Fitting data to nonlinear functions with uncertainties

in all measurement variables
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An analytical approach is made to the nonlinear least squares problem having uncertainties in all
measurements coordinates. It is shown how the unknown independent coordinates may be eliminated
from the sum of the squares, thus reducing it to an ordinary minimisation problem. An algorithm is
derived using analytical derivatives, but a simple procedure also allows the use of standard numerical

derivatives.
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The problem under consideration here is that of using the least
square method of curve fitting the function f(x;, a;) which may
be nonlinear in x;, the adjusted X; data coordinate, and non-
linear in the M parameters a; to the data Y; + o,;and X; + 0
where i goes from 1 to N the number of data points.

A previous paper by the author (Southwell, 1969) presented
an iterative solution to the problem and partially demonstrated
its use by applying it to a well-known example. Since then,
D. R. Powell and J. R. Macdonald (1972) claim that the method
would not converge to the least squares solution and often
would not converge at all.

The purpose of this paper is to generalise the method and make
it more explicit, to show how the central theory allows the use
of any nonlinear minimisation algorithm (of which there are
several successful ones), to show that it does converge to the
least squares solution, to present a simple numerical derivative
application of the method that requires no analytical derivatives
to be supplied, and finally, to comment on several other claims
made by Powell and Macdonald.

Several examples are included that demonstrate various
aspects of the application of the theory.

Theory
According to the least squares principle we minimise the quan-
tity x2/2, denoted by S,

S =38 = ZHwY; — flxi, a))? + walX; — )] (1)

where the weights are w,; = 1/g% and w,, = 1/o2,. This is a
nonlinear minimisation problem requiring an iterative pro-
cedure starting from some initial approximations. The first
step in this method is to eliminate the x; dependence in S by the
condition

os oS, _ , _

5xi - (7x,- dl ’ (2)
These are N equations each containing only one Xx;, thus
simultaneous solution procedures are not necessary. When (2)
is solved directly for x;, substitution in (1) then allows the
parameters a to be determined by standard nonlinear minimi-
sation techniques. S will have a new form but will not have any
x; dependence, S = S(a;).

When (2) does not yleld a closed form solution x; = x(a;),
then it must be solved by numerical iteration for x; (by using
Newton’s method, for example, although it is not globally
convergent) from some initial starting values, usually X;.
Using this numerical value for x; allows the proper evaluation
of S, but will not provide its functional dependence in a;. What
we have is S = S(xa;), a;) where the explicit function
X; = x,(aj) is not known.

To minimise S we evaluate its derivatives with respect to the
a;. To obtain them we apply the chain rule to the function

S (xi(aj)’ a j)
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- technique insures that we have the least squares solution.

_Q_ Ox; 0 a
oa,  Oay 0Ox; + da, | x; = const.

)

As stated above we do not have the explicit function x,(a;),
so it would appear we are unable to apply (3). However, byo
differentiation of (2), which is the equation that determines theS
x;, with respect to @, we obtain an equation linear in ax,-/aak.§
Thus with the numerical value of x; from a solution to (2), wel
can always apply (3) no matter what nonlinearity there is in .3

Having the derivatives of S we are now able to apply any3
nonlinear minimisation technique. Convergence of the chosenU

wepeose//:sd

Implicit models
The function f represents y;, the adjusted Y; coordinate. If y,
is contained implicitly in the model 4 = A(y;, x;, a;) = 0,2
such that there does not exist a closed form functlonTJ
f=y,=flx, a) then 4 must be solved iteratively for each3
y; whenever f; is requlred in applying the above theory. This isg
done in the same way x; was determined from d; in (2)3
Newton’s method may be used, with Y; usually prov1d1ng§
good starting points. The derivatives of f; are determined by=
implicit differentiation of 4 using the chain rule in exactly the®
same way the derivatives of x; were determined from d,. ThlS\
process was programmed and used successfully with real datac»
on an implicit equation of state model.

Further generalisations
It is straightforward to generalise the above theory to includ
models having more than one independent variable.

A recent paper by H. I. Britt and R. H. Luecke (1973) presents”
a solution to the problem, which we discuss further below, inS
which the problem is formulated to include even furthers
generalisations. Their solution is also applicable to modelsZ
where f has a different functional dependence at each data%
point such that df/dx, may be a function of x; and x;, for3 -
example, and where data covariances are considered. Such™
generalisations are possible with our present method, but we
have not done so here.
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Application of theory
We now proceed to derive the algorithm in terms of the function
S(x;, @;) and its derivatives.

