Expanding the solutions of implicit sets of ordinary
differential equations in power series

A. C. Norman

IBM T. J. Watson Research Center, Yorktown Heights, New York 10598, USA*

Given a general analytic set of implicit ordinary differential equations the method described here will
find an algorithm for expanding solutions to the equations in power series. The method is entirely
mechanical, and does not have to rely on its user for prompting about the order, degree or form of the
equations. In simple cases, such as sets of equations that can trivially be reduced to explicit form, the
algorithm generated will be that of the Taylor Series method of Barton, Willers and Zahar (1972a, b)
and so it can generally be expected to form the basis for effective and efficient numerical procedures.

(Received July 1974)

1. Introduction

The Taylor Series method for solving ordinary differential
equations (Barton, Willers and Zahar, 1972a; Norman, 1973)
has proved to be reliable and efficient (Barton et al., 1972b).
It has also been found to be a convenient starting point for a
number of advanced numerical procedures (Norman, 1972;
Willers, 1974; Norman, 1974). As described in the above
references it is only applicable to explicit sets of equations—
this limitation being intrinsic to the algorithms described.
Van de Riet (1968) has shown how certain low order implicit
equations can be treated by a Taylor Series approach, but
demonstrates that his programs fail if used blindly on general
implicit sets of equations. The algorithms described here
redevelop this previous work from the standpoint of regular
perturbation theory, and in so doing show how general
implicit equations must be handled.

2. Preliminaries

The context in which the present algorithms are expected to be
used is similar to that present in the system TAYLOR (Norman,
1973). A set of differential equations is read in by a special
program which processes them and writes out special purpose
code that can later be run to solve the equations numerically.
Given any particular set of equations the first thing such a
processor must do is to decide what the order of the system is
and which names represent parameters and which represent
dependent variables. Neither of these problems is as easy as
might at first be imagined. The most obvious way of computing
the order of a differential system is to identify the highest
derivative of each variable mentioned, and to say that d"y/dx"
contributes (r — 1) to the total degree. This approach is good
enough for explicit sets of equations provided that only
derivatives on the left hand sides of equations are examined.
For implicit equations it is possible to have things like:

y—y=0 M
Z4+y"=0

" which really have order two (only two initial conditions are
needed, one for y and one for z) despite the appearance of a
third derivative of y. Example (1) can be explained away by
claiming that it should have been solved as two separate sub-
problems, the first for y, the second (depending on the solution
to the first) for z. This does not, however, sidestep the problem.
If fand g are any non-degenerate functions of their arguments,

the equations
: S(,2)=0 @

g(y’ Z»yls Z') =0

may reasonably be considered. Here again the equations have
fewer degrees of freedom than would be suggested by a count of

derivatives. Since fand g are arbitrary, and there is some sort of
symmetry between y and z in (2), it will normally not be feasible
or reasonable to solve f(y, z) = 0 to express y as a function of
z or vice versa. A general solution to this problem of finding thgU
order of a differential system is contained in the algorithms
presented later in this paper. §

Identifying dependent variables and parameters is also nof
simple. If the equations g

x2+y2=r2 (
(x—12—y* =52

appear in the company of many further equations involvin§
x, y, r and s, it may well be that s was intended to be an auxis
liary function of x and y defined by

s = sqrt((x — 1) — y?)

Q
while r was supposed to be a constant defining a relationshié
between x and y. An equally valid interpretation of (3) would
make s a constant and r an auxiliary variable, and the twe-
equations making up (3) are sufficiently alike that they can not
be used as a guide to which interpretation was wanted. If
would appear that this problem can not be overcome by refer®
ence just to the equations—the specification of initial condition§2
and parameter values provided with the problem must be usedS

//ZSdl)huPUJOJ

dno-oiw

8L.LE

3. Perturbation theory
The expansions that will be generated for solutions to ODE’s
are going to be treated as perturbation expansions about th&
initial conditions, expressed in powers of the independeng
variable. A key result from perturbation theory that makes th&
present treatment practical is that (after a few initial difficulties¥
all the coefficients in the expansions can be found by solvingo
linear equations. This result is true even though the origina%
problem may have been highly non-linear. The result is easy tq;,
substantiate, but it should be stressed that the followingE
demonstration is not the mathematical expression of a com-
putationally feasible scheme. The computational method
proposed is derived and justified in later sections.

