. The 4-point algorithm requires one function
evaluation more but it may be expected to approximate the
minimised function better. However, for small r’s a poor
accuracy of the 4-point algorithm was caused by numerical
difficulties when extracting information about the constraints
from F(x,r) due to the second term in (2) being small. The
3-point algorithm which approximates both parts of (2)
separately performed better. To demonstrate this, a simple
example was solved on the KDF9 computer (11 significant
digits).

Example 1

Let f(x) =1+ 10x and g(x) =1:0001 +x, r= (o —7,
d A 1.Then the function F(x, r)attains its local minimum value
F(x*,r) = —8999 at x* = —1-0. The results given on Table 1
were obtained using the derived expressions with w = 0.

Example 2
The following problem was solved by Kowalik et al. (1968),
who used a golden-section algorithm for their linear search.
Minimise
f(x) =9 — 8x; — 6x, — 4x3 + 2x3 + 2x2 + x2 +

2x.%5 + 2%x;%3
subject to

g:(x) = x,
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Table 1(a) 4-Point algorithm

i Wi X Vi
0 00 1-0 0-11000000050, , + 2
1 —-10 00 0-10000001000, , + 1
2 10 2:0 0-21000000033,, + 2
3 2:0 3-0 0-31000000025,, + 2
¢ = —0-98839907193
x* = —0-98830016286
y* = —0-88820125368,, + 1 y(x*) = —0-88829931539,, + 1

Table 1(b) 3-Point algorithm

i w; X; u; z;

0 00 10 11-0 0-49997500125,4 — 7
1 -1.0 00 10-0 0-99990001000,, — 7

2 10 20 21-0 0-33332222259,, — 7
¢ = —0-10001000000,, + 1

x* = —0-99999999999

MO

y* = —0-89989999999,, + 1 y(x*) = —0-89990000000,, + 1
Table 2
Number of function evaluations
r F(x*,r) GS P 4R 3R
1 7-4168 210 107 128 107
0o — 2 0-2605 330 95 102 93
10— 4 0-1210 510 153 151 179
0o— 6 0-1128 560 378 286 95
o— 8 0-1112 327 * 172
o—9 0-1111 * * 155

GS golden-section (from Kowalik ef al., 1968)
P parabolic approximation
4R 4-point rational approximation
3R 3-point rational approximation
procedure failed to reach minimum
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Table 3
r -3 —4 1w0—75
x3(r) 1 353223 1 340245 1-339885
x3(r) 0-762537 0-773118 0-774010
x%(r) 0-409701 0-432827 0-439643
h(r) 0-145908 0-121024 0-114161
N/D 2/0 1/1 0/2
x%(0) 1-339855 1-339848 1-339855
x%(0) 0-774107 0-774108 0-774107
x%(0) 0-440450 0-440552 0-440463
h(0) 0-113349 0-113261 0-113395
8:(%) = x;

g3(x) =3 — x; — x5 — 2x3
The minimum value f(x*) = 1/9 is reached at
x* = [4/3,7/9,4/9] .

Their results are compared here with three versions of Davies,
Swann and Campey minimisation procedure (Swann, 1964)
refined by Hoshino (1971) with orthogonal directions generated
by the algorithm due to Palmer (1969). The versions differed
only by the functional approximation for the linear search. A
quadratic interpolation was used normally inside the feasible
region, a rational approximation only after a constraint was
violated. The results are summarised in Table 2. The 3-point



rational approximation performs the best as measured by the
number of function calls. v

The separate computation of both parts of F(x, r) has yet
another advantage. Consider a situation where a search is made
in a direction d for which f(x, + wd) is independent of w.
Due to the penalty term in (2), however, F(x, + wd, r) may be
a decreasing function of w and the search may continue
infinitely unless some special precaution is taken. This may
happen in the Example 2 if the same procedure is used for
maximisation of violated constraints in order to find a starting
feasible point. For if g, and g5 are positive, the following
function is to be minimised

1 1
FGer) = —x + r(xl t3z X — X3 — 2x3)
and provided that the search is made in the direction x3, then,
as x, —» — oo F continues to decrease without g, and g3 being
violated. By checking f rather than F in (2) against stationary
values the danger of ‘getting stuck’ on such functions is
eliminated.

3. Rational extrapolation
Let
min F(x, ) = F[x*(r), nd = h(n) -
gi(x)>0 _

Under some conditions, A(r) is known to be a differentiable
function near r = 0 and, using a suitable functional expansion
of h(), one can estimate A(0) from a few known values of
h(r,), r, > 0. Similarly, the point x* minimising f(x) subject to
gi(x) = 0 can be estimated by applying this limiting process
co-ordinate-wise to a few points x*(r,). The accuracy of this
estimation |h(0) — f[x*(0)]| may be used as a stopping
criterion for the optimisation process. Fiacco and McCormick
(1966, 1968) used successfully the Taylor expansion in /r but

to a rational approximation for A(+) and x*(.), is possible. In
spite of lack of a rigorous justification for such a step (Oliver,
1971), Bulirsch and Stoer (1966, 1967) reported a higher
numerical efficiency of the rational extrapolation when applied
to a similar problem of solution of ordinary differential
equations and numerical quadrature.

A series of computer tests was made with the SUMT trans-
formation and, using the 2nd algorithm of Stoer, (1961), all
possible rational functions in /7 (including polynomials) were
fitted to up to five successive data from F[x*(r,), r,] of Example
2 to obtain the limiting values. A surprising consistency of
results for all forms of the approximating functions was found.
As a sample of these tests, partial results of extrapolation of the
function from example 2 are presented on Table 3. N and D
denote the orders of the polynomials in the numerator and
denominator of the rational function, respectively, fitted to
N + D + 1 successive points.

Some understanding of this behaviour may be obtained from

the following simple case. ! Consider the polynomial $(/r) and
the rational function y(/r) fitted to two points '

yi =) =y(r), i=1,2
define p = r,/r, # 1. Then

7O _ a-p’
Y1)2

For small r;, one should expect the difference 4 = y, — y, t
be small enough to allow for the approximation

Yi+yi=20y

no"olWwepeo®)/:sdpy Wwouy papeojumoq

giving y(0) =~ 7(0).
To conclude, it seems that, because of its relative simplicityg

the low-order polynomial for extrapolation purposes in th
SUMT transformation using inverse barrier function is the;

further generalisation to the Laurent series expansion, leading  best choice. El
. 3

>
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