The problem of lock by value in large data bases

G. Schlageter

Universitét Karlsruhe, Institut fiir Angewandte Informatik und Formale Beschreibungsverfahren,

D 75 Karlsruhe, Postfach 6380, Germany

In parallel-accessed database systems a process must be able to lock a subset of the data. In current
systems and proposals the only way for locking a set of data is either to lock explicitly each element
in the set or to lock a large predefined set, such as a whole file. Though the necessity of a more
flexible locking feature is recognised there are no results as to conceptual foundation and implemen-
tation. In this paper a concept for lock by value is developed which allows a process to lock a subset
of the database just by specifying a condition describing this set. Though the concept looks rather
simple some unpleasant problems have to be discussed. A locking system supporting current lock
features at the record-level as well as lock by value is proposed.

(Received June 1975)

1. Introduction

To guarantee database integrity and to prevent malfunction
of processes in parallel-accessed database systems a process must
be able to keep a specified part of the database ‘frozen’ until it
has finished its operation. This problem of access synchronis-
ation is only partially solved in current systems and proposals.
Existing solutions are based on identity lock, which means that
an identified data element b, usually a record, is locked by an
explicit lock command referring to b. As a result of the lock
command lock information is stored in the system. Mechan-
isms of this type have been discussed (Bernstein and Shoshani,
1969; King and Collmeyer, 1973; Schlageter, 1975).

As can easily be seen synchronisation schemes of this type are
often too elementary, and more user-oriented features should be
available. According to its needs, a process should be able to
lock a subset of the database or a ‘critical region’ without
having to know (and to address) each element in this subset.
Implementation of these ideas is not straightforward. Princi-
pally, it could be based on a lockout mechanism for identity
lock, though this could be extremely inefficient for large sets of
data elements to be locked. In these cases, for example, a
‘lock by value’ or ‘content lock’ feature would be valuable, as
will be shown in this paper.

The term ‘lock by value’ must be understood from the user’s
point of view. In contrast to identity lock, lock by value
enables the user to lock a set of records just by specifying a
condition for the values in particular fields of the records; he is
no longer forced to identify and lock each element of the set
explicitly. For instance, we would like to lock all records of
employees with a special job-code, thereby allowing all other
employee records to be accessed without restriction. Lock by
value introduces a general form of data dependency of the
lock decision. If the record identifier is also considered a data
value of the record, identity lock can be seen as a special case of
lock by value.

The problem of lock by value has not been discussed in detail,
and to the author no suggestion for a solution is known. This
paper presents a more general view of the lock problem. A
conceptual solution for lock by value is developed, and some
special difficulties are discussed.

2. A more general concept of locking in database systems
In available database management systems (DBMS) there are
only limited means for a process to request a part of the
database for protected or exclusive use. At best we have identity
lock on the record level and conventional file protection mech-
anisms. Lock by value features are not implemented.

Of course, lock by value could be solved with identity lock,
simply by an exhaustive search: each record satisfying the given
condition is locked, i.e. an entry for that record is created in an

Volume 19 Number 1

allocation table. Obviously, this solution is unsatisfactory; in
most cases it would be preferable to lock a whole file, or, what
is logically the same, to lock the record type instead of tge
instances (cf. IBM, 1973).

In the following a more general concept of locking is propos%l
which includes the current static view (stored lock-informatich
in some way associated with the data) as well as a dynamic 8r
procedural view. The essential point is that in the procedural
model of locking we do not have lock information looked up?n
some table, but evaluation rules applied to the data to deta?-
mine the lock-status. Thus, in contrast to the classical view Qf
locking, it is not necessary to lock each element of a spemﬁgi
set explicitly before a process can be sure that no other procegs
will change this set. S

Take the example of an employee file: a process P may neéd
all records of a certain department unchanged during its actlo§
Ideally it would issue a command like ‘lock all records with
deptcode = sale’. If after that a process Q tries to access an
employee record, the condition ‘deptcode = sale’ is evaluatéd
for that record, and Q is allowed or not allowed accq‘és
depending on the result of the evaluation.