Suppose a set of equations is given, and that the dependent
variables have been identified and the order of the system has.
been computed. By the introduction of new variables and similar
formal manipulation the equations can be reduced to the
standard form

f(t,y,y) =0 4

where ¢ is the independent variable, y a vector of dependent
variables and y’ represents dy/dt. The order of the differential
system will be the length of the vector y. The algorithms for
reducing general sets of equations to this form and the various
short cuts that will have to be taken in a practical system are

*Present address: University of Cambridge Computer Laboratory, Corn Exchange St., Cambridge.

Volume 19 Number 1

described later. Now the solution y of equation (4) is expressed
as a power series:

< i
y= X Yyt
i=o

where the coefficients y; are the reduced derivatives of y
evaluated at # = 0. y, is just the vector of initial conditions that
equation (4) needs, and y, can be found by solving the equation

f(O, Yo, yl) =0

This equation will normally be non-linear and so solving it
may well be difficult: the present analysis provides no assistance
at this stage in the processing. Further y;’s are found by
differentiating equation (4) with respect to ¢, and then setting ¢
to zero: thus to obtain y,, (4) is differentiated r — 1 times to
give
Jr-100 t ... + fo,0,1dy/dt" =0)
where f; ; , means
d itk f(1,y, p)
dt* dy’ dp*
with p standing for y’. The terms represented by the ellipsis
in (5) are all fixed functions of the initial conditions y, and y,
and the derivatives of y with order less than r. Setting = 0
in equation (5) and substituting for the derivatives of y in
terms of the known reduced derivatives y; leads to a linear
equation that can be solved for y,. The fact that f is a vector
valued function and that its derivatives are multi-dimensional
objects does not disturb the formal calculation being per-
formed. It should be noted that for all » > 1, y, satisfies an
equation of the form
’ Jo,0,1¥, =Y, (6)

where Y, is an expression known in terms of the y,, s < r, and
the matrix on the left hand side always precisely f, o, ,. If this
matrix is non-singular it is now clearly possible to compute as
many of the coefficients y, as are needed. If this matrix is
singular, the expansion process will break down in the attempt
to calculate y,, never at some later stage.

4. The practical method

The object of this section is to present efficient ways of comput-
ing the quantities Y, that appear on the right hand side of
equation (6). The term ‘efficient’ is taken to mean that the
method must not involve the calculation of the partial deriv-
atives that Y, was originally defined in terms of, either numeric-
ally or by algebraic differentiation. First observe that if f is
represented by a power series with coefficients f; and the power
series coefficients y; are known for i < r it is easy to compute
the f; for i < r. The algorithms involved have been discussed
by Gibbons (1960) and by Barton, Willers and Zahar (1971),
particularly with respect to the treatment of elementary func-
tions. The general idea involves mapping simple combinations
of terms into the corresponding combinations of their power
series coefficients. Thus

a=b+c—>a,=b,+ec
r

a=b*c—>sa, =Y bic,_,
i=0

are the transformations applicable to sums and products.
Rules of the same general style (but marginally more complex)
cope with quotients, exponentials, logarithms, sines, square
roots and all the other simple functions that may appear in a
set of equations.

The problem of interest is deciding what to do when y, is not
yet known, but is to be determined. Suppose that f,_, is cal-
culated in terms of a symbolic value of y,. The analysis of the
previous section shows that the result will be, as in equation
(5), linear in the unknown y,. The quantity Y, is now obtained
by setting y, = 0 in this linear expression. It is now clear that
to obtain Y, it was not necessary to perform any symbolic

calculation: all that was needed was to go through the motions
of calculating f,_; with y, temporarily taken to have the value
zero. This, of course, corresponds to a rather simple piece of
programming, and many of the program generation algorithms
and techniques used in the previous (explicit) Taylor Series
systems can be directly applied. To find the true value for y,
it is now necessary to solve equation (6). Because of the scaling
of the reduced derivatives used in the power series expansions,
y, is related to the corresponding derivative of y by a factor of
r! while the quantity just calculated for Y, (coming from the
(r — 1)st derivative of) is out by a factor of (r — 1)!. Thus the
equation that is actually solved is

rfo,0,1 Y, = £F @)
where the f* represents the negative of the quantity that the
above paragraph showed how to compute.

When the true value of y, has been found the working
leading to f,_, can be updated to correct for the original
setting of y, to zero.

