
Database integrity

R. A. Davenport
Scientific Control Systems Ltd, Sanderson House, 49-57 Berners Street, London W1P 4AQ*

This paper discusses the options available to a systems designer in producing a system that has
requirements for high data integrity. Such requirements are often typical of transaction-oriented
systems. Models are provided which will allow performance predictions to be made for particular
examples.
(Received June 1975)

Data base integrity
System availability may be defined as functional integrity, the
ensuring of integrity of the information processing system and
of the processes operating within. Data integrity on the other
hand is the protection of vital data against loss or damage
caused by hardware or software failure. Data integrity therefore
may be preserved while functional integrity is not. A system
may tolerate a reduced availability but it is unlikely that it will
tolerate a loss of data integrity. The most important data is
normally that held in the system files, therefore the most
important form of data integrity is file integrity, particularly if
the files are large integrated data bases dealing with all aspects
of an organisation's business. This paper discusses both system
availability and file (or data base) integrity. It does not attempt
to cover the wider subject of computer security of which
availability and integrity are but a part. Computer security in
general is the subject of a great deal of ongoing research
(Browne, 1972; Canning, 1971; Canning, 1972; Hoffman,
1969; Martin, 1974).
The data base in any information processing system (batch or

online) is of the utmost importance containing as it does the
information that is being interrogated and/or updated by the
terminals or peripherals. Because of its importance, maintaining
the integrity of the information held in the data base is of
prime concern to the systems designer.
The integrity of the data base may be affected by a software, a

hardware, or operator malfunction. The malfunction may be of
a magnitude serious enough to either completely destroy the
data base or to leave it in a state that its contents cannot be
vouched for. It is therefore necessary for the system to possess
the ability to recover from such a malfunction while maintain-
ing the completeness (or integrity) of the information held
within the data base.

There are a number of malfunctions (error situations) that can
arise which affect data base integrity. The errors may be
undetectable or detectable. If undectable errors are not trivial
the integrity of the data base is already lost. The responsibility
rests on the application to devise and execute appropriate
consistency checks to reduce the possibility of such errors to as
low a figure as possible. Detectable errors may be detected by
hardware, by software or manually. Hardware detected errors
are either self-correcting which requires no software action, of
a type that produces a warning, or instant, which produces an
error on failure of the hardware. Software detected errors may
either cause an abort of an application program, an abort of the
operating system or be errors in the content of the data base.
As well as software and hardware malfunctions, for trans-

action oriented systems there are the problems of concurrent
processing, i.e. the simultaneous accessing of the files by a
number of users. The problems as outlined by Waghorn (1968)
and Collmeyer (1971) are:

1. Concurrent update
This can lead to inconsistencies in the data held by the file and
is usually solved by 'locking' records that are to be updated.

2. Deadlock
This can be as a result of the locking mechanism introduced to
deal with the first problem. Dealing with it may be the respon-
sibility of the data base management system, the transaction
monitor or the operating system. Shemer and Collmeyer (1972)
have shown that the problem does not occur to a significant
extent in a typical system.

3. Time consistency of data
This can be due to chains of insertions and deletions eventually
causing inconsistencies to develop, due to the order in which
they are applied, as discussed by Waghorn (1968). Florentin
(1974) has proposed the use of mathematical logic as an aid to
dealing with this problem.

Methods of preserving integrity
There are three distinct methods for preserving data base
integrity.

1. Generation
In this method (often known as the grandfather/father/son
method) transactions are combined with one physical version
of a data base to produce a new physically separate version.
The previous version and the transactions that accessed it are
maintained as well as the new version. In the event of a mal-
function the file is recreated from the old version and the
transactions. More than one generation of the data base and its
relevant transactions may be maintained.

2. Dumping
If a data base is updated by the updateinplace method where
the old version of a record is overwritten by the new version
then the generation method cannot be applied. An alternative
is to dump the data base at appropriate intervals onto some
suitable physical medium which is retained together with the
transactions that were processed after the dump was performed.
This technique has been employed for the recovery of direct
access files in batch processing systems, (Gunton, 1969). In the
event of a malfunction the data base is restored from the copy
and the transactions processed since the dump are reprocessed.
An alternative to reprocessing the transactions is to retain a
separate copy of the updated records. The data base is then
restored by replacing the relevant records by their updated
version. This is similar to the incremental dumping procedure
of Fraser (1969) except that in that case the entire file that has
been altered is dumped. A slight modification to the foregoing
is to not perform insertions or deletions of the records in the

•Now at London School of Economics, Houghton Street, London WC2.

