An interactive polynomial approximation algorithm

Karl-Heinz Mohn® and Roger V. Romant

The Remez algorithm for Chebyshev approximation of real continuous functions is adapted to an
interactive environment. With the aid of a graphic display terminal the user is directly involved in
each iteration, contributing global human logic and controlling the extent of iterative refinement.
The underlying mathematics, an implementation description, and several illustrative examples

are presented.
(Received May 1974)

The improvements in the economics of interactive access to
large-scale computing systems and the advancements in the
sophistication of interactive terminal devices in recent years
have combined to provide a rich environment for numerical
mathematical problem solving. Initially several general purpose
conversational systems were developed which were oriented
toward conventional typewriter-like terminals. Some of these
systems have been extended to utilise the additional power of
graphical terminal devices. For a survey of interactive graphical
systems for mathematics see Smith (1970).

In this paper we describe the implementation of an interactive
graphical algorithm for Chebyshev approximation of continu-
ous functions by polynomials. The implementation of this
algorithm addresses two main goals: first, the user should be
able to formulate his problem in ‘normal’ mathematical not-
ation and secondly, he should be included in the portions of the
problem solution process where his human mental capabilities
are more efficient than automated logic. In the first section of
this paper we describe the mathematical background of the
underlying procedure; in the second section the implementation
environment and organisation are described; and finally we
present some examples to illustrate the use of the resulting
system.

e
1. Mathematical formulation (following Ehlich (1967))
Given a continuous function f(x) over a closed real interval
[a, b] the objective of minimax polynomial approximation is
to find a polynomial P,(x) of degree n such that

E* = max |[E(x)| = max |[f(x) — P,(x),a < x<b
is minimal. It is shown in Meinardus (1967) that P,(x) is the

best polynomial approximation to f(x) on [a, b] if and only if
there exists a set of n + 2 points {x;} where

A< Xg <X, <...<Xpp1 <b

such that
E(x;ry) = —E(x)
and
max |[E(x)| = E* = |[E(x)|,i=0,...,n+1

The objective of the Remez algorithm is to iteratively determine
these n + 2 points at which the error function E(x) takes its
maximum value with alternating sign. In the following para-
graphs we describe how this is accomplished by means of
interpolation.

Initially we choose a set {x;}* of any n + 2 points in the
interval [a, b] and determine the interpolation polynomial
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Q?, ,(x) of degree <n + 1 such that:
o, x)=f(x),i=0,..,n+1
and a polynomial R, ,(x) of exact degree n + 1 such that
R, (x) = (-D),i=0,...,n+1.

Leta?, , and b}, , be the high order coefficients of Q) ,(x) and
R}, ,(x) respectively. If we then choose

v

L’ = an+1
v

bn+1

(1.1)

the polynomial
Pix) = 0),,(¥) — L'RY, (%)
is of degree <n and
Jx) = Pux) =ni—-1)L%i=0,...,n+ 1,n=*1.

This implies that we have already found a polynomial of degree
< n for which the error function E(x) assumes a unique value L
onthen + 2 points {x;}* with alternating sign. According to the
theorem of de la Vallee Poussin,

(1.2)

E* > |LY
holds. Consequently there are two possibilities:
@ E* =1L,

in which case we have found the best approximation poly-
nomial which is P}(x); or

®) E* > |L|

- in which case we exchange the set {x;}* for a set {x;}"*! such

that
SOt = Pytt) = n(=1)' g+t
with # = +1 and &*! > |L’| and for at least one x}**
£t = Py )l = /&) = Pyl

The exchange is done in the following manner. Let y be a
member of {x;}'*! bit not a member of {x;}".
Then if

(@ y — x} and
(i) sign (f — P))(x3) = sign (f — P))(y) then xy*! =y
and x}*!' =x%, fori=1,...,n+ lor

(i) sign (f — P))(x3) = —sign (f — P))(y) then x}*! =y
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and x}t1 =x%i=0,...,norif
®)x} <y<xy, for0<k<nand
@) sign (f — P)(x) = sign (f — P)(») then xp*i=y
and x}*! = x3, fori # k or
(i) sign (f — P))(x}) = —sign(f — P))(y) then x;,, =y
and x)*! = x},fori # k + 1 or if

(¢) x?,, <y we proceed analogously to case (a).
Now we agdin determine polynomials Q}11, R¥t}, and Py*1.
In this way we obtain a sequence of L” which converges to E *

(see Meinandus, 1967).