The matrix f; o, can be computed as a side effect of solving
the original non-linear equation

f(O’ yOa yl) =0

since fj o, is needed anyway if this equation is to be solved by
an iteration (such as Newton’s method) that uses derivatives.

5. Reduction to standard form

It is now reasonable to address the problems of determining
the order of differential systems and reducing them to the stan-
dard form used in the previous section. These algorithms will
first be described in versions that will indeed produce the
desired effects, but which will often result in unnecessary
expansion in the size of the problem being considered. Par-
ticular aspects of the algorithms that result in this undesired

expansion will be noted, and further sections will show how =

the difficulties can be avoided. The condition needed for a set
of equations to have a power series expansion derivable by the
methods used here is that f; 4 ;, as defined in previous sections,
should be non-singular. The major preprocessing that has to be
done involves converting sets of equations for which f; o 4 is
necessarily singular, such as equations (2) above, into equi-
valent sets that do not have this problem.

To do this a structure matrix A is defined for the given set of
equations. If the equation f; = 0 does not use the value of
dependent variable y; explicitly the entry a; ; of 4 will be zero.
If f; mentions y; but no derivatives of it then a; ; will be one.
When f; mentions the r’th derivative of y; the value of a; ; will
be r — 1. The first thing to do, having set up this array, is to
look just at its pattern of zeros/non-zeros. Any entry a; ; that
is zero in 4 must correspond to a zero entry in the matrix
Jo,0,1, and so by looking at 4 it may be possible to show that
Jo,0,1 Will be singular. In this case A is called structurally
singular. It is, of course, possible for the numeric values that
will appear in f; o ; to be such that the problem is singular
even though 4 did not indicate that there would be trouble.
If A here is structurally singular, the given problem was ill
posed. The sort of sets of equations that will give trouble at
this stage will be partly overdefined and partly underdefined,
like the following example which is supposed to define three
dependent variables x, y and z:

x =0
x =1
X+y +2=0
The structure matrix for these equations is
200
2 00
2 2 2

The Computer Journal

sdyy wouy pepeojumoq

oe//

0
Q.
®
3
o
o
c

©
Q
e}

=

Q

e}

3

=
=

20z Iudy 61 uo 3sanb Aq 2981 L€/€9/L/61/9101E

which will be singular whatever values get associated with the
entries labelled 2. The algorithm that determines whether 4
is structurally singular in this way will also find a row per-
mutation of A4 that will arrange that none of its diagonal
elements are zero. Indeed, the algorithm (Hall, 1956) works
precisely by systematically searching for such a permutation.
If one can not be found, 4 was structurally singular. An
important practical point is that if 4 is large but sparse (as it
often will be) and the matrix is stored in a way that takes
advantage of its sparseness to conserve store, the run time of the
algorithm is dependent on the number of non-zero entries in A4,
rather than on the size of the full matrix.

The next observation to make is that if an r'® derivative of
some variable y; occurs anywhere in the equations, it will be
necessary to solve for that derivative rather than for any lower
one of y;. A new matrix B is therefore defined: b; ; is equaltoa; ;
if it is as large as any other g, ;, otherwise it is zero. If B is
structurally singular it will not be possible to solve the given
equations for the highest derivatives mentioned. For instance
for equations (2) the 4 and B matrices are

A:1 1 B:0 0
2 2 2 2

and although A is well behaved, B is singular. This situation
can be recovered from by differentiating the first of the two
equations in (2) with respect to z. If this is done symbolically a
new pair of equations are produced:

fO,p,2,y,2)=0 ®
gt y,2,y,2)=0
and the 4 and B matrices for the new problem both have all
entries non-zero, and so are not (structurally) singular.
Differentiating the equation in (2) will, of course, have changed

the degree of the differential system to be solved: to retain the
original solution it is necessary to add the consistency condition

f(to’ Yos ZO) = 0

to the list of initial conditions associated with (2). The new
problem that has been derived clearly has the same solution as
the one that was originally posed. It is now possible to compute
the degree of the system in the normal way, counting explicit
derivatives of all the variables. The equations now do need two
initial conditions, and so taking into account the degree of
freedom removed by the consistency condition, the user will
have to provide a single initial value. It should of course be
noticed that the consistency condition is not (necessarily)
linear and so it will have to be counted in with the general
non-linear equation solving act1v1ty that occurs in setting up the
first terms of the required expansion.

