Run time interaction with FORTRAN using mixed code

T. S. Ng and A. Cantoni

Department of Electrical Engineering, University of Newcastle, New South Wales, 2308

Australia

This paper describes an. interpretive function generator, COMPIL, for use with the PDP-11
FORTRAN COMPILER and Object Time System. The implementation uses a ‘mixed code’
approach, which enables the exchange of run time for program space. Other benefits include

improved debugging facilities and extended intera

ctive facilities such as the ability to define and

link functions at run time. This latter feature is especially useful on the PDP-11 as compilation
and linking of function subprograms takes an appreciable time.

(Received March 1974)

1. Introduction
The interpretive code generator, COMPIL, can be used in two
modes. The first one allows users to generate up to a maximum
of eight functions at run time: the source entered via a user
keyboard or some other input device is compressed into pseudo-
instructions by COMPIL. During execution when a function is
called, COMPIL again takes over control, interprets the
compressed code to execute the function. In the second mode,
COMPIL compiles FORTRAN subroutines into pseudo-
instructions and sets up linking information for Linker-11, thus
enabling a mixed code program to be produced and executed.

In both modes the potential for run time and program space
trade-off offered by ‘mixed code’, (Dawson, 1973; Dakin and
Poole, 1973), can be exploited. The first mode also offers the
additional bonus of run time function definition and linking.
An example of this latter feature, in a more generalised form, is
included as an integral part of the MULTICS System (Daley
and Dennis, 1968) in which a combination of hardware and
software is used to achieve run time linking of segments.

The ability to define functions at run time is found to be a
useful feature for certain program packages that require
functions as input data.

2. Design principle

The PDP-11 system installed in the Electrical Engineering

Department at the University of Newcastle has a 28K word

main memory, a 256K word fixed head disc and a 147K word

per tape dual Dectape auxiliary memory system. In view of
these facilities available at present, the following design rules
were adopted in developing COMPIL.

1. Core space occupied by COMPIL should be kept to a
minimum. :

2. It should provide powerful error diagnostics.

3. Commonly used FORTRAN statements should be incorpo-
rated and should be implemented in an open ended manner
so that new statements could easily be added.

4. Tt should be self-contained and in no way interfere with other
system software.

3. COMPIL statements

The COMPIL language includes standard FORTRAN

Logical and Arithmetic Assignment, GOTO, Logical and

Arithmetic IF, DO, SUBROUTINE CALL, RETURN,

EQUIVALENT and DIMENSION statements. COMMON is

permitted if the interactive code is generated before linking as

in the second mode of operation. In addition, the following
statements have special meanings:

I. FNI (Argl, Arg2, ..., Argn)—I is an integer from 0 to 7.
This fixed function name statement identifies the function
being defined at run time and serves as a dummy entry point
when functions are called.

Volume 19 Number 1

2. ENDF—This signifies the end of a function and causes exit
from COMPIL during function definition at run time.
Though only a limited number of statement types are allowed,
new statements can easily be added by changing the statemento
nmemonic table and adding the corresponding section of code=

papeolumBd

4. Run time function generation
Functions can be defined via user keyboard or other inputs
devices at run time through COMPIL. The user can call theg
function generator in his main program by incorporating thes
statement 2

eoe//

CALL COMPIL (DEVICE, NAME)

where ‘DEVICE’ is the input device and ‘NAME’ is the ﬁleg
name. The second parameter is optional for nondirectorys
devices such as keyboard and papertape. 2

In response to the calling statement, COMPIL will read froms
the specified file the user defined functions. Syntactic errors are
checked extensively to ensure that the least number of errors
survive till execution time as each statement is read. If errorg-
are detected, a message will be printed on the user console
together with the statement in error requesting the user to maké
the appropriate correction. When the input device is keyboard,
COMPIL will print out

€/16/1L16

READY
*

4
and wait for the function to be typed in. At the beginning o@
each line, COMPIL will type out * to indicate it is ready t¢®
accept further input strings. s
There is no restriction in the format of function statementss

The user is allowed to define his functions either as functio@*
subprograms or subroutine subprograms. In the former case;
the user has to assign his function value to a specified variabl
FVS$. If this variable does not appear in the function definitiony
COMPIL will assume the function to be a subroutine subw
program and the appropriate action will be taken durin§
execution time. For example,

READY

*FN2(E, F)

*K = E**3/F

*FV$ = E — F + SIN (K)

*RETURN
is a function subprogram with name FN2 while

READY

*FNO(A, N, C)

*DIMENSION A(N)

*D =1

*DO 101 =2.N

*10 IF(ABS(A()). GT.ABS(A(D)))D = |

O (A(D)() (A(D))

*RETURN
is a subroutine named FNO searching for the largest element of
an array A(N).

