Correspondence

To the Editor
The Computer Journal

Sir

1 was interested to read the article ‘A Structured Language for
Translator Construction’ by J. R. White and L. Presser in the
February 1975 edition.of The Computer Journal. There are a number
of systems in existence designed to aid the construction of compilers
and the like, which use some codification of BNF to drive a syntax
analysis operation. One problem which they all have in common is
the communication of information between the syntax analysis and
the semantic phases. The usual solutions are either to allow semantic
procedures to reference syntax definitions and arrange that the
system automatically calls these when the associated syntax is
recognised, or to allow calls to semantic procedures to be inserted
in the textual expression of the BNF, which cause the semantic
procedures to be activated when an analysis scan of the syntax
reaches a specific point. The system described by White and Presser
falls into the former category, the means of reference being the
numerical order of the syntax definitions. Another system in this
category is the famous Compiler Compiler of Brooker and Morris,
where the reference between syntax and semantics is achieved by
associating the names of syntactic Phrases and semantic Routines.
There seem to me to be two main disadvantages of this approach:
firstly, in order to communicate other necessary information from
syntax analysis to the semantic process, specifically the particular
text which has matched various elements occurring in the syntax
definition, a general structure has to be maintained (a stack of
information in the case of JOSSLE and an analysis tree in the
Compiler Compiler) which may be much larger than is required for
the communication, and which has to be understood by the writer
of the semantic procedures.

The second disadvantage is that there is no obv1ous way in which
the semantic procedures can influence the course of the syntax
analysis. At first sight this seems quite contrary to what is required.
However, in most compiler systems constructed in this way, quite
a lot of the ‘semantic’ action is in fact used to perform syntax
analysis, simply because there are many rules of syntax which
cannot reasonably be expressed in BNF: for example, that all
identifiers must be declared, or that only identifiers of a certain type
may be used in a given context. In ALGOL 60 a procedure identifier
or an array identifier is defined simply as an identifier. In a coded
form of the BNF definitions of these it is useful to be able to call a
‘semantic’ procedure which causes the syntax scan to fail if the
identifier is found to be of the wrong type.

The second approach, that of including specific activations of
semantic processes in the definitions of the syntax, is used by BCL,
the systems programming language designed by D. F. Hendry at
the erstwhile University of London Institute of Computer Science,
among others. In fact BCL goes much further and embeds all the
semantic statements in the syntax definitions, without making any
distinction between the two, so that one may write a ‘syntax
definition’ (called a Group) which has a purely semantic action. This
avoids the two disadvantages of the first approach, and gives the
writer great flexibility. A number of very compact compilers have
been written using this system as a result. However, the resulting
‘code’ comprising the compiler is largely unstructured since it is all
embedded in a sequence of definitions which are in fact an
unstructured linear sequence just like the usual BNF definition of a
'anguage. This is not conducive to using structured programming in
the semantic processes. This could be avoided either by textually
separating the syntactic and semantic phases, so that semantic
actions are initiated only by procedure calls embedded in the syntax
definitions, or by imposing some kind of block structure and rules of
scope on the definitions in BCL. Textually separating the syntax
definitions from the semantic procedures has the advantage that the
latter can be written in a structured language (such as JOSSLE) but

has the disadvantages that there is less flexibility and that some
inefficiency is likely to result from a lot of very short semantic
procedures. To impose a block structure and rules of scope on syntax
definitions written in BNF or a format based on BNF is an idea
which I have not seen discussed anywhere before and might be
worth investigating.

However, the main point I wish to make concerning compiler-
building systems of this sort is that they are all orientated towards
single-pass compilers. This is because the main area which is
simplified is the syntax analysis phase, and with a two or more pass
compiler, the second and subsequent passes, and part of the first
pass all tend to be treated as a semantic phase of the whole process.
In fact, with a two pass compiler the intermediate information which
is generated by the first pass is ‘analysed’ by the second pass.
However unmodified BNF is not a very suitable means of specxfymgo
this analysis because textual strings may not be the best vehicle f0r3
the intermediate information, and because there may be more thang
one stream of information which may not be read in a simple serial @ &
manner. For example a symbol table may be accessed randomly,-,
but the records within it may be usefully described by a BNF type%
of definition. It should be reasonably easy to produce a modified =
BNF in which the terminals can include other data elements besides®
character strings and which can include directives to redefine them
source of the information to be analysed. m

My instinct is to believe that, just as the structure of the information @
input by a compiler can be defined by declarative syntax definitionsz-
(BNF) which can drive an analyser, so should the structure of the2
information output by a compiler (namely the object code andg
intermediate information in the case of two pass compilers) be%
defined by similar syntax definitions which could drive a synthesiser. 5
The relationship between these two would probably have to b63
described by a third set of statements. The analyser and synthesiser=
might be regarded as co-operating processes waiting upon events®
occurring in each other. This notion is supported by the fact that,o
as I indicated earlier, in some existing systems the syntax definitions =
refer to the semantic procedures, and in others the semantic pro-
cedures refer to the syntax definitions, which suggests that there isg
no inherent heirarchical relationship between the two.

I would be the first to admit that these ideas, especially those in the %
last paragraph, are very unformed, but I would be very interested tom
hear if any work is being done in these directions for I believe the®
next important practical steps forward in compiler design and‘;
construction may lie along these lines. Otherwise, may I hope thatg
my words might provide food for thought for someone with moreﬁ
time and opportunity to pursue these lines of enquiry than myself 5

Yours faithfully,
B.T. DENVIR>

/17/8 /319!

81¢/08

Standard Telecommunication Research Limited
London Road

Harlow

Essex CM17 9NA

26 March 1975

20z Iud

To the Editor
The Computer Journal

Sir
Decimal number checking schemes

Andrew (1974) mentions the problem of finding a scheme to attach
two decimal digits to a two-place decimal number so as to allow
correction of single errors. This may be viewed as the problem of
finding a mapping from the set {00,01,...,99} into itself (the
image being the check digits) such that the resulting set of code
words is single-error-correcting. It is well-known that a necessary
and sufficient condition for a set of code words to be single-error-
correcting is that the Hamming distance between any two code
words should be at least three.

The Computer Journak