It is now possible to state that the condition on a set of
equations that ensures that the order computed by counting
highest derivatives of each variable is correct is just that the
structure matrix B should not be structurally singular. Further-
more, given any set of equations where the structure matrix A
is non-singular, it is possible to differentiate a subset of the
equations (adjoining consistency conditions to preserve the
original solution) to make the B matrix non-singular. The next
section is devoted to the algorithms involved in identifying this
subset. The existence of these algorithms serves as a proof of
the above assertion.

6. Preprocessing algorithms

To convert a set of equations to standard form it is necessary
to form the associated A structure matrix, and see if it is
singular. As mentioned above the process of checking for
singularity provides a row permutation of this matrix that
moves zero elements off the diagonal. From now on it will be
convenient to work with this permuted matrix, assuming that A
is non-singular. Differentiating a single equation of the set
making up the problem alters the matrix 4 by adding one to

Volume 19 Number 1

R, Ry Ry
ko ﬂ‘g 3-\
=k 4 5

| |
¥ =

P+ \ﬁ 0([

Fig. 1 Permutation of the rows of A to make ar+1, r+1 maximal i
its column

//:5dny uﬁu; DSpEoJUMOq]

each non-zero element in the row corresponding to the diﬁ‘er-§
entiated quantity. This will alter the dominance relationships
between elements in the same column, and so is reflected in 2
change in B. A combination of such incrementing of rows and2
row and column permutations will make it possible to remove>
zeros from the diagonal of B, and so make B non-singular. S

Let A and B be nxn matrices, and suppose that the first 3
(r < n) diagonal elements of B are non-zero. An algorithm t@
make B non-singular will be based on a step that makesg
element r + 1 of the diagonal of B non-zero. This step has:
six stages:

1.1f b,. 4 ,+ is already non-zero, do nothing.

2. If not, differentiate equation r + 1 until @, ,4 is mamma@
in its column

3. If the first r elements of the diagonal of the resulting B areﬁ
still non-zero there is nothing more to do.

4. Otherwise, for each k <r with b, , zero, dlﬂ’erenuat&
equation k until b, ; becomes non-zero. Continue with thlsﬁ
step until the first r diagonal elements of B are again non=
zero. If equation r + 1 had to be differentiated m times too
make b, ,+; non-zero this process must finish when aﬁf
most m X r differentiations have been performed. This wors{_
case will correspond to having to differentiate each of th@
first r equations m times—a process that clearly restores the
non-zero diagonal elements b, ; to b, ,. Normally of course
the amount of work to be done will be much less than this.

5.1f b,41,,+, is still non-zero, the step is complete.

6. If not, find the g, ,,, that is greatest in its column. The
previous steps have made sure that k < r. Equation k£ must
have been differentiated (or else this algorithm would have
terminated at step 5) and there will be a chain of applications
of step 4 that identified this differentiation as necessary.
Let the sequence of equations differentiated in this chain be
(ky, k35 - - ., k) Where of course k;y =r + 1 and k,, = k.
Now since no equation was ever differentiated more times
than was necessary to make the diagonal element of A4
corresponding to it as large as any other element in the same
column of 4, a,, = a,, where p and g are any pair of
consecutive k;’s. It is now evident that applying the cyclic

/L6111

65

permutation that maps k, onto k,, k, onto k3 and so up to
k,, onto k; to the rows of A leaves the first r diagonal ele-
ments of A unchanged. It does, however, move a column-
maximal element into the position 4, ; ,, and so completes
the extension of B’s diagonal. Fig. 1 illustrates this process
when m = 3.

The full algorithm for making B non-singular now amounts
to applying the above steps repeatedly to the set of equations,
each application increasing the number of non-zero elements
on the diagonal of B. The fact that this process always ter-
minates guarantees that any set of equations corresponding to
a non-singular 4 can be converted into a set for which B is
non-singular.

As stated, the above algorithm will often differentiate sets of
equations that could have been left unchanged. Although this
will not alter the formal process of solving the differential
system it will adversely affect efficiency. This difficulty can be
overcome by adding a further step:

7.1f in steps 2 and 4 all of the first r + 1 equations were
differentiated at least m times (m > 0), integrate them all m
times and remove the corresponding consistency conditions
that were introduced when they were differentiated.