Equation (2) is solved by Newton’s iterative method

new — . — (. __" .
xl Xi l/ axi (4)

The right hand side is evaluated at the present values of x; and
a;. Performing the indicated derivatives we have

v = s+ =) L= x| D, )

where




2

D = [+ (2 ) = mi¥i =1 2 e
and where f; = f(x;, a;). The first entry will use some initial
estimates for x; (usually X;). The improved x?¢¥ is tested to
determine if [x?*% — x;| is less than some small quantity, say,
1077, If not, x; is set equal to x™¥ and another step is taken.
After convergence is obtained, the solution could be saved and
used as starting points for successive iterations to conserve
computer time.

Whenever S or any of its derivatives are evaluated, the solution
to (4) provides a numerical value for x;.

Most of the nonlinear minimisation techmques use only S
and its gradient g, the components of which are

oS .

= = 7
8k F ak @)
Differentiating (1) using (3) we obtain
z ; ox; of; | ofi
= —w. Y. — f; ! AL . (X. — x;
8k [ wyl(Yl fl) (aak ax + aak) wxl( i xl)
0x;
(8
aak] ®)
where ax,/aak is determined by differentiation of (2),
2
fi o
_ i Yi Yi , 9
6 a [( =) e da, 0x;  Oay 0x; ©)

where D is given in (6) above.

The question as to which minimisation technique is best
probably depends on the function f and the data. Recently
Cornwell and Rigler (1972) made a comparison of four
successful stable algorithms, conjugate gradient, variable
metric, damped least squares, and Grey’s orthogonalisation
on a variety of problems. Their conclusion was that there was
no ‘universally best nonlinear optimiser’ and that each method
was best for at least one problem. All of these methods require
only S and g to be evaluated and all, in theory at least, may be
applied to the present problem.

It has been the author’s experience that the method outlined
in his previous paper (Southwell, 1969), which is a generalised
Newton—-Raphson approach, has been highly successful. The
parameters in this approach are iteratively determined by the
relation

a“v =a—R71g (10
where the components of the square matrix R are
0*S
=" . 11
Ik a al a ak ( )

To obtain R in terms of f and its derivatives, we differentiate
(8) using (3) again. The result is

B ox; ofy | Ofi\ (x:dfi | O
Ry = Z {w (aa, ax, T a—) (aa,, ox, T da,
i
2 2
oy | i
¢ 12
—wlYi = f) [6ak<6a, * a2 T 12
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- xl(X )a 16 + wxi aa aak}

The partial of x; with respect to a; is given in (9). To obtain the
necessary second partial, (9) is dlﬁ'erentxated using (3) again.
This gives
azxi
da, 0ay

ox; &,
= [ (B s +

°fi
oa, 0a; 0x;
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Equation (13) with (9) enables the determination of all the
components of g and R in terms of f and its derivatives. For
the present value of x; and a;, the quantities that need to be
supplied are

f, o zﬁ *f; VI 2*f; o°f; 2%,
P ox; Ox? > 0x3’ ba,” da, 0x; Oay ox2’ oy, 0a;’
and (14)
o%f;
da, 0a, 0x;

The first four are scalars, the next three are vectors of length M,
and the last two are symmetric matrices of size M by M.

The new parameters determined by (10) are checked to deter-
mine convergence. One way to do this is to determine if the
relative derivatives |a,g,| approach zero (less than, say, 1077). 2

If not, a is set equal to a"** and (10) is reapplied. In evaluating 5

the components of g and R, (5) is first applied to obtain a
numerical value for the x;.

Numerical derivatives
There are situations where f is of such a nature that the
analytical derivatives are difficult to obtain. Fortunately, it is
possible to apply the method in a simple fashion using regular
numerical difference approximations for the derivatives. To do
this we write (4) in terms S,

O'SAx[Si(xi + Ax; a ) S (x )] (15)
[Si(xl' + Ax’ aj) - 2Si(xv ) + Sl(xi Ax’ aj ]
As an alternative one could use numerical derivatives on f; alone
and use in (5) and (6) with about the same efficiency. Each 2
requires three evaluations of f;. (One could also rewrite d; into
the form x; = F(x;), as done previously (Southwell, 1969.)
This requires evaluation of only first derivatives of f;. However,
Newton’s method has better convergence properties and is
preferred even though convergence with x; = F,(x;)is improved
using Aitken or Wegstein interpolation.)

The components of the gradient vector are given by

2 [S@ + 4u) — (S@ — 4,01 - (16)

=03
8k .
Each evaluation of S is made first using (15) iteratively to obtain
the appropriate x;.