110 The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/19/2/110/408539 by guest on 19 April 2024

data base between dumps but to have the records of the data
base that were added available to transactions as well as the
version of the data base that was dumped. The collection of
updated records is known as a change file. At suitable intervals
the data base and the change file are merged to create a new
data base. This data base is then dumped to produce the new
backup copy. This approach has the advantage of minimising
the exposure of the data base to the duration of the batch merge.
The taking of backup copies for recovery purposes is generally

known by the general term 'dumping'. However there are two
approaches that may be taken in implementing the copying
process. These are:

2.1. Dump IRestore
Dump/Restore is the simplest approach in that the data base is
copied exactly as it stands onto the medium that will hold the
backup copy. The advantages of the approach are its speed, the
likelihood of the availability of the program for performing the
copying and its easy implementability. The main disadvantage
is that because of the indiscriminate nature of the approach
errors that exist in the data base are transferred onto the backup
copy. An approach that may be taken before dumping is to
check all records that have been altered since the last validation.
The validation program could pass through the file examining
closely all records with a control number greater than that at
validation. This examination would involve looking at all the
record linkages and checking, where possible, for logical
consistency.

Validation after dumping can be performed by employing the
dumped copy as the data base that is accessed by subsequent
transactions. The original copy of the data base then becomes
the backup.

2.2. Unload/Reload
Unload/Reload approach strips off a copy of the data base
which is in a form ready to be reloaded. This means that the
logical structure of the data will have to be taken into account
as well as the data. Therefore the time taken to produce a copy
will be proportional to the complexity of file organisation.
Rather than a simple copy utility program, a retrieval program
will have to be employed that retrieves each record. This
retrieval program will perform either all or a considerable
proportion of the validation of the information held in the
master file. All the data and, if the file organisation is complex,
most linkages will be checked. Validation is achieved by
reloading the master file immediately after performing the
unloading. In other words the master file is reorganised at the
same time as a backup copy is produced.

3. Duplication
Identical versions of the same file are updated in parallel.
These files would normally be on separate storage devices.
Only the last two methods are suitable for a transaction

oriented (or online) system because the processing mode
employed in such a system is random (and in some cases skip-
sequential). The generation method of maintaining data base
integrity is suitable only for the serial or sequential mode of
processing as employed in typical batch processing systems.
Successive sections will discuss only dumping or duplication
methods of maintaining data base integrity.

Data base recovery with dumping
Since a software or hardware malfunction will occur at some
stage in the life of the system it is necessary to define the pro-
cedure by which the data base can be restored after such a
malfunction. The procedure will be dependent on the method of
preserving data base integrity that has been chosen and also on
the particular requirements of a transaction oriented environ-
ment. Examples are given by Oppenheimer and Clancy (1968),

Volume 19 Number 2

Tonik (1971) and Wilkes (1972).
It has already been stated that to recover from a failure either

the messages that caused updates of the data base or the updates
themselves must be preserved. They would be preserved on a
file called the log file (or journal). These are combined with the
dumped copy of the data base to produce the data base as it
was at the point of failure. However there is a problem if only
the messages are retained. This is because it is not possible to
determine what stage had been reached in processing the
message when failure occurred. On restart a particular record
may be updated for a second time (double updating) or may not
be updated at all. If only copies of the updated records are
preserved on the log then the integrity of the data base will be
maintained as far as the system is concerned but the terminal
user will not be certain of the exact state of the file. This is
because he cannot be sure whether a message that was success-
fully transmitted performed an update of the required record.
In other words the integrity of the data base is maintained by
the system but it may be destroyed by the user. The user may
assume that the processing of the message has updated the
record when it has not and he therefore does not retransmit the
message. Similarly assumption of nonupdating of the record
leads to the retransmission of the message which may cause
double updating of the record. The problem is exaggerated if a
number of records can be updated by a single message and if a
multithreading mode of operation is employed.
Consequently to maintain integrity both messages and copies

