ALEC—A user extensible scientific programming

language
R. B. E. Napper and R. N. Fisher*

Department of Computer Science, University of Manchester, Manchester MI3 9PL

This paper describes the user-extensible high-level scientific programming language, ALEC, the
initial proposals for which were first given in 1967. The more interesting properties of the language,
in partlcular the extension mechanism, are illustrated in some detail. Extensibility is achieved by
using ‘formal’ and ‘informal’ macros. A macro definition causes an extension to the compiler itself
and thus macro calls are implemented in the same way as the base language instructions. This allevi-
ates the need to preprocess the source text, gives considerable flexibility and power to the language

and enables efficient object code to be produced.

(Received May 1974)

Initial proposals for the language, ALEC, were first given in
1967 by Napper (1967). The name has been altered to ALEC
(an acronym for A Language with an Extensible Compiler)
to avoid confusion with existing languages. The aim was to
apply the full power of the Compiler Compiler (Brooker, 1963),
to an ALGOL-like base language to provide an extensible
language system that was one-pass and produced efficient
object code. Extensions to the language were to be accom-
plished by the use of ‘formal’ and ‘informal’ macros. There was
to be no pre-processing of source text: a macro definition
would cause an extension to the ALEC compiler to be made
and a macro call would be implemented in the same way as any
other base language instruction.

The system was to be designed to facilitate language-format
extensibility, as opposed to the data-type extensibility which is,
for example, available in ALGOL 68, and it would enable
both new syntax and new semantics to be added to the base
language.

A suitable base language for ALEC has now been designed
and a prototype compiler for the system written. The system
has been implemented on an ICL 1906A computer and the
compiler written using a revised version of the Compiler
Compiler, Napper, 1973—henceforth known as RCC. This
paper gives an overall description of the facilities available in
the language system from the user’s point of view. Description
of the implementation is only given where necessary, for
example to help in the explanation of ‘informal’ macros.

Many of the features described by Napper (1967) have been
included in the current system. Those which have not can be
included without much alteration to the current
implementation.

The base language

The pre-design decisions which were taken on the base language

of ALEC were as follows:

1. It should be adapted from a well-known language (to make
it relatively easy to learn), except that

2. Procedure and macro formats were to be designed especially
for ALEC, since this was to be the area of exploration in
ALEC relative to conventional scientific languages

3.Only a small number of built-in data-types were to be
allowed. As explained in Napper (1967), this was to prevent
the number of new problems being tackled from growing
uncontrollably

4. The language should be a one-pass language, to simplify the
implementation of both conventional and unconventional
facilities.

Accordingly, a study was made of FORTRAN, ALGOL 60,
PL/I and ALGOL 68. FORTRAN was discarded as a posz
sibility because its basic statements were considered toé
restrictive. ALGOL 68 was rejected primarily because it loseg
the distinction between an assignment statement and aﬁ}
expression. It is therefore difficult to break down a source.
program into a set of short statements or clauses, and this wa§
considered essential to the implementation. =4
Of the remaining two possibilities, it was a subset of PL/S
which was eventually adapted as the base language. This
seemed to give the best compromise between high level
language and efficiency. Data types are restricted to REAE
and INTEGER. However, the logical operators are retamed;
defined as operating on bit strings the size of the hardwarg
representation of an INTEGER. 8
To illustrate the basic language and to compare it with PL/%
proper, consider the following simple bubble-sort program
written first in PL/I and then in ALEC. The program reads 1€&
integers into an array, sorts and then prints them in increasing
order.

PL/I version:

BUBBLESORT: PROCEDURE OPTIONS (MAIN);
- DECLARE(A(10),, K,DUMMY)FIXED BINARY;
GET LIST(A);

DOK =9BY —-1TO 1,

DOI=1TOK;

IF A(I) > A + 1)THEN

DO; DUMMY = A(); AD) = A +
DUMMY ; END;

END;

END;

PUT LIST (A);

END BUBBLESORT;

ALEC version:

BEGIN PROGRAM;

DECLARE (A4(10),,K,DUMM Y)INTEGER;

READARRAY 4;

DOK=9BY —-1TO 1;

DO//=1TOK;

IF A(I) > A(I + 1)THEN

DO; DUMMY = A(l); AQ) = AU + 1);
A(I + 1) = DUMMY; END;

END;

END;

WRITEARRAY 4;

END OF PROGRAM;

D; AQ + 1) =

202 Iudy 61 U0 }sanb Aq €891 /€/G2/L/61 /0108

*Department of Computational Science, University of St. Andrews, St. Andrews, Fife, Scotland.