Likewise, the diagonal components of R are

Ry = 1y [S@ + 4u) — 25@) + S, — 4] (17)
ak

xXpV = x; —

and the oﬁ' -diagonal elements are

le = [S(al + Aah a + Aak) - S(al + Aab ak)

AalAak
=S(a, a + 4,) + S, a)] . (18)
These are approximations to the true derivatives given in (8)
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and (12) above since, as discussed in the theory section, we have
a proper evaluation of S.

This numerical approach is simple in concept, easy to program
—requiring only the analytical evaluation of fi—and, as it
turns out, quite successful in practice. Its limitations are those
usually encountered with numerical differentiation. To obtain
better accuracy one has to make the A4 increments smaller,
but this requires more significant digits to subtract nearly equal
numbers.

Parameter variances

The author’s previous paper (1969) derived an expressron for
the ‘exact’ parameter variances, that is a relationship grvmg
the parameter variances as functions of the data variances
involving no approximations. It has since come to the author’s
attention that the starting point in this derivation

sa; = z [g‘;; Y, + g‘;; 5x] (19)

relating the deviations in a; to the deviations in the data, is
itself an approximation.

However, it turns out that in all cases the author has treated,
the standard deviations so derived were less than 1 per cent
different from the square roots of the dlagonal elements of R™1,
the usual approximation for the variances. Since the R™!
matrix is already being used (using Newton—Raphson iteration)
in adjustmg the parameters we suggest using it as the para-
meter variance-covariance matrix approxrmatlon instead of
evaluating the more comphcated expression given previously.
Thus,

var (a;) ~ Rj‘j1 (20)
and
covariance (@;, @) ~ R;! . (02))]

When relative values of the data variances are known but their
magnitudes are not, it is common practice to multiply the right
side of (20) and (21) by 2S/(N — M) which estimates this
constant of proportionality. Powell and Macdonald (1972)
include this factor even when the data variances are known.

It turns out that the parameter standard deviations derived
from (20) are fairly close to the usual approximations using
first derivatives as given by Britt and Luecke (1973) and Deming
(1943) when properly compared with or without the
2S/(N — M) factor. However, Powell and Macdonald (1972)
claim about a 40 per cent decrease in the parameter standard
deviations from those given by Deming. They attribute this
decrease to their particular procedure for calculating R.
Actually their claims are invalid. and result from a mistake
in their formulation, which is the following.

The usual parameter variance-covariance matrix is the second
partial derivative of x2/2. Powell and Macdonald use the second
partials of x2. This makes their derivative matrix a factor of 2
too high and their variances a factor of 2 too low. Consequently,

their standard deviations are off by a factor of 1 /\/2 which is
about 40 per cent.

Discussion
Since the earlier paper (Southwell, 1969) was published, two
other papers on the subject have appeared (Powell and
Macdonald, 1972; and Britt and Luecke, 1973). It is appropriate
here to compare these methods with the method of this paper.
Both papers have discussed Deming’s method and both point
out that Deming‘s method is good, but is only approximate
because it does not quite satisfy the least squares criteria.
Basically the approach of this paper is to consider the problem
of minimising (1) as a function of the M parameters. We do
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this by eliminating the x; from (1) by solving (2). Even when x;
has no analytical solutlon we are able to completely eliminate
the x; by obtaining a numerical value for it and by the fact that
we can always obtain an analytical expression for dx;/da, and
thus apply the chain rule for the analytical derivatives.

Both other methods consider the problem of minimising (1)
as a function of M + N variables, a; and x;. Both methods make
one step adjustments on the g; and x; at each iteration until
convergence is achieved. Powell and Macdonald’s algorithm
uses a Newton-Raphson type iteration, whereas, Britt and
Luecke’s method uses a Gauss—Newton type iteration. As
correctly stated by Britt and Luecke, convergence on both the
a; and the x; is necessary to satisfy the least squares criteria.

It has been demonstrated that it is possible to satisfy a con-
vergence criteria on the @; and still not be at the least squares
solution because S may not be stationary with respect to the x;.
Since Powell and Macdonald’s termination criteria cons1ders
only the a;, their method is not guaranteed to be the least
squares solutron even when they achieve convergence in the a;.

Both papers discuss convergence problems when startlng
parameters are far from the solutions and both suggest usin
other approximate methods before applymg their algorithmss
These problems are often overcome using stabilising mOdlo
fications in the step length and/or direction, as discussed by,}
Britt and Leucke (1973). They observe that it is not possible td.
modify their algorithm for straightforward application of mosg
of these modifications, such as a one-dimensional search at eacle
iteration. Since we are adjusting only the a; at each 1terat10ng,
no such limitation exists for the method of this paper, and a;
one-directional search using quadratic interpolation has beeg_
successfully applied.