of updated records, the 'after' images, should be preserved.
In the event of a failure the data base is restored from the
dumped copy and brought up to the state it was in at the time
of failure by reading the log file in reverse order to the order in
which it was created and replacing the original records by their
updated versions. As normal logical addressing of a file
extends only to the physical record level, a data change would
be recorded by dumping at least the entire physical record
which has been subject to update. If the file is very large, one
may have to deal with cyclic dumps in which different areas of
the data base have been dumped at different times thus
requiring additional co-ordination of the after image log. A
two-level scheme for dumping and sorting the logs may be
employed to minimise reconstruction time (Drake and Smith,
1971). In the first level records are appended to the current log
as updates occur and at the same time the logical ID of each
updated record is appended to a small auxiliary file. The
second level consists of an update of a sorted log file and this
job can be run whenever conditions permit. All records updated
since the previous update of the sorted log file have their
identities recorded (perhaps many times) in an auxiliary file.
This file is first sorted by logical address and then the log file
update is run with modified records being copied from the
data base. To reconstruct the data base the sorted journal can
be merged with the last data base dump, and the resulting
version updated by the most recent copies of records in those
first-level log tapes which have not yet been accounted for by a
second-level log update. This sorting reduces the time required
for reconstruction in the event of a failure. If the system is
operating in a single thread mode of operation then the last
message, i.e. the first one read, on the log file is the one that
was being processed when the failure occurred. Any copies of
updated records caused by the message are not written onto the
master file. This is because the exact point during the processing
of the message that was reached when failure occurred is not
known. On restart the processing of the message is commenced
from the start. There is a problem though that it is not possible
to determine whether or not the output message for the second
last message received has been successfully transmitted
Even more important for a system operating in a multi-thread,
mode since a number of messages may be being processed when
the system fails, is the output message transmission complete

111

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/19/2/110/408539 by guest on 19 April 2024

indicator to determine from the log which messages were being
processed. The order on arrival of messages does not neces-
sarily correspond to the order of completion.
There is a further item of information which if recorded will

•aid the task of recovery. This is a copy of records that are about
to be updated in their preupdate state, the 'before' images.
This information will allow recovery from trivial errors due to
a program error or the transaction being incompleted without
the need for restoring the complete data base from the back-up
•copy. Trivial errors are defined to be errors that affect only a
small proportion of records. The records affected can be
restored from the log file alone and reupdated if required
also by reprocessing the relevant messages. The 'before' image
is the same as the 'after' image of the log tape created after the
dump before the last. The main reason for storing both 'before'
and 'after' images is to cut down the search time and thus the
recovery time. Whether or not this information is recorded will
depend on the size of the data base (and hence the time taken to
recover) and the time taken to record the information, which
will affect the throughput capability of the system.
To summarise, the components needed for data base recovery

where dumping is the method of recovery are (a) a copy of the
data base taken at some convenient point, and (b) a log of
interactions with the data base since the dump was taken. To
allow full recovery so that ambiguities do not exist, the follow-
ing information should be recorded on the log:

{a) input message (or a sub-set that will allow processing to
commence)

{b) copy of records after they are updated
(c) output message transmission complete indicator.
Optionally a copy of updated records before they are updated
may be recorded to minimise the time taken to recover from
trivial errors.

If the data base itself is not updated but updates are collected
on a change file, then the data base is restored solely from its
dumped copy while the changes file is restored solely from the
log.

Data base recovery with duplication
The procedure for recovery when duplication is employed is
simpler than that for dumping.
If there is a software or hardware malfunction and one copy

of the data base is corrupted or is inaccessible then recovery
consists of simply switching to a mode of operation that involves
only the serviceable copy. This copy will be the only version
that is subsequently referenced and updated. A problem then
arises when the first copy is repaired as it will be out of step
with the second. There is a necessity for blocking all accesses to
the data base until the repaired copy can be brought up to date
by having itself copied to by the serviceable copy.
There would seem to be no need for a log when duplication is

employed. However it may be when extreme security is required
and a second redundant copy of the data base is maintained by
means of the log and a dumped copy. Also a reduced log is
required to prevent the sort of ambiguities faced by the user
that were discussed earlier and to recover from a failure that
occurred during the actual updating operation.

Instead of recording a copy of a record in its after update
state the before update copy is written on the log. Therefore the
information recorded in the log file is the following:
(a) input message

(b) copy of the record that is about to be updated

(c) output message transmission complete indicator.
When recovering a fault the log file is read backwards as before
but only information pertaining to incompleted processing is

112

retrieved. The messages are replaced in the input message queue
and the relevant records restored to their original state. On
restart those messages that were incompletely processed are
reprocessed from the start in their original order of arrival.

Performance
1. Normal overhead
In the type of systems being considered (information pro-
cessing), the factor that will have most effect on the normal
performance of the system will be the number of input/output
operations. Normal performance is defined to be the per-
formance of the system at times other than at failure or
recovery. The overhead due to extra processing will be in-
significant due to the relatively low level of processor utilisation.
Therefore the difference in normal performance between a
high availability system utilising dual processors and a single
system will be negligible. Consequently only the performance
of the file subsystem will be considered. The system considered
will be assumed to employ a log file. There are two components
of performance that will be examined: normal performance
which is a function of the overhead introduced by the recovery
system, and restart time, the time to reconstruct the files after
a system failure.
The performance is defined to be the response time of the file

subsystem to a particular request. Response time is defined to
be the time from the initiation of a data transfer request to the
completion of the transfer operation. Mean response time is a
function of the following system properties:

(a) equipment characteristics

(b) equipment configuration

(c) file organisation, including block length and the degree to
which the most frequently used files are placed on adjacent
cylinders

(d) system loading, i.e. number of requests per unit time.