In many cases steps 1 to 7 will now just permute the matrix A4,
whereas without step 7 they would have done some differen-
tiation. A practical system will not, of course, have to carry
out any symbolic integration in step 7. When performing the
above algorithm it will not actually do any differentiation, it
will just record, for each equation, the number of differenti-
ations that will have to be performed. The integration in step 7
corresponds just to decrementing this number by one. In later
sections it will be seen that even the symbolic differentiation
indicated here can often be avoided.

It has now been shown that any set of equations can be
converted into a set for which the B structure matrix is non-
singular. Using this conversion process it will now be demon-
strated that any set of equations can be converted into a set in
the standard form (4). What has to be shown is that the
equations can be reduced to a set where all variables have no
derivative higher than the first mentioned, and that non-sin-
gular B implies non-singular derivative f; ¢ ;. The first trans-
formation that must be applied gets rid of quantities defined by
non-differential equations. Suppose a variable z appears in the
set of equations but z’' is not mentioned at all. Choose any
equation mentioning z and replace it by its derivative (which
will be an equation relating z and z’ to the other variables).
Remember to add a consistency condition corresponding to this
differentiation. Now all dependent variables in the given equ-
ations can be considered as appearing with at least a first
derivative. Apply the algorithm described above to make the
matrix B associated with the equations non-singular. Now, for
each second or higher derivative mentioned in the equations,
auxiliary variables are introduced and new equations are added.
If the quantity z” appears somewhere in the equations it gets
replaced by z), and the equations z, — z{ =0andz, — 2z’ =0
are added. This does not alter the solution to the problem, and
arranges things so that no derivatives higher than the first
ever appear. It can be seen that the B matrix for the extended
set of equations is non-singular, and has elements that are
either two or zero. To be more specific, a single entry in the
original A matrix corresponding to z” would have been the
number 4. In the expanded set of equations using z, and z, this
entry has been replaced by a submatrix of the form:

z 2y 2,
zy=2z 210
z, =2z, 0 2 1

(z) 7?2

It is now possible to consider the complete vector f of equations
and see what happens if it is differentiated partially with respect
to the derivatives y’ it is defined in terms of. The derivative will
be a matrix f; o ; and things have now been arranged so that
the structure (in terms of zero/non-zero elements) is now given
by B. Thus since B is not structurally singular Jo,0,1 is not.
There is still, of course, the possibility that the particular
numerical values that will appear in f; , for some particular
sets of initial conditions will make it numerically singular.
That sort of difficulty will generally correspond to the equations
not having a solution that can adequately be represented by a
power series, and is beyond the scope of the present work.

7. Problem factoring
The next problem to be considered is the solution of the equ-

ations represented by (6). For small sets of equations the order

of the matrix involved will not be excessive, and a direct

approach will be adequate. For even moderate sets of equations,

however, there will often be substantial gains to be achieved by

treating the equations specially. Since the structure of Jfo.0.1

is known, some of the sparse matrix methods of Gustavson,s
Liniger and Willoughby (1970) can be used. A number ofS
particularly important sub-cases are likely to arise. First§
consider a set of equations that was originally given in explicit2
form and could have been solved by the previous Taylor SeriesZ’
systems. The fact that the equations could have been written3
explicitly will mean that there will be a permutation of rows and=
columns that will put B directly into triangular form. Solving?.
equation (6) will then just amount to a process of back sub-§
stitution. If B is diagonal the variables can be solved for in any2
order. In other cases the permutation that has to be applied to2.
B to make it triangular defines an order in which the equationso
can be used. The algorithm that tries to permute rows and?
columns to make B triangular can be arranged to find a blockS
decomposition of B when it cannot be made strictly triangularg
(Tarjan, 1972). Like other algorithms intended for use withS.
sparse matrices, this one takes an amount of time dependent%
on the number of non-zero elements of B, not on the total size=
of the matrix, and so it can reasonably be used even for large®
problems. From this block decomposition it will be possible to©
extract the information necessary to see that equations (1)5
should have been solved as two problems (as originally sug-c;
gested in the first section). The block decomposition algorithm§
should be applied to the matrix A after it has been rearranged?,
to have a non-zero diagonal but before any of the equations areZ
differentiated in the process of making B non-singular. Blocks2
that show up at this stage reveal gross dependencies between
the variables, and show which sets of variables and equationsS
can be factored out as sub-problems. : >

