Optimisation of main memory size versus speed

R. L. Hittos* and D. S. Hendersont

This paper describes the application of formulae, derived from a queuing theory analysis of machine
maintenance theory, to a multiprogramming computer system. Simple formulae are developed
which can be used as a first approximation to optimise the size and speed of main core storage
for a given job load. Some examples of the use of the formulae are given.

(Received December 1973)

1. Introduction

For many of the currently available computer mainframes core
storage is available with a range of cycle speeds and the user
has to decide which range of size and speed best suits his
requirements. The user with a limited budget who requires an
increase in throughput will have to decide whether to increase
the size of his main memory and reduce the speed, or vice
versa. This decision has normally to be taken either by intel-
ligent guess-work or use of a simulation model.

In this paper we will develop a simple analytical approach to
the relationship between throughput and the size and speed of
core storage. The formula will be tested by use of the simulation
model. We will show that it is possible to maximize throughput
for a given job load and memory cost, by varying the size and
speed of main memory.

2. Application of renewal theory to a multiprogramming computer
system

Queueing theory has been used to analyse the repair and
maintenance of machinery (Morse, 1958). In particular we are
interested in formulae which have been developed to treat the
situation in which K machines are serviced by a single repair
crew. If it is assumed that the breakdown-time distribution,
or mean time between failure distribution and the mean time to
repair distribution are both exponential, formulae can be
derived giving the number of machines out of commission, the
utilisation of the repair crew, etc.

We now consider the above situation to be analogous to that
of a multiprogramming computer system in which a single
CPU serves a number of program tasks with exponentially
distributed service time. The time for which the machines are
operating we consider analogous to the time in which the
task’s input/output requests are being serviced, and the repair
time is of course analogous to the time for which the task
uses the CPU. To obtain tractable formulae we assume that
this time is also exponentially distributed.

Consider K program tasks in core, with mean I/O time T, and
mean CPU time T,. Applying the machine repair formulac we
have: The mean fraction of the time the CPU is busy is given by:

1 —Po=1— (x¥e *K! Ex(x)) 6))
where
x = T,/T;
and
K
e"Exg(x) = E O(X”/n) 2

Po is the probability that no tasks are in the CPU queue,
therefore 1 — Po is the CPU utilisation.

We assume further that system throughput is proportional to
CPU utilisation and proportional to main memory speed,

which is inversely proportional to T, the mean CPU service.

time.

We justify the above assumption by noting that the number of
memory references made by any program is constant, and if’
CPU utilisation increases, the total number of memory refer-
ences made by the CPU per interval of time, and therefore the
progress rate of tasks through the system, will increase. We
therefore say that

Throughput = K,(1 — Po)/(T/T,)
where K, is constant of proportionality.

We assume that T, the average I/O time, is dependent only
on the speed of the I/O devices and not upon main memory
speed, and that it will therefore remain constant.

)

3. Relationship between memory cost and memory size and speed
We assume that, for a given memory speed, price is proportional
to the size of the core storage. For a given job mix, if the average
task size is m, the average memory size required will be K.m,
if K is the average number of tasks which will multiprogram.
The price will therefore be proportional to K.

To illustrate the relationships graphically it is necessary to
assume some relationship between memory cost and memory
speeds.

Grosch’s law states that computing power is proportional to
the square of the price. We can make the assumption that
computing power is proportional to memory speed, which will
be true providing that only a small proportion of the computing
is performed in registers of which speed is independent of
main memory speed. Grosch’s law then implies that memory
speed is proportional to the square of the price.

Alternately, we can simply assume that memory speed is
proportional to price.

We can then obtain some relationship between memory cost G
and memory speed of the form:

G = k.K[(T,T,)" @
where n = 1 for the Grosch’s law case, n = 1 for the linear
case. k,, is some constant of proportionality.

4. Relationship between memory cost and throughput

As we can easily see from Equation 4, for a fixed memory cost
we have a discrete range of memory speeds and memory sizes,
corresponding to the average no. of tasks in core, K, having
values 1, 2, 3, 4, etc.

Using Equations 3 and 4 we can calculate the value of the
system throughput for each combination of K and T,/T, which
keep the memory cost constant. Fig. 1 shows graphs of through-
put versus T,/T, for different prices, and different values of n.

As we are only interested in the shape of the graphs, we plot
only the ‘throughput factor’, (1 — Po)/(T,/T,) against T,/T,,
keeping the ‘price factor’ K/(T,/T,)" constant.

*Control Data South Africa, P.O. Box 78105, Sandton 2146, South Africa.
tDepartment of Applied Mathematics, University of the Witwatersrand, Johannesburg, South Africa.