Another point of comparrson is that both other methodg
require the storage and inversion of an M by M matrix. Wheg
computer storage is a problem, the theory of this method mayg
be applied using the conjugate gradient method (Fletcher ané
Reeves, 1964), for example, which requires only two vectorg
one of length M for g and one of length 2M as a working

vector, besides storage for the data and parameters. Thi§
procedure was applied ; however, convergence was slower tha@
with the generalised Newton—Raphson procedure.

It should be pointed out that with one difference Powell anéE
Macdonald’s method is equivalent to the Newton—Raphsong
numerical derivative application of this method. The difference
is that the x; adjustment (their Equatron (14)) be tested and m
necessary repeated until convergence is complete each time it 1§
used. Another minor difference is the form used for the numergd
cal derivatives for the off- dragonal elements of R. The form wc
use was chosen because it requires one less evaluation of S. o

Powell and Macdonald claim their method is successful only
with their ‘unconventional derivative approximations’, whrcﬁ
means first adjusting the x; each time S is evaluated for the
numerical derivatives. When using their ‘exact analytical
derivatives’ they obtain very poor convergence, 148 iteration¥
compared to 4 for their numerical approach in the straight line
example. This discrepancy results because they did not use the
chain rule when taking their analytlcal derivatives. We show
in an example below that when using the correct analytical
derivatives, convergence is achieved in three iterations.

Examples
This procedure was programmed for the CDC 6600 and results
of several common example problems are given here. Generally
[xpe¥ — x;| < 107 7and |, g;] < 1077 were used as termination
conditions. For each problem a subroutine was written that
returns numbers for f; and its derivatives with an input of x;
and a. In the numerical derivative program only f; is evaluated.
Unless otherwise noted, the numerical derivatives use 4, = x;4
and 4,; = a;4, where 4 = 1073, unless x; or a; are zero, in
which case A and 4,; are set equal to 4.

"




Example 1:

f = a; + a,x, straight line fit with uncertainties in both Y; and
X, using data given in Table 1. This example was also used by
Powell and Macdonald (1972), by Britt and Luecke (1973), and
by the author (Southwell, 1969), where it was shown the x; in
(2) may be solved algebraically. The iterative solution for x; is
also used here, for comparison, using both analytical and
numerical derivatives. In all three cases we use the same
convergence criteria. We start from the same values used by
Powell and Macdonald which were the final results of Deming’s
method. The results are given in Table 2.

We note the advantage in convergence speed using an
analytical approach as opposed to the numerical approach.

It appears Powell and Macdonald (1972) attempted to apply
the method of adjusting the x; using analytical derivatives as
outlined by the author (Southwell, 1969) to this problem. In
their effort to program the method, they apparently failed to do
two things: (1) check for convergence on the x; iteration. The
scheme x = F(x) converges only when |0F/0x| < 1 unless
interpolation methods are employed; (2) use.the chain rule
when forming the derivatives. Admittedly, these two points
were not explicitly stated in the previous paper. It should be
noted, however, that the derivatives in ¢ and R were taken
after the x; were eliminated from S, which is central to the
theory presented.

Powell and Macdonald’s statement that this problem remains
linear in the parameters is incorrect. By observing Equations
(32) and (33) of the previous paper (Southwell, 1969) it is
seen that the slope a, enters nonlinearly. Britt and Luecke also
verify this conclusion.

Another (minor) point, Powell and Macdonald also state that
f = a; + a,xis the only model for which the x; may be explic-
itly eliminated. Actually there are others, for example, a
quadratic model and the model f = ax* each produces a cubic
in x for Equation (2) for which analytic solutions exist.

Example 2:
f=a, + a;x + as;x* + a,x>, cubic with uncertainties in both

Y; and X; using the data in Table 1, except using unity relative
weights instead of the data variances. Thus we set w,,; = w,; = 1
for all the data points. Again we use Deming’s results as
starting points. The results are given in Table 3.

In this case we cannot eliminate x; explicitly so we use
numerical determination of x; and analytical derivatives as
described in this paper. Convergence was obtained in two
iterations.

For comparison we rewrote (2) into the form x; = F(x,),

new = x, + Wiy, — )%
X=Xk (=) s 22)

and used it in the iteration scheme instead of (5) and (6). It was
successful ; the results were identically the same and required
two iterations. Next we used (22) as above except we allowed
only one adjustment on x; each time and did not test for final
convergence. After six iterations convergence in the parameters
was achieved. However, 25 = 0-50721328 and the parameters
were a little different. The largest difference was in
a; = 0:15628790. This verifies the assertion made above that
when adjusting x; in a single step each time, that convergence
in the parameters does not insure the least squares solution.