dv 6

8. Avoiding differentiation -

The process of reducing a general set of equations to standard
form, as described above, is full of references to symbolically
differentiating the equations. This is reasonable for a descrip-
tion of the processes involved, but needs to be avoided as much
as possible in a practical scheme. The techniques for avoiding
this differentiation, and some of the other manipulation of the
equations that has been indicated, is discussed here. Avoiding
having to differentiate is rather simple because of the power
series environment in which this work is proceeding. To
calculate the rth term in the power series expansion of the
derivative of a function fit is sufficient to compute (r + 1) times
the (r + 1)st element in the expansion of f. All the differen-
tiation mentioned so far can therefore be done purely formally,
leaving the code generation parts of the power series mani-
pulators to set up multipliers and index offsets as appropriate.
Some sort of symbolic differentiation is still going to be neces-
sary when generating thet consistency conditions, since they
must be expressed in closed form in terms of the low order

¥20c 14

The Computer Journal

power series coefficients of the variables involved. The next
thing to do is to avoid, where possible, the introduction of
auxiliary variables that are just there to reduce the given
equations to first order. Mixed order equations are almost as
easy to solve as first order ones, the difference being that
equation (7) has to be recast as

Jo,0,1Ry, = ¥)]

where the matrix R is diagonal and has elements depending on
the order of each variable y;.

9. An example
Working through the algorithms presented here by hand on a
small example will clearly show the complications that can
arise in the method. What should be noticed is that all this
complication is in setting up the recurrence relations between
successive terms in the solution, and that this is work done only
once. The application of the recurrence relationships, which is
done many times, is rather simple. It should also be
borne in mind that the initial manipulation of the problem,
while so messy that it would make the present method unreliable
and tedious to use by hand, is all mechanisable, and that the
programmed version of it will not take an inordinate time to
generate the required recurrences. The example chosen here is
of a circular pendulum. The classical way of solving this
problem would be to express the location of the bob in terms
of an angle theta, as:

x = r sin (theta)

y = —r cos (theta)

and then express the forces involved in terms of theta to obtain
an equation for theta:

theta’” = —(g/r) sin (theta)

This is reasonable for the very particular problem in hand,

but is not easily extended to cope with non-circular pendulums.

Instead, then, start from the equation relating x and y that

states that the pendulum bob lies on a circle. This is
u=x>+y*—-r>=0.

Add to this the equation of conservation of energy, which is

v= (/) +()) +gy)=0.

When setting up the structure matrix 4 the function v has to be
counted as depending on x’ and y", since if it was simplified
both these terms would appear. The matrices A and B are thus
initially:

A:1 1 B:0 O

33 33
B is structurally singular, and so the equations have to be
adjusted. In this case it is easy to see that the equation u = 0
has to be differentiated twice. This will introduce the two
consistency conditions
x3+yi=r?

and

2(xoxy + yoy1) =0 .
The equations are now fourth order, and there are two con-
sistency conditions and so the user will have to provide two
constraints as initial conditions. The first set of equations that
have to be solved in developing the power series expansions
are now (u'') = 0 and v, = 0. There is no a priori reason for
expecting these equations to be linear, although for this par-
ticular problem they are. It is necessary to write down these
equations literally, and differentiate them to obtain the matrix
fo.0,1 that will be used through the rest of the calculation. Thus:

@) = 22xXx; + X3 + 2y4y, + ¥3) =0

Vo = 2X1X; + 2y, + 8y1 =0
and so .
f0,0,l = 2Xo 2¥o
Xy N

Volume 19 Number 1

the factor of 2 having been taken out as representing the
quantity R in equation (9). When the above equations have
been solved for x, and y, it will be possible to set up the general
recurrence for the rest of the coefficients x; and y;. For any
k > 0 the quantities (#'"), and v, that have to be calculated are
given by

r+2

@) = (k + 2)(k + Dt » =_;0 XXg—iv2 T ViVi—i+2
=k + Dgyes+1 + ei2
((k + D/2) z.li(k — i+ NXXe—is3 + ViVk—i+3) -

Although these two expressions are complex enough to dis-
courage hand calculation, they correspond to rather short and
straightforward programs. Using these pieces of program, the
algorithm for calculating the expansions of x and y (given the
first few coefficients xq, X, X5, Yo, ¥; and y,) is:

fork=12,...

