Correspondence

To the Editor
The Computer Journal

Sir

The postage stamp problem
With reference to W. F. Lunnon’s article (this Journal, Vol. 12,
p. 377) and J. L. Seldon’s letter (this Journal, Vol. 15, p. 361),
I should like to point out that the solution to V (8, 4) is 221 not 213
as reported by M. L. V. Pitteway.

The unique set of stamp values obtained were, 1, 3, 8, 12, 32, 54,
73, 99.

The program was written in CORAL 66 and run on a Modular
One computer. The serial method of computation was employed
and total processing time was approximately 100 hours.

Yours faithfully,

B. P. PHILLIPS

Telecomms Technical Officer
ATCEU
Hurn Airport
Christchurch
Dorset
13 January 1975

To the Editor
The Computer Journal

Sir
A note on APL

In the face of the current low-profile sales campaign for APL, 1
would like to argue that the trend to greater use of APL is undesir-
able. This.is not a statement made without due consideration: I
speak as an ex-addict whose access to APL was forcibly cut off when
the money to pay for the terminal ran out, and having got over the
withdrawal symptons I can now take an objective view.

APL arouses strong passions, and people either love it or hate it.
However, it tends to be assessed as an indivisible package and
accepted or rejected on the basis of one feature (e.g. array operations,
or right-to-left evaluation). In fact the APL ‘package’ contains a
number of separate components that can be judged independently.
These include:

(a) the terminal interface to the user
(b) the array operations
(c) the concise notation.

The terminal interface is excellent. The system responds in an
intelligent way, provides very good editing facilities, uses line-image
techniques to ensure that what the user sees is what the computer
sees, and it is almost impossible to fool the system with illegal
commands or keystrokes. The only criticism is that the error
messages take brevity to the extreme. There are only four different
messages, and each consists of two words, one of which is ERROR.
Indeed, the response of the APL system to a program error is
reminiscent of the mourner on an Irish funeral procession, who on
being asked ‘who’s dead ?” replied ‘The man in the box up front’.
With this exception the human engineering of the terminal interface
is superb, and much of the acceptance of APL is probably due to
the fact that its interface is so much better than most other terminal
systems, and incomparably better than other IBM systems. However,
this is really nothing to do with APL as a language, and there is no
reason why other language systems should not be similarly
engineered. (The trouble is that, as in many other aspects of com-
puting, the mass of users just don’t know what is possible.)

The array operations are a great attraction of APL, and although
it is undoubtedly convenient and powerful to be able to manipulate
arrays as a whole, this is not unique to APL—similar facilities can
be provided, for example, in ALGOL 68 by a library prelude.

Volume 19 Number1

Moreover APL (like FORTRAN and ALGOL 60) forces everything
into arrays, even when a record structure would be more appropriate.
The array capability of APL is a major contribution to the concise-
ness of an APL program. Another contribution to conciseness is the
extended character set, and the large number of built in operations
that are identified by a single character. Whilst it can be argued that
APL takes conciseness to undue extremes (in the same way that
COBOL extols the virtues of verbosity) there is a lesson that could
be learned with advantage by other language designers and imple-
menters. For how much longer are languages to be constrained by
using a character set that may have been good enough for Herman
Hollerith in 1890, but is pathetically inadequate for the expression
of scientific algorithms? g

The third contribution to conciseness is the syntax (or lack of 1t)§
and the notorious ‘right-to-left’ evaluation rule. Many critics off
APL base their criticism solely on the right-to-left rule, seeming notz
to realise that you could have a left-to-right rule without changing™;
any of the other features of the language. The real criticism of theS
language, in my view, does not lie in the ‘syntactic salt’ of order of>
evaluation, but is to be found in the impoverished syntax and the6'
consequent possibility of ingenious coding tricks (in both of whlch:
APL resembles assembler language). The syntax restricts functxonsg
to have zero, one or two arguments, and if they have two arguments>
the function must be written in infix form. Moreover, function namess.
have to be alphanumeric: here as in the right-to-left rule APLS
violates mathematical tradition, since in mathematics infix operatorss
are almost invariably non-alphabetic symbols. (It is interesting to3
note that the designers of POP-2 were aware of this notationalE.
convention: in POP-2 the class of names includes sequences o
signs e.g. + +, *** (=) etc., so that true infix operators can be=:
defined.) The APL syntax prov1des no control structures other tham
go to, the destination of which can be a computed line number.o
Although the facility of operating on whole arrays largely removeg
the need for a for construction, the repeat while is still needed, andse
has to be achieved by a conditional jump which in my experience 153
invariably opaque.

Thus the only structuring of APL programs is into functions: w1thm__
a function there can be no structure. The power of the language is3
such that it encourages all sorts of trickery (variously described as_
‘the one-line syndrone’ and ‘pornographic programming’) ancg
therein lies its fascination and its greatest danger. By encouragings
the use of APL we are encouraging the production of unstructured”
programs that are incomprehensible to other programmers (and>
possibly to their originators). We are discouraging collectiveo
‘ego-less’ programming: we are going back to the worst days of theZ
assembly-language whizz kids. There is much in APL that we could=
profitably absorb into other languages (notably the array facilities)>
but, like marijuanha and alcohol, the unrestrained use of APL is~
socially unacceptable, and requires restraint.

Yours faithfully,
D. W. BARRON
Department of Mathematics
The University
Southampton SO9 SNH
10 June 1975

To the Editor
The Computer Journal

Sir
Efficient Automatic Overlay—an added advantage of goto-less
programming languages
The problem of allocating store dynamically to program segments