5. COMPIL as a compiler

A version of COMPIL can be used in conjunction with the
FORTRAN compiler to produce a mixed code program:
Subroutines compiled via COMPIL are compressed into
sections of pseudo-instructions. Linking information is set up
in such a way that whenever subroutines of interpretive codes
are called, the run time system of COMPIL will take over
control and interpret the subroutines. When COMPIL is used
in this mode, all linking is done through Linker-11.

‘References

6. Conclusion
It is realised that COMPIL involves a substantial run time
overhead (1:8K word) which means that the core run time
trade-off offered by mixed code is exploited only when many or
long subroutines are used.

The run time function definition feature is found to be quite
useful for certain program packages since on the present
PDP-11 system the process of compiling and linking new
functions is time consuming and inconvenient.

DakiIN, R. J., and PooLE, P. C. (1973). A mixed-code approach, The Computer Journal, Vol. 16, No. 3, pp. 219-222.
DALEY, R. C., and DEnns, J. B. (1968). Virtual Memory, Processes, and Sharing in MULTICS, CACM, Vol. 11, No. 5, May 1968, pp.

306-312.

Dawson, J. L. (1973). Combining interpretive code with machine code, The Computer Journal, Vol. 16, No. 3, pp. 216-219.

Testing overflow algorithms for a table of variable size

W. B. Samson

Dundee College of Technology, Bell Street, Dundee DD1 1HG

Large scatter tables which vary in size with time present a problem from the point of view of overflows.
This paper describes a program which simulates overflows and indicates which table sizes are to be

avoided when the size of the table is to be altered.

(Received February 1975)

1. Introduction

Ecker (1974) has shown that for a given table size a quadratic
hash or some related overflow method can be chosen to give a
period of search equal to the table size. If the table size varies
with time, as may well happen in the case of a scatter table,
then it is not usually practicable to alter the overflow algorithm
to suit. However, it will usually be possible to adjust the table
size by a small amount to give a period of search which is
adequate to contain any overflow that is likely to occur.

2. Overflow testing program
The program described below computes the period of search,
which is defined as the number of entries which appear in an
overflow sequence before any entry is encountered twice, and
the capacity for overflow which we define as the number of
positions encountered for the first time in an overflow sequence
before an endless cycle is entered.
e.g. Table size = M = 10 positions
Overflow algorithm:

rth position in sequence = (1 + 4r* — 4r)mod M (1)

Position Remarks

1 First time encounter

First time encounter

First time encounter

First time encounter

Second time encounter .*. Period = 4
First time encounter

Second time encounter

Last first time encounter .". Capacity = 6
Second time encounter

Second time encounter

Third time encounter

~

—_OoOVvooOI UMb WNE
Ao~ IRDN

ok k.

Reference

The period of search in this table is 4 and the capacity for
overflow is 6.

A program was written to simulate overflow for various table
sizes and overflow algorithms. The following table shows
results for table sizes in the region of 1,200 positions with
overflow algorithm (1).

Table size Period of Capacity for
(positions) search overflow
1,196 63 336

1,197 49 160

1,198 301 600

1,199 65 330

1,200 53 352

1,201 601 601

1,202 302 602

1,203 203 402

In the case of a table size of this order it is clearly more sensible
to choose 1,201 positions than 1,197 positions from the point of
view of overflows.

3. Conclusions

When one is dealing with a variable table of large size, it is
advisable to simulate overflows for table sizes in the region of
the preferred table size to find the most favourable size for
overflow considerations.

Acknowledgements

I am grateful to Dr. R. H. Davis and Mr. J. R. Lowe for helpful
discussions leading to the work described here and to the staff
of Dundee College of Technology Computer Centre for their
help in preparing and running the program.

ECKER, A. (1974). The period of search for the quadratic and related hash methods, The Computer Journal, Vol. 17, No. 4, pp. 340-343.

92

The Computer Journal

no-olWapese//:sdyy Wol) papeojumMog

©
Q
o]

w

=
Q
(]
3

=
[V

Z Indy 6| uo3senb Aq 8561 2€/16/1/61/0101M

o
[}
N