Volume 19 Number 1

Note that delimiter words are underlined and spaces ignored in
ALEC. This is to minimise ambiguity problems which arise
when procedures and macros are considered. Any standard
convention could, in fact, be used to distinguish between
delimiter words and identifiers, e.g. writing delimiters in upper
case and identifiers in lower case. To be precise, there are no
delimiter words in ALEC, only delimiter letters, and these must
be distinguishable from identifier letters.

Program structure

A block consists of a BEGIN, followed (possibly) by a set of
declarations, followed by a set of imperatives, followed by the
matching END.

A procedure declaration is identical to a block except that the
BEGIN is replaced by a procedure heading.

The main-program consists of a block, but starting with
BEGIN PROGRAM and finishing with END OF PROGRAM.

Blocks and procedure declarations can be nested within each
other as for PL/I or ALGOL 60.

The rules of scope are those of ALGOL 60 with the important
restriction that the scope of a declaration starts at the point of
declaration and not at the start of the block or procedure it
applies to. This means in particular that mutually recursive
procedures cannot be declared directly. This restriction enables
the ALEC implementation to be one-pass.

Procedures
As with conventional languages, procedures are divided into
two categories, viz. routines and functions. A routine call forms
a separate imperative statement of the language; a function is
called as an operand in an expression.

However, ALEC procedure formats are unconventional in
that:

(@) the letters used in their names are delimiter letters, and not
ordinary letters

(b) parameters can be embedded in a procedure name. More-

over, their position in the name helps define it.
A routine name consists of a set of delimiter letters, commas
and parameter positions, starting with a delimiter letter. A
function name must also include a single pair of brackets which
surround all the parameters. This is to avoid syntactic ambiguity
between a function call and the rest of the expression in which
it is contained. A parameter specification consists of the
characteristics of the parameter followed by its name, all
enclosed in brackets.

Example 1:
ROUTINE ADD (REAL X) TO (REAL VARIABLE Y);
Y=Y+ X;
RETURN;
END;
with corresponding call, for example,
ADD IDEN ADDRESS & TOP BIT MASKTO C(J);

Example 2:
REAL FN SUM ((REAL X) AND (REAL Y));
RESULT = X + Y;
END;

with call, for example, C(J) = SUM(4 + 4*B AND C(V));

Example 3:
ROUTINE ADDT (REAL X) O (REAL VARIABLE Y);

END;
which declares a routine with a different name from Example 1
above.
When required, e.g. as actual parameters, procedure names are
specified with a dummy symbol (i.e. %) in each parameter

26

position, e.g. ADDY%TO% and SUM(,ANDY;) and
ADDT?,09%, respectively for the above three examples.

" Note that, because of this complication, the value of a function

is specified using the imperative
RESULT = (expression);

instead of using the more conventional method of assigning to
the function name. This imperativé both sets the output value
to the given {expression) and carries out a return.

Parameters
There are three characteristics which must be specified for each
scalar formal parameter.

1. Data type i.e. REAL or INTEGER

2. Method of implementation. The user can choose from three
classic methods:

(@) VALUE An extension of the call-by-value mechanism
of ALGOL 60.

(b) REF The call-by-reference = mechanism of
FORTRAN.

(c) SUBST The call-by-name or call-by-substitution
mechanism of ALGOL 60.

3. Input/output characteristic. The user can specify one of three
possibilities:

(a) EXPRESSION The formal parameter is input only3

Therefore the permltted syntax of theo

actual parameter is an {expression). £

=

(b) VARIABLE The formal parameter is both input andg,")
output. Therefore the permitted syntaxe
of the actual parameter is a (variable)._%

(c) OUTPUT The formal parameter is output onlyé
Hence, again, the permitted syntax ofg
the actual parameter is a (varrable)
This possibility is only relevant i
association with VALUE.

[The call-by-value mechanism for ALEC is an extension of that:
for ALGOL 60 in that, not only is the formal parameter—
initialised to the value of the actual parameter on dynamrq\o
entry to a procedure, but the actual parameter is also reset tog
the value of the formal parameter on dynamic exit. If theZ
parameter is ‘input only’, the second part of this is suppressed ;X
if ‘output only’ the first part is suppressed.]