40

The Computer Journal

¢/0v/L/6 L/6|O!J,J€/|U[LUOO/LUOO'an'O!LUSpEOB//ISduLI woJ} pspeojumoq

~
N
~

20z Iudy 61 uo 1s9nb Aq 9g

Throughput
(1-P)x

rice factor K ['I‘A/‘K‘S =16

6 8 10 12 14 16 -1/t
*= TWTs

Fig. 1(a) Throughput vs. T4/Ts for constant memory cost and
quadratic price-memory speed relationship. (Price a.7s/T4.)

(I-Po)x

2 4 6 8 10 x =T,/ Tg

Fig. 1(b) Linear price-speed relationship K(74/Ts) =

From the figure we see that correct choice of memory speed
and size can maximise the throughput of a computer system
while the cost is kept constant.

The relationship was checked experimentally using a simu-
lation model of a multiprogramming operating system and a
job mix of which all tasks had the same size. The price factor
for the experiment was taken as 4, with n = 4. The experiments
confirm the existence of a maximum value for throughput, and
agree reasonably well with the theoretical results. (Fig. 1(a)).

5. Conclusions
In deriving the above formulae certain assumptions were made
which limit the validity of the formulae. In deriving formula (1)
it was assumed that the CPU services times, T, and the arrival
rate at the CPU queue were both exponentially distributed.
This assumption can safely be made only if a sufficiently large
number of programs share the CPU, and provided that no
significant queueing occurs for the I/O channels. As soon as
I/O queuing becomes significant the problem has to be
approached by analysis of the channel and I/O device queues.
Another simplification caused by our use of machine main-
tenance theory is the assumption that the number of tasks
which multiprogram remain constant. This implies a fixed
number of partitions. Where a varying number of tasks are

allowed to multiprogram, the average number of tasks can be

used as a first approximation. It would be possible to extend
the theory to cover the deviation of k from the mean; however
it is doubtful whether the possible improvement in the formula
is justifiable in view of the previous simplifications.

The formulae in this paper are therefore presented to be used

Volume 19 Number1

as a first approximation for an answer to a problem which is
usually tackled by intuition alone. A few examples will illustrate
the way in which the formulae can be used.

6. Examples

Example 1

At one time the costs of an IBM 360/50 with (a) 256K and
2u seconds storage and (b) 1024K and 8p seconds storage were
almost identical. The operating system was planned to occupy
64K of storage and a typical job occupied a partition of 192K.
It’s ratio T,/T, of I/O to CPU time was four in the fast storage
and thus one in the slow storage. The comparative situation
may be summarised as:

No. of CPU
Case T,/T, partitions utilisation =~ Throughput
a 4 1 02 0-8
b 1 5 0-997 0997

For these operating parameters the choice of case (b) in
preference to (@) results in an almost 25 per cent increase m
throughput. E

At the University of the Witwatersrand, choice (b) wgs
initially installed, the decision being largely intuitive, since tl&
characteristics of the future job-stream were only known in
broad outline. Subsequently, by fortuitous financial and histori-
cal circumstances choices (a) and (b) were installed side by side
in the same machine room. In spite of the gross simplificatich
of the description of the job-stream characteristics, the relati@
throughputs of the two machines in a typical university envirof-
ment were found to bear substantially the above relationship %)
each other.

Example 2

(@ In a certain installation the cost of the hardware (pet-
pherals CPU and storage required by the operating syste@
is normalised to one unit. On this scale the cost per us@r
storage partltlon is 0-125. For the anticipated job- streaﬁa
the ratio T,/T, is estimated at 4. How many user storag
partltlons should be provided (constant job size) to maxg
mise the throughput: cost ratio ?

LUO:)'an

g

c=1+K/8;x=4 2

No. of Throughput §
partitions K Cost C (1 — Po)x Throughput/cost
1 1-125 0-8 0-72 =
2 1-250 1-54 1-23 8
3 1-375 22 1-60 S
4 1-500 276 1-84 >
5 1-625 32 1-97 z
6 1-750 3-55 2:02 =
7 2-:000 375 1-86. S
—_—

six storage partitions is therefore the optimum number.

(b) The exercise of 2(a) is repeated with storage four times
slower and with a unit cost of 0-06. As one would intuitively
expect the optimum number of partitions is lower.