Xer2 1= 05 Y42 :=0
calculate (1”’) and v,
solve the 2 x 2 linear system of equations

Fa=b
where F is the matrix f; , ; discovered above,
and b is the pair of values (¥"’), and v,.
X4, and y,,, are —1/((k + 1)(k + 2)) times the
solution vector a that was found.

This program will generate as high an order expansion as is 2
wanted. Transcribing the program above into FORTRAN is Q
an error-prone process because indices of the coefficient vectors 3 3
x and y will have to be offset by one to account for the fact that o
FORTRAN arrays start with element one, not element zero.<
When the complete program is generated mechanically allow-
ance for such offsets is of course trivial.

This particular formulation of the circular pendulum 3
equations of motion illustrates a pitfall in the mdlscrlmmate\
use of 1mphclt sets of equations. The equations of motion as =
set up using conservation of energy have a singular solution @
x' =y’ = 0 (for arbitrary x and y), which does not correspond ©
to a real motion of the pendulum. This difficulty results from 5
Jo.0 1 being singular when the bob is at rest, and so it is not &
possible to expand a solution to the equations about this state. -
The problem is in the equations being considered, and not in%
the method used to solve them, and so no amount of prepro-2
cessing or special treatment can get round the singularity.<
Apart from x’ = y’ = 0 the linear equations that have to be &
solved in this problem are all well behaved; even the placesS
x = 0and y = 0 where it would have been difficult to solve for 2
x in terms of y or vice versa are handled easily.

//:sduq wioJ) papeojumoq

woo/woo dn

20z udy

10. Further applications
So far the algorithms described here have been consxdered“
purely as ways of getting numerical values for power series
coefficients of the solutions of well behaved ordinary differential
equations. They actually have a rather wider class of
applications. The first of these to consider is in the field of
symbolic algebra. Many problems in this domain amount to
finding an expansion of a function in terms of some small
parameter. When the required expansion is a power series
the present techniques can be used to produce an algorithm for
developing the coefficients. Multiplication and division by the
small parameter take the place of integration and differentiation
in shifting power series orders. In terms of currently popular
algebraic methods for producing such expansions, the new
method is a variation on the method of repeated approximation
(Barton and Fitch, 1972), where the user is relieved of the
problems of selecting and coding an iteration, and the algebra
system does not have to re-calculate any known values. As a

67

simple demonstration of the method consider the Kepler
equation

E =u+ esin(E) (10)
where it is necessary to expand E in terms of the small quantity
e. The classical repeated approximation method notes the
zeroth order solution E = u and substitutes it into the right
hand side to obtain a better solution E = u + e sin ().
Higher order approximations to the solution are obtained by
repeatedly substituting into the right hand side of (10) and
expanding sin (E) in powers of e. The new method observes
that the given equation is explicit, and so expresses the power
series expansion of sin (E) in terms of that of E. This is done
by introducing new variables v and w with v = sin (E) and
w = cos (E). Following the way previous Taylor Series schemes
have coped with sines and cosines, it is possible to write

v = wE’
w = —vE’

where ' represents formal differentiation of the power series
with respect to e. The required solution for E can now be
found by using these values v and w in equation (10) and
expressing the algebraic operations involved in terms of power
series. It is easy to obtain the relationships

Er = ur + Ur—l
o, = () T wilr = DE,—,
i=0
(=1)'S or = DE,-,
i=0

These recurrences have to be used with initial conditions
corresponding to the zeroth order solution to the equations,
ie.

=
]

E, = up

vy = sin (Eyp)

wo = cos (Ep) .
Using these recurrences involves a rather more complex
analysis of the problem that was needed for the straightforward
use of repeated approximation. The algorithm generated will,
however, be substantially more efficient, and since it is now
possible to have a program generate the recurrence relation-
ships automatically, their complexity does not matter. It should
be noticed that the new scheme will cope naturally with the
forcing term u in (10) being a function of e: it uses the coeffic-
ients u; of the expansion of u in powers of e anyway.