This range of specifications is designed to give the user a-
choice between power and efficiency. The default I/O character<
istic is EXPRESSION; the default method of 1mplementatrong
is VALUE if the I/O characteristic is EXPRESSION or;
OUTPUT, REF if VARIABLE.

Array formal parameters have characteristic REAL ARRAY>
or INTEGER ARRAY with the choice of implementation=.
VALUE or NAME—these being the same as in ALGOL 60. 8

Finally, procedures can be passed as parameters, again with®
the same effect as for ALGOL 60.

0l} popeOjUMOQg

o/W

/|UfLLE)

AT €89

The extension mechanism
The language extension mechanism of ALEC is implemented
using formal and informal macro definitions. These occur
before the main program, i.e. before BEGIN PROGRAM and
are considered global to it. Procedure declarations and blocks
(but not other macro definitions) may be nested within macro
definitions, just as in the main program. Thus a program with
N macro definitions consists of N + 1 ordered, but otherwise
independent, units, i.e. the N definitions followed by the main
program. Once a macro has been defined, a call on it can
occur in any following macro definition, or in the main
program.

Macro definitions are logically an extension of the ALEC
compiler as implemented using RCC. Therefore they are

The Computer Journal

processed by the RCC implementation. When BEGIN
PROGRAM is reached, control passes to the ALEC imple-
mentation, unwanted sections of RCC are discarded, and the
source program is compiled by the ALEC program as for a
conventional compiler, but in one pass.

The ALEC compiler works by recognising the source program
in units of an {alec piece), or [ALEC PIECE] to use the RCC
convention of referring to a syntactic element. An [ALEC
PIECE] is in general a particular imperative statement, if
clause, for clause or declaration. To each [ALEC PIECE]
alternative, e.g. [VARIABLE] = [EXPRESSION] or IF
[EXPRESSION]THEN, corresponds an RCC routine of the
ALEC implementation to process it.

Compound statements, blocks and procedure declarations are
not recognised as single pieces. Instead, the heading and END
are recognised as separate pieces and they are matched in the
corresponding RCC processing routines.

When a user gives a macro definition, he is effectively adding
another alternative to the permitted basic syntax of ALEC, and
defining its semantics in the RCC routine. This he does in the
same way as the ALEC implementer wrote the ALEC compiler.
Thus, in effect, the user is permitted to extend the language and
its implementation indefinitely.

However, to use the full power of the mechanism the user must
also know RCC and the detail of the ALEC implementation.
Moreover, his syntax and corresponding RCC routine must be
consistent with the ALEC implementation.

There is a hierarchy of possible ways of extending ALEC in
this manner, ranging from the above situation down te
relatively trivial extensions requiring minimal knowledge.

The minimum situation has been formalised so that the user
need know no RCC or ALEC implementation, but learns a
little extra ALEC. These are called ‘formal’ macros; the other
forms are called ‘informal’ macros.

For technical reasons, the class [ALEC PIECE] contains the
alternative [OPEN ALEC PIECE]. 1t is to this class of extra
pieces that the user can add, thus allowing the pieces of basic
ALEC in a source program to be interspersed with pieces of
non-basic syntax. There is a further expansion point in the
syntax of an ALEC [EXPRESSION]. An alternative syntax for
[OPERAND] is an [OPEN FUNCTION ALEC PIECE].
Here the user can insert syntactic forms of his own choosing,
thus creating function macros. However, there are more
restrictions on his syntax and semantics in this case, since these
macros are embedded in expressions.

Formal macros

Syntactically, a formal macro definition is identical to a
procedure declaration, except that the word OPEN appears at
the beginning of the heading.

The effect of a macro definition is that whenever there is a call
on the macro, the instructions in the body of the macro are
compiled in-line. The effect on the run time program is the
same as if the corresponding procedure had been used, but
there is now no subroutine entry and exit sequence.

Note that the sequences to carry out actual-formal corres-
pondence are still compiled, e.g. consider:

OPEN ROUTINE NEXT
(INTEGER VARIABLE VALUE V);

V=V+1;

END;

Given a call NEXT J, the effect is the same as if the programmer
had written:

BEGIN; DECLARE V INTEGER;
V=J;,V=V+1;J=V
END;

To exploit the full power of macros, further facilities are

Volume 19 Number1

provided for procedure headings in the case of formal macros.
The most important are as follows:

1. A further alternative implementation characteristic for
formal parameters is provided, viz TR SUBST. ‘True
substitution’ means that for every appearance of the formal
parameter, the actual parameter is physically substituted in
the body of the macro.