No. of

partitions Cost Throughput Throughput/cost
1 1-06 05 0-47

2 112 0-8 072

3 1-18 094 0-80

4 1-24 098 0-79

5 1-30 099 0-76

Example 3

The machine of example 2(a) with one user partition of real

1

storage is run under a virtual storage operating system. As the
number of virtual partitions goes up the amount of real time
wasted through paging has been observed as reported below.
The effect of this wasted time is discounted by regarding the
machine as having all real storage with a slower access time and
consequent reduction of the ratio x = T,/T;. For a constant
unit cost of 1:125 the situation is summarised below.

Wasted
paging Throughput/
K x fraction 1 — Po Throughput cost
1 4 0 02 08 0-72
2 3 025 0-47 1-41 1-25
3 2 050 0-79 1-58 1-4
4 1 075 0-98 0-98 0-87

Three virtual partitions would appear to be the best operating
strategy.

The desirability of spending a further 0-125 cost units to
acquire a second real partition is to be investigated. It is

Reference
MOoRSE, P. M. (1958).

assumed, perhaps not entirely justifiably, that the same paging
characteristics will apply to the same over-commitment ratios.
The position may be summarised:

Wasted
paging Throughput/
K x fraction 1 — Po Throughput cost
2 4 0 0-38 1-54 1-23
4 3 025 0-79 2-37 1-93
6 2 050 0-99 1-98 1-58
8 1 075 1-0 1-0 0-8

The optimum operating point is four virtual partitions. It is
interesting to compare the four virtual partitions of this
example with the four real partitions of Example 2(a). The
throughput in the virtual case is almost 90 per cent of the four
real partitions, and the performance/cost ratio is some 3 per cent
better. (In practice this small improvement would be swallowed
up in increased systems overheads).

Queues, Inventories and Maintenance, John Wiley and Sons, pp. 167.

Book review

The Chebyshev Polynomials by Theodore J. Rivlin, 1974; 186
pages. (John Wiley, £8-60)

Chapter 1 (55 pages) of this book lists some elementary properties
of the Chebyshev polynomials, and then considers Lagrangian
interpolation with some relevant nodes, showing that no choice
gives convergence, as the degree of the approximating polynomial
increases, for every continuous function. Hermite interpolation
at the Chebyshev zeros does achieve this, and Lagrange-Chebyshev
interpolation at least converges in the mean for every continuous
function. Further topics include orthogonal polynomials, the
differential equations, recurrence relations and generating functions
for the Chebyshev polynomials, and numerical integration and the
Gauss-Chebyshev formula.

Chapter 2 (68 pages) discusses convex sets and the character-
isation of the best approximation in the uniform norm, a variant
in terms of extremal signatures, the Chebyshev condition for
best polynomial approximation, the Haar criteria and uniqueness,
and the minimax theory for an interval of the real axis. The second
-part of the chapter examines classes of linear functionals for which
Chebyshev polynomials are extremal elements particularly in the
space of polynomials, and discusses growth outside the interval,
a generalisation of the Lanczos 7 method for approximating e, and
methods for determining bounds for the derivatives of a polynomial.

Chapter 3 (36 pages) treats economisation, the evaluation of a

42

finite Chebyshev series, Chebyshev expansions, absolute and
uniform convergence of Chebyshev series, the relation between least
squares and uniform errors of truncated Chebyshev expansions,
bounds for the errors in terms of the coefficients and for the sizes
of the coefficients, their computation by various quadrature rules,
optimal properties of Chebyshev expansions, and the ellipse of
convergence of Chebyshev series.

Chapter 4 (7 pages) discusses briefly the identity Tm(Tn) =
Tw(Tw) = Tmn, the properties of permuting and commuting poly-
nomials and the ergodic and mixing properties of the mapping
T»"1, the sequence of mappings 7171, T27L, . . ., T»~%, and the
iterates 7» %, the k-fold composition of 751

This book is everywhere dense with mathematical information,
analysis and over 200 relevant exercises. It aims to give the mathe-
matical student a taste of the excitement stimulated by the Cheby-
shev polynomial in various areas of analysis, and to serve as leisure
reading for a broader mathematical community. In both these
respects it will clearly succeed. There is, however, little here for the
practical man, scientist or applied numerical analyst, and one
would perhaps have liked something on the ‘applications of Cheby-
shev polynomials in kinematics’, one of the topics (with number-
theoretic aspects) excluded deliberately ‘through ignorance’.
There is certainly nothing ignorant about what has been included!

L. Fox (Oxford)

The Computer Journai

20z udy 61 U0 1s9n6 Aq 98/ 1 L€/0%/1/6 L /2101UE/UlWOD/W0d dNo"dlWspeoe)/:SA]Y WoJj paPEojUMOQ