Though the static case could be treated as a special case of tl:m
procedural concept, one important difference must be noticed:
in the static concept the lifetime of a lock of a record depen
only on the lock and unlock commands of the processés,
whereas the lifetime in the procedural concept depends on t
lifetime of the evaluation rules and on the state changes of the
stored information in the record. As a consequence we have the
following interesting property : in current systems and concepts
once a set of data is locked it is unaffected by all changes of the
database such as addition of new data; in the procedur%l
concept the definition of a set is dynamic, i.e. a record whichis
added to the database automatically becomes a member of the
locked set, if, according to its attribute values, it should beloig
to this set.

At first sight there is some similarity to data dependent check
in security control (Conway et al., 1972; Hoffmann, 1970;
Tsichritzis, 1973). Consider again the example of the employee
file: to restrict a particular type of user from ever seeing values
of salary in excess of $5,000 the data records have to be checked
before being passed to the user program for processing. The
necessary check-routines are defined in the database schema,
together with the definition of the user types.

Though the fundamental necessity of data dependent checks
is common to both security control and lock by value, the
underlying problems are different by their nature; locking of
data to control simultaneous updating is an entirely separate
function from security control. The details will become clear
in the following discussion of the concept of lock by value.

17

3. A functional model of a locking system
We consider a database that comprises records of various types.
A record is composed of a number of fields containing attribute
values; an internal unique identifier is associated to each
record. For this discussion the identifier can be regarded as an
attribute, too. A record type is described by r<ay,.. ., a,),
where r is the name of the record type and q; is an attribute
name. Within larger contexts an attribute name must be
qualified: r.a;.

We informally introduce the operations

lock(N|C): ‘lock all records satisfying selection criterion C’
N is a name for C.

unlock(N) : ‘unlock the set of records specified by the selection
criterion named N’

We consider selection criterions of any form, but which involve
only attributes of one record type, such that the truth value of
the criterion can be evaluated for each record just by inspecting
the attribute values of this record. (Some of the record’s attri-
butes may be defined as virtual data). We call this type of
selection criterion ‘elementary boolean condition’ (EBC).

A set that comprises records of various types must be des-
cribable as a disjunction of EBCs, e.g.

ri.a; <10vr,.a; > 70 A rea, =20 .

A criterion of this form must be split up into the EBCs, each
of which can be treated separately. We choose a factored form
for EBCs on the user’s level, such that the above example is
formulated as

lock(N|r;:a; < 10);
lock(M|r,:a, > T0Aa,, = 20) .

By declaring C in lock(N|C) to be a list of EBCs we can make
sure that all elements of a set of EBCs are established at a time,
or no one.

We define C(r) to be the truth value of the EBC C when
applied to the attribute values of record r, and S(C) to be the
set of records r specified by C:S(C) = {r|C(r) = true}.

To support reading as well as writing processes, read lock and
write lock should be introduced; for the purposes of the lock
by value discussion we only consider write lock, but the
generalisation is straight-forward.

We now consider a locking system as part of the DBMS
through which all access to data must pass, unless the process
does not want any protection and only wants to read data.
As a first rough scheme we assume that before delivering data

database
schema
A
locking system ? :
— — Ji—l
‘ lread | 1
P: lock(N|C) : ; i
Jock(N|C) ! , EBC set P
monitor [
| bt
| P
i read ;
write |
B k
EBC set H ;
. .
read -t |
! execute iread | Y
P: get(x) i
; X | access
——»—® | lockout monitor T routines
t

| a
—

Fig. 1 Organisation of the locking system

to a process P the locking system checks whether the data
satisfy an EBC established by P, and whether they do not satisfy
an EBC of another process. If access to data must be denied,
the requesting process is blocked, and deadlock analysis is
started. As will be seen the function of the locking system must
be discussed carefully to avoid pitfalls for database integrity.

Fig. 1 shows the principal organisation of the locking system.
Central part is the EBC set. The EBC set monitor is responsible
for inserting and deleting EBCs in the EBC set. The lockout
monitor takes care of the appropriate application of the EBCs
to the data at every access. The two monitors must be syn-
chronised as to EBC set access, e.g. by defining them as the
local procedures of one monitor as defined by Hoare (1974).

With each EBC in the EBC set the identification of the owner
process which established the EBC must be associated. It
should be pointed out that an EBC can be activated at run time
only, according to the lock-operation, i.e. the passing of the
EBC from the process to the EBC set monitor principally
takes place at run time. There are various ways for implementing
this passing of an EBC, among other aspects depending on the
binding time rules in the DBMS.