Thus given:

OPEN ROUTINE NEXT

(INTEGER VARIABLE TRSUBST V);
V=V+1;
END;

for call NEXT J, the effect is as if the programmer had
written

BEGIN; J =J + 1; END;

This, therefore, eliminates the instructions associating actual
and formal parameters. Note that, in ALEC, block entry and
exit instructions are only compiled if necessary, i.e. only if
the block contains any dynamic array declarations. =

2. The type characteristic can be omitted, so that a macro 15
defined for either type of parameter. Thus NEXT can b@;
defined for both REAL and INTEGER variables, i.e.

OPEN ROUTINE NEXT (VARIABLE TRSUBST V);
V=V+1;
END;

3. A declaration is provided to declare the type of a scalar o?%
array to be the same as that of an already-declared scalar og-
array. Usually the latter is a formal parameter without eB_
given type characteristic, e.g.

OPEN ROUTINE INTERCHANGE
(VARIABLE TRSUBST V1)

AND (VARIABLE TRSUBST 7V2);
DECLARE DUMMY TYPE AS FOR V1;
DUMMY = V1; V1 =V2; V2= DUMMY;
END;

Thus for REAL array 4, and call
INTERCHANGE A(J) AND A(J + 1);
the effective sequence is:

BEGIN; DECLARE DUMMY REAL;

DUMMY = A(J); AJ) = A(J + 1);
AWJ + 1) = DUMMY;

END;

Thus the interchange operation is effectively defined for alp

four combinations of type. Note again that there are nag

hidden instructions compiled as a result of the macro call.
Formal macros are partlcularly useful in encouraging the user—
to define commonly occurring statements or short sequenceﬁ
in a more descriptive manner without losing any efficiency in~
the execution of his program. However, when the set of instruc-
tions in the macro body gets large, the gain in efficiency may
become small in proportion to the time taken to obey the
macro body. It may then be better to cut down the size of the
object code by using a conventional procedure.

Functions can be declared as formal macros. This has the
same implications as for a routine macro, except that the code
for the set of instructions yielding the value is embedded in the
evaluation of the expression.

//:sdny wolj pa

1sonb Aq €891 £€/G2/1/61/9101Me/|ulWod/wod dno"of

Informal macros

It will have been noted that the form of language extension of
formal macros is limited. The syntax of the extension is limited
to that of the closed procedure call, and the semantics are
limited to the set of the existing instructions of ALEC. Note,
however, that they can include informal or formal macro calls.

27

Informal macros allow complete freedom in the syntax of
extensions, subject to following conventions that are advisable
to minimise ambiguity problems, e.g. using delimiter letters not
identifier letters as fixed letters in a format. They also allow
full freedom in semantics subject to being compatible with the
existing ALEC system.

The extensions are made in RCC. But because RCC is itself a
high-level and extensible systems programming language, a

“package’ of RCC instructions defined specially for ALEC by
the implementer can be used to allow programmers to exploit
the system with minimum working knowledge of RCC.

The following examples illustrate the use of informal macros
with gradually increasing power.

Example 1:

ROUTINE
[OPEN ALEC PIECE]: NEXT [VARIABLE a);
BEGIN MACRO BLOCK
CALL VARIABLE V = [VARIABLE da] BY
TR SUBST
COMPILE: V =V + 1;
END MACRO BLOCK

‘This first example shows the basic construction of many
informal macros. It is, in fact, the informal macro version of

NEXT(VARIABLE TR SUBST V) ,

and has exactly the same effect. '

The first line is the RCC routine heading, which automatically
adds another alternative syntactic form to the subclass [OPEN
ALEC PIECE] of [ALEC PIECE]. The syntactic form is
NEXT[VARIABLE]. From now on, any string satisfying it can
be included as a piece of ALEC source program and, when the
string is to be compiled, control will be passed to this routine.

In RCC terminology [VARIABLE a] is a formal parameter of
type ‘phrase variable’. Its value can only be a symbol string
satisfying the syntactic class [VARIABLE]. On entry to the
routine it will be set to the corresponding string in the actual
macro call, e.g. ‘J’ for NEXT J, or ‘A(J) for NEXT A(J). Its
effect is that this string is substituted wherever a reference occurs
in the body of the routine, i.e. in line 3.