The next class of problems that the new meéthod can be
extended to cover includes certain ordinary differential
equations with removable singularities. A simple instance of
the sort of equation involved is given by Bessel’s equation of
order zero, expanded about the origin:

References

BarTON, D., and FircH, J. P. (1972). Applications of algebraic manipulative programs in physics, Reports on progress in physics, Vol. 35,

No. 3, pp. 235-314.

f=x"4+y +xy=0.
At x = 0 (x being the independent variable) this equation does
permit a solution that behaves like a polynomial. When
calculating the order of terms that appear in this equation it is
necessary to count multiplications by x as integrations and
divisions by x as differentiations. It can then be seen that the
first two terms in f have the same order. Thus y, will be found
by solving the equation f,_; = 0: away from the origin where
multiplication by x has no special significance y, will be found
in the normal way by solving f,_, = 0. As for the previous
sorts of problems considered, the low order terms in the solution
being generated need special attention. For this equation it is
easy to see that y, is arbitrary while y; must be zero. Bessel’s
equation is linear and so expanding its solution in power
series is particularly simple. The same ideas can be extended to
cope with some non-linear systems. Here automating the
generation of expansion algorithms is a good deal harder.
The new problems that have to be overcome involve dependent
variables which have several of their early power series co-
efficients identically zero; multlpllcatlon or division by one of
these alters the order of power series expansions, but the amount g
by which it does so can not be determined until the exact 2
number of early zeros is known. The present suggestion for &
coping with this difficulty is to work purely algebraically with &
the equation, substituting low order power series expansions, g
and picking out coefficients to solve for as they appear. Even- =
tually a non-zero coefficient will be found in each series, and the 8
normal analysis can proceed. It is still the case that once the =
initial difficulties have been overcome only linear equations g g
will have to be solved.

yuw

no-olwspe:

11. Conclusions
Algorithms developed here form the basis for a package that 3
solves implicit sets of ordinary differential equations by an S
explicit method, closely akin to the normal Taylor Series one. §
The algorithms are arranged so that many important special 3.
case optimisation possibilities can be detected, and the treat-
ment of these optimisation transformations accounts for most
of the complexity of the method. Extensions to the method make &
it applicable to certain singular sets of equations, where the g
singularity is at a known place. All the detailed analysis of a &
given set of equations can be done once and for all, and the &3
numeric process of solving the equations will reduce to using 5
recurrence relationships found. If a set of equations is to be <
solved over a long interval, or will be used many times with <
different values for some parameter in it, the algorithms here“('éI>
will form the basis of an efficient numerical method, and the £
cost of problem analysis, program generation and compllatlon 5
will be offset by the efficiency of the generated program.

|o|ue/|u

20z Idy 61

BARTON, D., WILLERS, I. M., and ZAHAR, R. V. M. (1972a). The automatic solutnon of systems of ordinary differential equations by the
method of Taylor series, The best computer papers of 1971, Edited Petrocelli, pp. 147-163, Auerbach Publishers Inc.

BArTON, D., WILLERS, I. M., and ZAHAR, R. V. M. (1972b). Taylor series methods for ordinary differential equations—an evaluation,
Mathematical Software, Edited J. Rice, pp. 369-390, Academic Press, NY.

GIBBONS, A. (1960).
Journal, Vol. 3, pp. 108-111.

A program for the automatic integration of differential equations using the method of Taylor series, The Computer

GUSTAVSON, F, G., LINIGER, W., and WILLOUGHBY, R. (1970). Symbolic generation of an optimal Crout algorithm for sparse systems of

linear equations, JACM, Vol. 17, pp. 87-109.

HaLL, M. (1956). An algorithm for distinct representatives, The American Mathematical Monthly, Vol. 63, pp. 716-717.

NORMAN, A. C. (1972). A system for the solution of initial and two-point boundary value problems, Proc. ACM72, pp. 826-834.
NORMAN, A. C. (1973). TAYLOR users manual, University Computer Laboratory, Corn Exchange Street, Cambridge CB2 3QG, England.
NoORMAN, A. C. (1974). The solution of ordinary differential equations involving step discontinuities, submitted to ACM Transactions on

Mathematical Software.

VAN DE RIET, R. P. (1968). Formula manipulation in Algol 60, MC tracts 17 and 18, Mathematisch Centrum, Amsterdam.
TARJAN, R. (1972). Depth-first search and linear graph algorithms, SIAM J. Computing, Vol. 1, No. 2, pp. 146-160.
WILLERS, I. M. (1974). A new integration algorithm for ordinary differential equations based on continued fraction approximants, CACM,

Vol. 17, No. 9, pp. 504-508.

The Computer Journal