We thus have the following interpretation of the introduced
operations:

process P:

lock(N|C) ‘insert EBC C named N with owner process P into
: the EBC set’

unlock(N) ‘delete EBC with owner process P and name N in

the EBC set’.

4. The problem of overlapping conditions
In the given rough functional scheme of the locking system no
restrictions were introduced for the EBC set. Yet, there is one
unpleasant problem: process-interference because of over-
lapping EBCs. The protected sets specified by different proces-
ses need not be disjointed; for example: process 4 locks all
employees with a special job-code, process B all employees
with a special department-code. We therefore have the follow-
ing problem: when B establishes its condition Cj, A may already
have accessed a record x € S(Cjp).B is not aware of this. 4 can
produce changes in S(Cj), whereas B assumes its set to be
frozen. Note however that simultaneous access of two processes
to a record satisfying two EBCs is not possible. Though the
risk of malfunction or integrity loss due to ‘initial overlap’ is
not great, it will not be acceptable in general.

Before looking for reasonable solutions we state the following:

Lemma 1:

Correct operation of two concurrent processes 4 and B with
the EBCs C, respectively Cp is guaranteed, if no record
re S(C,) n S(Cp) is modified by the processes.

Observation 1:

To have an EBC-specified set frozen for a process it is not
necessary that this set be pairwise disjointed with each other
EBC-specified set.

Observation 2:

Lemma 1 is not a necessary condition, though it seems to be
the most stringent condition that can be given on this abstract
level.

Suppose we could guarantee, by some yet unknown mechan-
ism, that an EBC X is established only if no record r € S(X) is
already being modified by another process; then a variety of
EBCs overlapping in many ways could exist in the EBC set.
The function of the lockout monitor would be the following:
Process A with EBC C, requests access to record x;

The Computer Journal

20 Iudy 61 U0 1s9n6 AQ BEILLE// L/1/6L/01IE/UIWOD/WOD dNO"dIWspEo.)/:SA]Y WO} POPEOJUMOQ

lockout monitor action: 1. x € S(C,)?
2. x ¢ S(Cp)?, forallEBCs Cp, P # A.

Unfortunately it seems that the implementation of the assumed
mechanism would result in an exorbitant overhead. We have
to develop less powerful but reasonably implementable
solutions:

Solution 1:
For each record type all EBCs must have the same owner
process.

Solution 2:
An EBC is established only if it does not introduce the possi-
bility of overlap. Principally, two EBCs U and V for record type
r do not overlap, if U(r')A V(r’) = false for all possible
instances r’ of r. If this cannot be shown, the establishment of
the EBC must be deferred, i.e. the process must be blocked.
Since the EBCs cannot overlap the function of the lockout
monitor is simplified :

Process 4 with EBC C, requests access to record x;
lockout monitor action: x € S(C,)?

On the other hand the function of the EBC set monitor becomes
more complicated ; on every lock(N|C) it has to test for possible
overlap, and if there is the possibility of overlap, it has to
block the process and to initiate deadlock analysis.

5. Lock by value and identity lock
Processes often cannot a-priori specify their ‘critical sets’ by an
EBC, or, if they did, the locked set would be unnecessarily
large. These processes must be allowed to apply identity lock.
Conceptually this situation need not be treated separately,
because at least after a record is found an appropriate EBC
can be formulated. Yet, for efficiency reasons it is preferable to
treat identity lock separately in a conventional way (Bernstein
and Shoshani, 1969; King and Collmeyer, 1973; Schlageter,
1975), though, of course, also under the control of the locking
system. The lockout monitor now has the following functions:

1. Process requesting identity lock for record x;
lockout monitor action:
1. x not in allocation table?
2. x ¢ S(C)? for all EBCs C of the specified record type.
2. Process A, with EBC C,, requesting access to record x;
lockout monitor action: x € S(C,)?

Under this scheme we again have possible initial overlap: on
establishing an EBC we do not know whether records of the
specified type are already locked by identity lock. This can be
solved simply by a counter for each record type mdlcatmg the
number of records locked by identity lock.

In this model blocking of processes can occur for the followmg
reasons:

(a) a process wants an EBC to be established, but the EBC
monitor refuses for overlapping reasons,

(b) a process wants to lock a record by identity lock which either
is already locked by another process or satisfies another
process’s EBC.