2. Program description and implementation

The previously described algorithm has been implemented
within the Numerical Analysis Problem Solving System
(Roman and Symes, 1968), NAPSS, which is itself imple-
mented on Purdue University Computing Centre’s CDC6500/
IBM7094 remote terminal system, PROCSY. Ninety per cent
of NAPSS and all of the approximation algorithm are written
in FORTRAN IV. The NAPSS system creates an interactive
mathematical problem statement and solution environment.
One significant feature provided allows the user to define a
wide variety of mathematical functions and manipulate them
with conventional functional operators such as differentiation
and integration. For example, the mathematical functions

g(x)=1+x

and

1+ xfor—-1<x<—-05
f(x) =< —xfor —0-5<x<0
x otherwise

can be represented as ‘symbolic’ functions G and Fin NAPSS by

G(X) <« 1/(1 + X)
and
F(X)«~1+ XFOR -1< X< —-05
«~—XFOR -05<X<0,
«X.
In a similar fashion functions may be defined in terms of two

vectors representing selected independent and dependent
variable values. For example, the statements

A+(1,2,3)
B« (4,5,6)
F(X < A)« B

define a “point-valued’ function F where F(1) = 4, F(2) =5,
and F(3) = 6. Such a function is useful for manipulating
certain types of experimental data and for retaining the numeric
solution of a differential equation. Requests for evaluation of a
point-valued function at undefined points are processed by
means of a cubic interpolation algorithm. In this sense point-
valued functions may be considered to be continuous.

Once the user has defined a function F which he wants to
approximate with a polynomial P of degree N on the interval
[4, B], he enters the NAPSS statement

APPROXIMATE F BY P ON 4 TO B DEGREE N .

In response to this statement the NAPSS processor generates a
six-step interactive approximation procedure.

. Step 1:
Using 4, B and N, generate N + 2 equally spaced interpolation
nodes X}, ..., X}, ,:in the interval [4, B].
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Step 2: =]

Using F, 4, B, N, and X}, ..., Xy, , generate +L"(1-1) ang
the coefficients Cy, . . ., Cy of the approximation polynomidf
P’ (1.2). (Here we used the fast algorithm described in
(Gustafson, 1971)).

Step 3:
Using the coefficients from Step 2 define the polynomial P} as
a NAPSS symbolic function in Horner’s form.

Step 4:
Using P and F define the error function

E(X) = F(X) — PY(X) .

Step 5:

Plot the function E and the two reference lines +L* and —L"
on the interval [4, B]. Now the user has three possibilities for
his response. In consequence.
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Step 6:

Determine if the user

(@) is satisfied with the error curve

(b) wishes to define a new degree N', in which case proceed to
Step 1

(c) wishes to replace some of the {X;}" by values extracted
from the plot of E(X). If so, generate a new set of {X;}**!

76

NEW DEGREC(RETURN OR VALUE):

ENTER, NEW POINTS: -000082400.07-5,
. * -.000000900.08-S,

NEH DEGREC(RETURN OR VALUE) :

Fig. 6

-000050400.0g-5, *
000032100, 0g-5

incorporating the new values and an appropriate subset of
{X;}"® as described in Section 1 and proceed to Step 2 with
v=v+ 1
Steps 1 through 4 are invisible to the user. Step 5 requires no
action from the user but the plot it produces is employed by
the user in determining his response(s) in Step 6.
The facilities required for Steps 3 through 5 were present in
NAPSS prior to the introduction of the APPROXIMATE
statement. Steps 1, 2 and 6 are implemented by a single driving
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subroutine with four service subroutines.

subroutine:

1. Distinguishes and supervises Steps 1, 2 and 6

2. Provides the interface between the NAPSS function and
vector data structures and the service subroutines which are
written in conventional argument-oriented FORTRAN

3. Handles error message processing.

The four service routines implement Step 1, Step 2, the inter-

active portion of Step 6, and the interpolation node replace-

ment portion of Step 6c.

The driving

3. Description and illustrations of an actual terminal session.
The graphics terminal employed in this implementation is the
IMLAC PDS-1 Graphics Display Terminal produced by
IMLAC Corporation, Waltham, Massachusetts. This terminal
consists of a minicomputer with an 8K 16 bit word, 2 micro-
second central storage, a keyboard for user input, and a display
processor which refreshes the display screen under the direction
of a program resident in central storage. In its present environ-
ment the PDS-1 communicates with the PROCSY terminal
system via a standard terminal interface. Aside from a fast
(600 baud) transmission rate this terminal receives no special
services from PROCSY.

A software package was developed which allows the user to
carry on conventional line-by-line interaction with PROCSY in
the lower portion of the screen while observing and manipul-
ating a two dimensional plot of one or more NAPSS functions
in the top portion. '

Fig. 1 depicts the initial phase of the approximation procedure.
The user has entered the NAPSS system, defined a function,
F(X) < 1/(1 + X), and requested an approximation of F by a
third degree polynomial P on the interval [0, 1].