The body of the RCC routine starts with a call on the system
routine, BEGIN MACRO BLOCK, which, together with END
MACRO BLOCK, organises the block surrounding the in-line
code of the macro.

Then follows an instruction of the form
CALL[TYPE?[I0 CHARACTERISTIC][NAME] =
[ACTUAL PARAMETER]BY[IMPLEMENTATION
CHARACTERISTIC],

in general one for each ALEC formal parameter. This system
routine carries out the association of the actual parameter, e.g.
‘J’ or ‘A(J)’, with the formal parameter name used in the body
of the in-line code, ie ‘¥’ For a TR SUBST parameter
characteristic, the routine performs the operation of ‘declaring’
the formal parameter and associating with it the symbol string
which constitutes the actual parameter For a conventional
characteristic, € g REF, it combines the two operations for a
conventional routine of compiling code to set the value of the
formal parameter from the actual parameter when compiling
a cue, and declaring the formal parameter when compiling the
routine heading.

This is followed by an instruction of the form COMPILE:
[ALEC PIECE] or, in general a set of such instructions, one
for each [ALEC PIECE] in the body of the macro. The effect
of this is to call the corresponding [ALEC PIECE] compiling
routine.

Finally END MACRO BLOCK is called.

In fact, formal macros are implemented by doing an auto-
matic transformation from ALEC form to the corresponding

informal macro form in true RCC as indicated above. The
parameters are dealt with by replacing them in the heading by

the implied RCC syntactic element [VARIABLE] or

[EXPRESSION], and putting in the corresponding CALL
statements after BEGIN MACRO BLOCK.

Note that it is not always suitable to use true substitution for
macros. If the formal parameter occurs a number of times in
the macro body, and the actual parameter is, say, an array
reference or a complicated expression, it may be expensive in
instructions compiled or execution time to re-evaluate it on
each occurrence. In this case, one of the other methods of
implementation should be used. It is even possible to allow the
ALEC compiler to choose between TR SUBST and another
method by programming an RCC sequence to inspect the
actual parameter, e.g. implementing by TR SUBST only if it is
a scalar.

Note that the RCC heading allows any symbols as the
delimiter symbols. Thus if the user wanted to use J + 1 instead
of NEXT J as an imperative, he could instead use the routine
heading:

ROUTINE
[OPEN ALEC PIECE]:[VARIABLE a] + 1;

He would, however, have to keep a wary eye on amblgulty
problems!

Gny wouy papeojumoq

Example 2:
A further level of complexity in informal macro definitionsc
is to introduce more complicated syntactic forms using the\
RCC facilities for the automatic definition, recognition andO
processing of symbol strings. m
For example, consider a call REVERSE ELEMENTS OF Ao
FROM START TO (N + 1)/2. This reverses the order of the2
elements of an array, e.g. 4, between given limits, e.g. START:
and (N + 1)/2. It may, however be considered convenient to3
have a special form for FROM 1, e.g. leaving it out or replacingg
it by UP, e.g. REVERSE ELEMENTS OF B UPTO N.
The extra syntax required is defined and a prelude to thes
standard macro body is written to transform the non—standard;
syntax into conventional parameters e.g. [START] into am
[EXPRESSION].

e.g. CLASS
[START] = UP, FROM [EXPRESSION]
ROUTINE
[OPEN ALEC PIECE]: REVERSE ELEMENTS OF

[IDENTIFIER a][STARTs]TO[EXPRESSION c];

IF [STARTs] = UP : SET [EXPRESSION b] = 1:
OTHERWISE : RESOLVE [STARTs] INTO FROM
[EXPRESSION b]

BEGIN MACRO BLOCK

CALL ARRAY A = [IDENTIFIER a] BY TRSUBST

CALL EXPRESSION START = [EXPRESSION b] BY
TRSUBST :

CALL EXPRESSION FINISH = [EXPRESSION ¢] BY
VALUE

COMPILE : DECLARE J INTEGER;

COMPILE: DO J = START BY 1 WHILE
(J < FINISH — J + START);

COMPILE : INTERCHANGE A(J) AND
A(FINISH — J + START);

COMPILE : END;

END MACRO BLOCK

Note here the use of macro call INTERCHANGE, just as if it
was a routine call or built in to the language. This assumes that
its macro definition has occurred previously in the set of macro
definitions.