In all these cases the process (or processes) responsible for the
blocking is known, and an arc can be created in the process
graph which is maintained for deadlock detection. The prob-
lem of deadlock does not reveal really new aspects in this
model.

6. An example: Lock by value and classifications

Objects of the same type are often classified according to some
characteristics, and a name is associated to each class. In
various systems a class can be regarded as the lock-unit of the
next level below the file. Classifications are explicitly defined
in CODASYL DBTG (1971) by sets: the member records of a

Volume 19 Number 1

S [

JEN RN

Fig. 2 Example of a CODASYL set

set occurrence form a class which is named by the owner
record of the set occurrence. In the relational model classi- -
fications are not explicitly modelled.

In CODASYL-based systems a process may want to lock a
whole set occurrence without being forced to identify and lock
each member record. This could be done by lock by value.
We assume that record type A4, the department record, is the
owner of a set 4-B, and record B, the employee record, is the
member of this set, as shown in Fig. 2.
The process executes

lock(A);
a:=A.D#,;
lock(N|B:D# = a);

Clearly, lock(4) is an identity lock referring to the current ﬁ
A, while lock(N|B: D# = a) establishes a condition in the
EBC set, such that each B-record which is a member of th%
locked department record is inaccessible for any other process
D4 need not be physically contained in the B-record, thougB
this is the most efficient solution; D4 might be defined as g
virtual item such that on every access to a B-record D # is takeg
from the corresponding owner record 4.

In an extension of the CODASYL proposal the above proble@
of locking a set occurrence could be formulated in the following
way (Schlageter, 1974):
declaration division of user program:

cr name is KB; contains current of A, members of 4 in set A-

eojumoQg

procedure division:

LLILIG L/ap!uenu[&bo/woo

N = lock(KB).

In the declaration division the type of a critical region KB 1s
defined. By 1ssu1ng N = lock(KB) an instance of the crltlc@
region type KB is created and named N; the current record of
type 4 and its members of type B in set A-B are locked. The
user need not have any knowledge about the size or oth&
details of the locked portion of the database.

In the relational model (Codd, 1970) classifications are con?r
sidered another attribute of the objects. In the relation

REL<{E#,...,D#)

the domain D3 identifies the dlﬁ'erent classes. Tuples with thg
same value for D4 are in the same class. In order to lock &
special class, lock by value would be appropriate. However, it
is an open question whether lock operators of the discussed
form are desirable features of end user languages, and to which
degree automatic lock can substitute them without losing too
much efficiency.

udy 61

7. Conclusion

Although the concept of lock by value is a valuable tool for
access synchronisation in databases it turns out to be rather
difficult to implement. A functional model for lock by value
was discussed, and it was shown that a reasonably efficient
implementation should be possible with a restricted concept.
Finally a locking system was outlined that includes conventional
locking features based on identity lock as well as capabilities
of lock by value. The problem of deadlock detection does not
become more difficult than in systems with identity lock.

References

BERNSTEIN, A. J., and SHOSHANI, A. (1969). Synchronization in a Parallel Accessed Data Base, CACM, Vol. 12, p. 604.

CODASYL (1971). Data Base Task Group Report, April.

Copp, E. F. (1970). A Relational Model of Data for Large Shared Data Banks, CACM, Vol. 13, p. 377.

Conway, R. W., MaxweLL, W. L., and MorGaN, H. L. (1972).
CACM, Vol. 15, p. 211.
HoARE, C. A. R. (1974).

On the Implementation of Security Measures in Information Systems,

Monitors: An Operating System Structuring Concept, CACM, Vol. 17, p. 549.

HOFFMANN, L. (1970). The Formulary Model for Access Control and Privacy in Computer Systems, SLAC Report No. 117, Stanford University,

May.

Information Management System/360 (IMS), Version 2, IBM-Form GH 20-0765-4 (System Description).
KING, P. F., and COLLMEYER, A. J. (1973). Database Sharing—an Efficient Mechanism for Supporting Concurrent Processes, AFIPS NCC

1973, p. 271.

SCHLAGETER, G. (1974). A Concept for Supporting Concurrent Processes in Database Systems (in German). Forschungsbericht 24 des
Instituts fiir Angewandte Informatik und Formale Beschreibungsverfahren, (H. A. Maurer, and W. Stucky, eds.), Universitdt Karlsruhe, Dec.