Fig. 2 shows the status of the screen at the beginning of Step 6

References

of the approximation algorithm. An initial P}(X) has been
generated and the error function

E*(X) = F(X) = PYX)

as well as the +L! (= 0-0008929) and — L reference lines have
been plotted. At this point the user may change the degree of
the approximating polynomial or proceed to improve the third
degree approximation.

In Fig. 3 the user has indicated that a new degree is not
desired and was prompted to select one or more new X values
to replace members of {X;}! in the construction of {X;}?. The
PDS-1 program permits the user to manipulate X-axis and
Y-axis cursor lines within the body of the plot, independent of
the remote terminal system. In the lower right corner of the
plot area the current positions of the X-axis and Y-axis cursor
lines are displayed numerically:

X = 0012850:0,p — 5

Y = —000189000-0,, — 8
The user has positioned the X-axis cursor line (faintly visible
in the photograph) to select a value in [4, B], X* (= 0-12852j
such that g

|[F(X*) — PA(X®)| > |F(x) - P3(¥)|, A<x< B.

By depressing a function key on the PDS-1 keyboard, t
numeric value of X* is moved from the plot display to t

user’s current input line.
In Fig. 4 the new P2(X) has been generated, a plot of

E*(X) = F(X) — P¥(X)

Speojum

oe//:sdny WOF P

appears, and the user has selected another X* (= 0-44350) f(%
inclusion in {X;}>. 3

In Fig. 5 we see the final plot of the error function after one
additional iteration (not shown). After exiting the approxr:-
mation algorithm (by not supplying an X*) the user has wishe:?,i
to display the symbolic representation of P$(X),

I}
o
P(X) = —0-235514x> + 0-686345x> — 0-950831x + 0-99874%

The progress in the convergence of the approximation polm.

nomial can be observed by examining the values of L, whi
according to de la Vallee Poussin increase until the error curve
has attained its characteristic shape. In the initial plot (Fig. 3)
L' is 0-0008929. In the second iteration (Fig. 4) L? is 0-00116.
Finally, after the last iteration (Fig. 5) L* is 0-00126. 2
Figs. 6 and 7 illustrate the approximation of a function gf
multiple domains. Fig. 6 shows the definition of the functicn
G(X), the plot of the error curve for GP(X), and the usets
response. In this instance the user selected four points for
replacement during a single iteration. Technically this isa
purer example of the Remez algorithm than the preceding
one where single point replacement implements a one-for-oge
exchange algorithm. Fig. 7 is a simultaneous plot of G(X) and
GP(X) after the final (rather unsatisfactory!) approximatio%’.
~

4. Conclusions

As indicated in the mathematical formulation, this effort
centered about a known algorithm. It appeared to the authors
that the difficult portion of a fully automated Remez algorithm
the detection of relative maximas and minimas in the error
curve, might best be performed by human intelligence. This,
suggests that the development of new numerical analysis
algorithms especially for a graphical interactive-environment
may yield practical solutions in problem areas (multivariate
integration, for example) which are presently too thorny for
complete automation.
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Second International Conference on very large data 3
bases [
The second International Conference on VLDB will be held in 1976 and will focus on all aspects of very large data bases. The2

conference is scheduled to be held September 8-10, 1976 in Brussels, Belgium.

Solicited papers include (but are not limited to) the following areas:
DBMS gross architecture for very large data bases

Data base language specification for very large data bases

Security and access control

Sharing and simultaneous access

Structuring and restructuring

Integrity and recovery

User interface performance and evaluation

Technology transfer

Experience with construction and use of very large data base systems
Very large data base research centers

Distributed data base network

Toward very intelligent data base systems

Hardware for very large data bases

System performance measurement

Data base construction

The Conference will be chaired by: Professor Erich J. Neuhold, University of Stuttgart, W-Germany, Dr. Sakti P. Ghosh,
IBM Research Laboratory, San José, California and G. M. Nijssen, Brussels, Belgium

The program co-chairpersons are: Dr. Vincent Y. Lum, IBM Research Laboratory, San José, California and Professor
Peter Lockemann, University of Karlsruhe, W-Germany

Five copies of each full paper from America, Asia and Australia should be sent to Dr. V. Y. Lum, Computer Science
Department, IBM Research Laboratory, 5600 Cottle Road, San José, CA. 95193, USA; and full papers from Europe and
Africa to Professor Peter Lockemann, University of Karlsruhe, 7500 Karlsruhe, Postfach 6380, W-Germany. The deadline
for submission of papers is 15 April, 1976. Notification will be mailed by 16 June, 1976.
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A selected number of papers from the conference will be published in a special issue of ACM Transactions on Database
. Systems (TODS). All other conference papers will appear in the conference proceedings. Sponsors to support the conference
are solicited, eg. IFIP, ACM, ECI, IEEE.
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