Only basic knowledge of the RCC language processing
machinery is required to gain considerable flexibility in instruc-
tion formats. For example, library routines with a large

ul

202 Iudy 61 uo 3sanb Aq €891 /€/52/1/6

The Computer Journal

number of parameters, many with clear default options, can be
defined so that default parameters can be left out, and those
retained clothed in self-descriptive language and maybe
allowed in any order.

Example 3:

An extension of 2 is to use the control statements of RCC to
operate on the COMPILE instruction to allow a variable
number of instructions to be compiled depending on the
.information given in the heading. This is particularly useful in
- allowing a library routine to ‘tune’ the code compiled depending
on what and how much information the user has given.

The simplest example of a variable number of instructions
being compiled is where there is a variable list of parameters.
For example consider the statement

SET ARRAY STARTING VALUE = 25, B — 3:142, 0,
(X + Y)/SQRT(X*Y));

This initialises the given array STARTING VALUE to the set
of glven values, e.g. four as shown, starting at index position 1.
CLASS

[EXPRESSION LIST] = LIST OF [EXPRESSION],
SEPARATED BY,
ROUTINE
[OPEN ALEC PIECE]: SET ARRAY [IDENTIFIER a] =
[EXPRESSION LIST b];
BEGIN MACRO BLOCK
CALL ARRAY A = [IDENTIFIER a] BY TRSUBST
index = 0
FOR EACH i ON LIST [EXPRESSION LIST b]:
{index = index + 1
VALUE OF [INTEGER p] = index
COMPILE : A([INTEGER p]) = [EXPRESSION b(i)];}
END MACRO BLOCK

On the above example, this would generate the in-line sequence:

BEGIN;

STARTING VALUE (1) = 25;

STARTING VALUE (2) = B — 3-142;

STARTING VALUE (3) = 0;

STARTING VALUE (4) = (X + Y)/SQRT (X*Y);
END;

Example 4.

A new level of complication is to provide facilities that cannot
be reproduced in terms of the existing language, in particular
with the user planting in-line machine code.

For example, the basic compiling routine of 1900 ALEC
compiles the result of an expression evaluation into accumulator
5. A routine available to the user is COMPILE CODE FOR
EXPRESSION[EXPRESSION] and conditional routines are
also available to check its operation and the resulting type.
It is also given that register 2 is the stack front register of 1900
ALEC and register 3 is available for temporary use.

Consider then a macro to set the contents of an absolute store
address to an integer value e.g. C(3000 + J) =P + M — 1;
where the value of the second expression, e.g. P + M — 1, is
placed in the location with address given by the first, e.g.
3000 + J.

ROUTINE
[OPEN ALEC PIECE]: C(LEXPRESSION v]) =
[EXPRESSION e];
BEGIN MACRO BLOCK
COMPILE CODE FOR EXPRESSION [EXPRESSION v]
IF ERROR IN EXPRESSION; OR IF EXPRESSION
REAL:
MAP: ERROR $ IN $ FIRST $ EXPRESSION; GO AND
terminate

Volume 19 Number 1

PLANT 010, 5,0, 2

PLANT 101,2,1,0

COMPILE CODE FOR EXPRESSION [EXPRESSION e]
IF ERROR IN EXPRESSION; OR IF EXPRESSION

REAL:

MAP: ERRORSINS$ SECONDS$EXPRESSION; GOAND
terminate

PLANT 103,2,1,0

PLANT 000, 3,0, 2

PLANT 010, 5,0, 3

terminate: END MACRO BLOCK.

This macro by-passes formal parameters and operates direct
on the two ALEC expressions.

Having called the system routines to compile and check the
first expression, it plants machine instructions to store its value
at the stack front and update the stack pointer. It then calls the
routines to compile and check the second expression. Finally
it plants machine instructions to decrement the stack pointer,
retrieve the destination address from the stack front, and store
the second value at the address given by the first. o

The MAP instruction is the standard monitoring routine tc&
identify the position in the source program and print thg
subsequent caption. 2

A similar matching macro can be defined to extract the valué
in an absolute store location. This is more conveniently expres=
sed as an integer function macro i.e. [OPEN FUNCT. 101@
ALEC PIECE]:C((EXPRESSION v]) with call, e.g-ﬁ\-
P = C(3000 + J) to recover the above value. o

Given these two macros, the user could operate on his owxg-
data organisation in a separate store area. He could deﬁné
further macros or procedures to set up a sublanguage operatmg
on it.