SCHLAGETER, G. (1975).
Information Systems. Vol. 1, p. 97.
TsicHrITZIS, D. (1973).

Access Synchronization and Deadlock-Analysis in Database Systems: An Implementation-Oriented Approach

Reliability, In: Advanced Course on Software Engineering (F. L. Bauer, ed.), Lecture Notes in Economics and

Mathematical Systems 81, Springer-Verlag, Berlin—Heidelberg—New York.

Book review

Data Structures by M. Elson, 1975; 307 pages. (Science Research
Associates Limited, Global Book Resources Limited £7-65)

This posthumous publication is a tutorial treatment of the material
commonly covered under this heading in computer science courses,
and which, as the discursive bibliography acknowledges, is covered
in a rather more formal manner in several other texts. It begins with
a preface to the instructor which, though explaining the reasoning
behind many of the techniques of presentation adopted, says little to
characterise the student at whom they are aimed beyond making the
assumption that ‘his computer science and mathematics backgrounds
may be less than ideal’. I would recommend this book to computer
science undergraduates, but it is too academic for those on non-
degree-level courses, and the pace is too slow for postgraduates.
The data structures and algorithms presented in the bulk of the text
are not in any of the standard languages but in an informal notation
having (for the initiated) strong similarities with certain features
(arguably some of the less attractive ones, too!) of PL/I and JOSS.
Later in the book, however, LISP and SNOBOL 4 are introduced,
but their use is confined to their respective chapters, 4 and 7, which
largely reproduce material from the author’s Concepts of Program-
ming Languages, (Chicago: Science Research Associates, 1973).
The LISP is LISP 1.5, mainly in the form of M-expressions; but
while CONS[CAR[x];CDR[x]] may be an improvement on the
S-expression (CONS(CAR X)(CDR X)) the McCarthy conditional
[p1 — e1; p2 — e2] is hardly an improvement on (COND(P1 E1)
(P2E2)). Personally I would have preferred respectively,
cons(head(x), tail(x)) and if p: then e; else if p2 then e2. The chapter
on SNOBOL 4 is both adequately comprehensive and admirably
concise, but compared with that on LISP, it sheds little light upon
the underlying data structures which are, after all, the main topic
of the book. This is of course one of the strong points of SNOBOL 4!
The text is liberally sprinkled with exercises, and answers to a

"olWBpeoR//:sdny WoJj papeojumoq

selected subset of these are appended. The index is adequate but the 2
table of contents would have been more useful had it included at 5
least the main subheadings, especially in view of the enigmatic titles S
of the first three chapters.

The order of presentation of the material follows the philosophy 3.
that ‘complexity is a function not of the number of parts, but of the =
number of moving parts’. Thus Chapter 1, Static structures, covers s
vectors, arrays (including cross-sections of arrays and triangular &
arrays), records (structures to the PL/I programmer) and arrays of g
records. Chapter 2, Semistatic structures, covers self-describing =
records (c.f. COBOL’s OCCURS DEPENDING), array variability 5‘
(truncating, extending, deleting and adding dimensions), stacks, 9
queues and (only in their non-restricted form) deques. Chapter 3, 5, 2
Dynamic structures, covers linked lists (including circularly linked &
lists and those with shared elements), general trees, binary trees, S
graphs (superficially), and plexes. Expression evaluation, decision €
trees and critical paths are used as applications.

Chapter 5, Storage management, treats an area which is sometimes g
taken for granted in a course of this sort. The analogy between the 2
worst-fit storage allocation strategy (which tends to make all free < >
blocks the same size) and a policy of taxing the rich until they become S
the poor is typical of the more endearing features of the authors’ ~
approach in the book as a whole. Chapter 6, Strings, contrasts the 3
vector approach with the list approach and suggests physwal
implementations which look particularly appropriate to an IBM-360-
type architecture. Chapter 8, Data sorting, includes the standard
techniques of binary search, selection sort, bubble sort, insertion
sort, tree sort, tournament sort, heap sort, quicksort, distribution
sort and sorting by merging. Finally Chapter 9, Data searching,
covers linear searching, searching sorted data, and (in considerable
detail) hash addressing techniques.

09/

1se

D. J. Carns (London)

The Computer Jourrial