Next we went back to Newton‘s iteration on x;, (5) and (6),
except we allowed only one adjustment on x; each time with no
testing on x; convergence. After two iterations the parameters
had all reached convergence, but 2S = 0-48516246, and the
parameters were  slightly  different, for example,
a; = 0-15247241. This demonstrates the better convergence of
Newton’s iteration over (22).

12

Table 1 Data used in example 1

Y Weight = 0,2 X Weight = o2
59 1-0 0-0 1000-0
54 1-8 0-9 1000-0
4-4 40 1-8 500-0
4-6 80 2:6 800-0
35 20-0 33 200-0
37 20-0 4-4 80-0
28 70-0 52 60-0
28 70-0 6:1 20-0
24 100-0 65 1-8
-5 500-0 7-4 1-0

Table 2 Results for example 1

28 = 11-866353

Starting point Final results

a, = 53961000 5-4799102

a, = —0-46345000 —0-48053341
Method No. of iterations
Eliminating x; analytically 3

Adjusting x;, analytical derivatives 3

Adjusting x;, numerical derivatives 4

Table 3 Results for example 2

28 = 048515249

Starting point Final results
a, = 59988000 6:0152637
a, = —1-0050000 —0-99983535
a; = 0-1570600 0-15247160
a, = —0-0137200000 —0-013240529

Table 4 Results for example 3
28 = 0-45032567

Starting point Final results

a, = 59240000 5-9148260

a, = —0-74070000 —0-60316689

a; = 0-026880000 —0-080320319

a, = —3-3240000 x 1073 0-026322024

a; = 2:6920000 x 1073 —8:2771911 x 10~4
as = —3-2080000 x 10~ —1-6750503 x 104
Example 3:

f=a; + ax + a;x* + a,x* + asx* + asx®, quintic with 3
uncertainties in both Y; and X; using data in Table 1, except S.
using unity relative weights as in Example 2. The results of 13
Deming’s approximation are used as starting points. The X
results are’ given in Table 4. Convergence was obtained in
three iterations. .

We then attempted to apply our numerical derivative program
to this problem on the CDC 6600 with the same standard
precision as used in the analytical derivative approach. After
trying 4’s of 1074, 1073, and 10~ %, convergence did not stabilise
even after trying Powell and Macdonald’s suggestion of
separating S; into S,; + S,;. We found that, when compared to
the analytical derivatives, 4 = 10™* gave closer numerical
derivatives, but apparently did not have sufficient accuracy.
We concluded that double precision on the 6600 would be
necessary for the numerical derivative program to work on this
example. Powell and Macdonald apparently used double
precision with 29 significant digits and required 10 iterations.
Also, they arrive at a different solution, for example, their as
equals —8:119 x 10~“. This time their results are significantly
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different from the least squares solution.

We next report the results of applying the analytical derivative
approach on an IBM 1130. The parameters were the same as the
CDC 6600 results after three iterations to within one part in
six digits and the convergence criteria were satisfied in four
iterations.

This example demonstrates a limitation of the numerical
derivative approach. For this example, the numerical program
requires a computer with something well over 16 significant
digit accuracy, whereas the analytical derivative program
worked well with less than about nine significant digits.

We note that numerical first derivatives were more accurate
than second derivatives. Thus, some gradient minimisation
methods might be more successful whenever the numerical
approach is required in certain problems.

Example 4:

f=a,(1 + a;* a;x)~/*, fit to the data of Table 5 with unity
relative weights on both Y; and X;, w,; = w,; = 1. This
example is taken from Powell and Macdonald (1972). The
results are given in Table 6. These results were the same as
those given by Powell and Macdonald.

We now consider the same problem with no uncertainties in
~the Y, w,; =0 and w,; = 1. This may be considered an
ordinary least squares problem in a coordinate system with X;
and Y; interchanged. It would be an implicit model if we were
to use the same function; however, we first analytically inverted
it,

f=aa;' [(a7*x)"% — 1] .

The results are also given in Table 6. The parameter solution is
again slightly different from that given by Powell and
Macdonald; for example, they give a, = 32-5481. Their
approach to the problem would not allow direct application of
w,; = 0. What they had to do was apply some nonzero
wyi < Wyie

Conclusions

We have presented a method of solving the generalised least
squares problem wherein the adjustable independent coordin-
ates are eliminated and the problem reduced to one of ordinary
nonlinear minimisation of a function of the parameters only.
The approach adds versatility to the solution of the problem.
The availability of first derivative or second derivative methods
—either numerical or analytical—allows the application to
depend on the particular problem and on the computer size
and time available. Convergence acceleration techniques may
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