0o/woo'd

Scope and textual level
ALEC is a one-pass language and therefore all 1nformatloé
must be declared before it is used at any level. Calling the sources
program string which appears between the BEGIN PROGRAMS
and END OF PROGRAM statements the ‘static text’, itx
follows that the declaration of any information must physmall)c
appear in the static text before any reference to it. However,Lﬂ
this is not so for macros. The point is that a macro is not’
obeyed at compile time until a call for it is encountered either
in the static text or from within another macro which is currently>
being obeyed. Thus, non-local reference to information can bg
made within a macro definition so long as every call of thg
macro appears within the scope of that information.

In a conventional language such as ALGOL 60, the concept 08
textual level is a static one. It is possible to determme the level®
of a particular block or procedure declaration simply by looking
at its posmon in the source program. However, the macra,
facility in ALEC introduces a dynamic element into thlg
concept. To illustrate this, consider the program:

OPEN ROUTINE INCREMENT GLOBAL ARRAY BY
(TR SUBST 4);
DECLARE 7 INTEGER;
DOI=1TO 10; SJ) = S() + 4; END;
END;

OPEN ROUTINE ADD (TR SUBST B) AND RANDOM
NUMBER TO GLOBAL ARRAY;
DECLARE I INTEGER;
GENERATE NEXT RANDOM NUMBER J;
INCREMENT GLOBAL ARRAY BY B + I;
END;

BEGIN PROGRAM;
DECLARE (J, S(10))INTEGER;

INITIALISE S;

INiCREMENT GLOBAL ARRAY BY 3;
illi}GIN;
INCREMENT GLOBAL ARRAY BY 5;

ADD 7 AND RANDOM NUMBER TO GLOBAL
ARRAY;

END ;
END OF PROGRAM;

(N.B. The macro INITIALISE (ARRAY NAME 4) and
GENERATE NEXT RANDOM NUMBER (VARIABLE V)
are assumed to be predefined.)

The macro INCREMENT ... is called three times in the
program. Two calls occur directly at static levels 1 and 2 of the
main program; the third call occurs inside the call of ADD. . .,
which is at static level 2 of the main program. Thus it can be
seen that the three occurrences of the body of macro INCRE-
MENT occur at different textual levels, levels 2, 3 and 4
respectively relative to the main program.

In general, therefore, the textual level of a macro body will
vary from call to call of the macro, cf. the level of a conven-
tional procedure body, which is independent of the position
of any call of the procedure.

Entry to a block or procedure declaration at compile time in
ALEC is thus considered to be entry to a new ‘static’ textual
level (as with conventional languages), but entry to a macro is
considered to be entry to a new ‘dynamic’ textual level.

It is convenient, therefore, to think of textual level as a two-
dimensional concept: one dimension giving the number of
dynamic levels currently active back up to the level of static
text; the other giving the number of static levels currently
active within each dynamic level.

A dynamic level is the set of ALEC source instructions
effectively produced by a particular formal or informal macro.
If that set includes procedure declarations or blocks, then
further static levels are formed relative to the dynamic level of
the macro. If a macro contains another macro call, a new
dynamic level is formed relative to the dynamic and static
level at the point of the call.

For example, the textual level of the DO statement in the first
call on macro INCREMENT . .. is static level 1 in dynamic
level 2 (i.e. the level of INCREMENT . . .), which is in static
level 1 of dynamic level 1 (i.e. the main program). But the
textual level of DO inside the call of ADD . .. is static level 1
of dynamic level 3 (i.e. INCREMENT . . .), which is in static
level 1 of dynamic level 2 (i.e. ADD . . .), which is in static level
2 of dynamic level 1 (i.e. main program).

The above example also illustrates a problem arising from the
use of the TR SUBST mechanism, viz that of encountering the
same name from different levels in an expression. Consider the
macro call

ADD 7 AND RANDOM NUMBER TO GLOBAL ARRAY;

which is at static level 2 of the main program. The text at
dynamic level 2 after true substitution of 7 for B is effectively:

DECLARE / INTEGER;
GENERATE NEXT RANDOM NUMBER I;
INCREMENT GLOBAL ARRAY BY (/) + I;

Here, the first 7 in (I) + I derives from the actual-formal
association of B with I. Therefore the expression (I) + I refers
to I from DECLARE (7, S(10)) INTEGER; and DECLARE /
INTEGER; respectively. The problem becomes one level worse

30

when the call of macro INCREMENT . . . is considered. In the
body of this macro is the imperative

S = S + 4;

but 4 is a TR SUBST formal parameter whose corresponding
actual parameter is ‘B + I’ which, as stated above, is effectively
‘(I + I'. Hence the imperative becomes

S =80 + (D + D;

after substitution, where the three I’s in the right-hand-side
expression refer to three different scalars.

