Solving nonlinear Vandermonde systems
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The nonlinear system of equations V' (x)x = b, where V(x) is a Vandermonde matrix, may be used
to determine roots of polynomials, eigenvalues of matrices and Chebychev quadrature formulae.
A convergent iterative scheme is given to solve V(x)x = b, based on known methods for solving

linear Vandermonde systems.
(Received September 1973)

This note describes an iterative procedure for solving nonlinear
systems of equations of the form

__ilx1;=b,.,j=1,...,n. )

The numerical examples given in this paper are the deter-
mination of the roots of polynomials, but the method may also
be used to find eigenvalues of matrices and nodes of generalized
Chebychev quadrature formulae (Fréberg, 1965).

Let x = (x4, ..., x,)" and let ¥(x) denote the Vandermonde
matrix of order n with generating vector x, i.e.
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Equation (1) may be rewritten as V(x)x =b, with
b=(by,....b)".

Considerable work has been done on the solution of a linear
Vandermonde system —V(x)y = b, with y the unknown.
Traub (1966) gives two algorithms for generating the inverse of
a Vandermonde matrix. Bjorck and Pereyra (1970), and
Gustafson (1971) have developed algorithms for solving the
linear Vandermonde system which only require n* operations,
which is an order of magnitude less than the requirement for an
arbitrary linear system.

We first considered the following iteration scheme for solving
equation (1), guess x° and for k =0,1,2,. determine
x**D from the equation V(x®)x**1 = p, Unfortunately,
this method proves to be highly unstable. An improved scheme
is obtained by equating the solution to an approximate
solution plus a correction term ¢ so that

V(x® + e)(x® +¢) =b .
Expanding and retaining only first order terms in ¢ gives
V(x®)e = Db — V(x®)x®) |
where D is a diagonal matrix with D;; = 1/j. It is a measure of
the efficiency of the algorithms for solving linear Vandermonde

systems that the calculation of the right hand side requires as
many multiplications as the solution of the system of linear

equations.
Our iteration scheme becomes: given x°, determine ¢ and
x®*Dfork =0,1,2,..., as follows.
(@) V(x®)e® = D(b — V(x("))x("))
(b) x**D = x®  g® 2

Notice that in solving equation (2a), one has a linear
Vandermonde system.

In solving problems where the solution has all real
components, we noticed that using real initial guesses led to
instability. We therefore modified the scheme to prevent large

Volume 18 Number 4

variations in the x’s as follows.
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We found 4 = 4/3 satisfactory. 2

We found this correction was not necessary in the case ofm
complex initial guesses. Our procedure for selecting 1n1t1aB
guesses is discussed in the next section.

A simple way to analyse convergence is to recast the aboch
algorithm in terms of Newton’s method. We refer to Rhemboldg
and Ortega (1970) for the appropriate background.

Let F(x) = [£1(%), - . ., [u(x)]7, with f;(x) = ;1 xj — b;.
Then Newton’s method may be written
xk+1) — 5 4 [F’(x("))]_l F(x("))

where (F'(x));; = 9;f{x), the Jacobian of F(x).

It is easily seen that for our case F'(x) = D~'V(x) and tha
equations (2') and (2) are equivalent.

Letting X denote the true solution with componenté§
X1, X3, - « - X, then if the x; are distinct, V(X) is nonsingulaiy
and hence F'(x) = D"IV(x) is nonsingular. Therefore, there;
is a neighbourhood U about X such that Newton’s Method”
converges for all starting values within U. Our results indicate’.
that the convergence is quadratic. However since the first row?®
of V(x)x is linear, the second derivatives are zero, and the
standard theorems concerning quadratic convergence do nog

apply.

~
[\*)
F2/eLe/PT8 L /2100uE/|UlWOoY/

(o]
A

144

Applications

Using the IBM 360/75 with (16S) complex arithmetic we tested
our algorithm by determining roots of polynomials. Let p(x)
be a polynomial with roots xy,...,x, — p(x) = a,x" +

a;x"" ' + ... + a,—then
n
21 xJ = b; where the b; are computed from the triangular
system
al + a0b1 = 0
202 + albl + a0b2 = O

na,,+a,,;1b1+...+aob,,=0,

These equations, known as the Newton Identities may be found
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in Froberg (1965).

In choosing initial guesses for our procedure, we followed the
work of Aberth (1973), and selected initial values so that they
all lie on a circle in the complex plane which includes all the
roots. Obviously the method cannot give complex roots from a
set of real initial guesses, however experience indicates that
even when all the roots are real, convergence is better when
complex initial guesses are used.

For other than roots of polynomial applications, note that the
above triangular system may be solved for ay, ..., a, given
b,, ..., b, and setting a, = 1. Therefore, one has a polynomial
which has the solution to V(x)x = b as its roots and the esti-
mating procedure of Aberth may be used to determine initial
guesses.

We let E be the maximum difference between the real and
imaginary parts of the true roots and the approximate roots.
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