In general, when processing a macro body at dynamic
textual level ‘n’, any name occurring within it may refer to one
of at most ‘n’ different scalars, i.e. one per dynamic level.

Note that S, which is not declared in INCREMENT .. .,
ADD .. ., or static level 2 in the main program, refers direct to
DECLARE (Z, S(10)) INTEGER; in static level 1 of the main
program.

It was the sorting out of these problems of scope that was the
major addition to the otherwise conventional implementation
of the basic language. g

It is also the feature of ALEC that would seem to present thcE
blggest problem in implementing macros by pre-processmgm
usmg a macro-generator (see Napper, 1967). The solutlong
using RCC, as well as being highly efficient, is relatively=

straightforward. 3
=

. =
Conclusions 2
It can be seen that formal macros enable extensions to theg

language to be made conveniently, since they themselves are(D
written in ALEC. However, as has been illustrated in theZ.
preceding examples, it is with informal macros where the power'g
and flexibility of the language lies. The examples given have all®
been simple. The possible variety and sophistication of theirS
use is considerable and much work remains to be done tog
explore their potential.

The extension facilities slow down the operation of the com-=
piler, but not dramatically. Of course, they tend to improve=
run time efficiency as the associated code is in general in-line.2

A one-pass implementation of ALEC seems to be the only<
practical possibility. Macro definitions must be implementeds
one-pass to be consistent with RCC machinery. Furthermore,g
the problems of scope which arise with, say, TRSUBST—~
parameters would seem to become much more difficult tOw
overcome with a two (or more)-pass implementation, compared<
with the present relatively straightforward solution (glvenc
standard RCC machinery).

The ALEC system as described in this paper is, in effect, only:
a prototype. Enhancements which would appear in a subsequents
version may for example, include: %>

(a) some of the other facilities mentioned by Napper (1967),,\)
e.g. the DUAL procedure declaration and the open-
option facility for formal parameters

(b) allowing macro definitions in the block structure of an
ALEC program, thus allowing the scope rules to apply to
the names of macros as well as procedures.

ulwo

The machine code for the prototype ALEC compiler occupies
approximately 25K of 24-bit store. However, when compiling
macros, the compiler requires the full RCC system seated
behind it. This brings its size up to 65K, with a further minimum
of 10K approximately required for working store. When the
compiler starts to process an ALEC source program, most of
RCC can be discarded, and then the system requires a minimum
of about 45K to run in. The store required for macros must be
added to the figures above. For technical reasons, this can be
quite expensive if they contain many statements.

Compared with writing a compiler with a similar specification,
but without macros, there is little extra code in the imple-

The Computer Journal

mentation, say, 20 per cent. Nearly all of this is taken up by the
secondary routines available for use in macros, e.g. BEGIN
MACRO BLOCK, END MACRO BLOCK, etc., the rest being
used in implementing TR SUBST parameters and sorting out
the associated problems of scope. The problem of the indefinite
extension of syntax is handled automatically by RCC. Again,
the hierarchy of use of routines of the ALEC implementation in
informal macros is facilitated by the fact that the implemen-

References
NAPPER, R. B. E. (1967).
p. 231.

tation is written in a high-level (but efficient) language, which
itself has macros and free format of routines.

Acknowledgements

The authors would like to thank the staff at the Atlas Computer
Laboratory at Chilton for the facilities which were made
available and also the Science Research Council for supporting
the work.

Some Proposals for SNAP, A Language with Formal Macro Facilities, The Computer Journal, Vol. 10, No. 3,

NAPPER, R. B. E. (1973). RCC reference manual, Department of Computer Science, University of Manchester.

BROOKER, R. A. et al. (1963).
Press.

The Compiler Compiler, Annual Review in Automatic Programming, Vol. 3, (ed. Goodman) Oxford: Pergamon

Volume 19 Number 1

20z udy 61 U0 1sanB Aq €891 /€/G2/1/61/101UE/UlWOD/W0D dNO"dIWspeoe)/:SA]Y WOI) PAPEOUMOQ

31