The analysis considers the master files to be located on disc
storage devices and the log on magnetic tape but extensions to
deal with other devices would be quite straightforward.
The type of devices employed in the study is typified by the

IBM 3330 for the disc storage device and by the IBM 3420 for
the magnetic tape device.
A number of assumptions are made:

1. File requests arrive at each of m disc module queues in
identical independent Poisson streams with a mean arrival
rate of XI m.

2. Plot of arm motion distance against time is approximated by
a straight line.

3. Queue scheduling is FIFO.

4. Arm motion may be initiated without the availability of the
channel.

5. Seek addresses are evenly distributed over the disc cylinders.

6. Direct access file organisation is employed, i.e. one file
access per request.

It is well known that the mean response time for a single-
server, unlimited queuing system with Poisson arrival
distribution is given by the Pollaczek-Khintchine formula.

-£(•- i t)]
Tq is the mean file response time, Tm is the mean module
s e i ti i th d l li ^

p , m
service time, pm is the mean module utilisation and
variance of module service time.

is the

The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/19/2/110/408539 by guest on 19 April 2024

The module service time, Tm, consists of arm motion time,
Ts wait time in the channel queue and service time within the
channel Tc. An approximation as shown by Seaman, Lind and
Wilson (1966), can be made to module service time by intro-
ducing a blocking factor £>,-, which represents the channel
utilisation due to all other modules except i, the one arriving

(2)

where Tc is the mean channel service time
a2

c is the variance of channel service time
D t = pc - >HTCi

pc is the mean channel utilisation and A,- and TCl are the traffic
rate and the channel service time of the /th module respectively.
The variance of the module service time is approximately

< = o\ + *l + Pm -Ts- Tcf (4)
For a disc storage device, channel service time consists of
rotational delay plus information transfer time. The mean
rotational delay can be assumed to be the time to complete half
a revolution. Information transfer time depends on the physical
record size and is rotation time, R, divided by the number of
physical records in a track, S.

(5)

For a magnetic tape device the channel service time is block
transfer time, B plus interblock gap time, G.

TC1=B + G . (6)

Arm motion time can be described by a linear function of the
number of cylinders travelled.

Ts = a + bn

where a and b are constants and n is the number of cylinders
travelled. Since it is assumed that requests are uniformly
distributed over the discs' cylinder addressed then it can be
shown that the mean number of cylinders travelled is approxi-
mated by N/3 where N is the number of cylinders containing
records (N > 1).
i.e. Ts = a + bN/3 (7)

If A is the total traffic rate to the disc storage devices in accesses
per second then the traffic rate, A,, to the magnetic tape device,
which contains the log file, will be a function of the proportion
of accesses that are writes and the amount of information that
is recorded.

i.e. A, = pll (8)

where p is the proportion of accesses that are writes and /is the
number of records written per write access.
If there are m storage devices (m — 1 disc storage devices)

then channel utilisation pc is given by

where

PC = £ k,Tel
i= 1

A.- =
w - 1

(10)

The overall mean channel service time can be calculated by
weighting the two types of service by their frequency of
occurrence.

i.e. A/rcf
/

m

(11)

By substituting equations (10), (8); (5) and (6) into (11), the
mean channel service time can be obtained.

The variance of mean channel service time can be obtained in
a similar way. The variance of channel service time for a disc
storage unit is given by R2/l2 (uniform distribution). The
variance of channel service time for a magnetic tape storage unit

is zero.
m r

i = l L
+ (Tc, - Tc)2 £ Ai

1 = 1

(12)

The variance of arm motion time is given by (bN)2/\2 (uniform
distribution).
It is now possible to solve equations (2), (3) and (4) and hence

equation (1). This then gives the mean response time for all
traffic. However each type of access will differ from the
composite response because of different channel service times.
This can be adjusted for by subtracting out the mean channel
time and adding in the time corresponding to each access type.

i.e. Tqt = Tq - Tc (13)

An example is taken in which the storage devices employed are
the IBM 3330 disc and the IBM 3420 magnetic tape. It is
assumed for the disc that there are 20 physical records per
track. Also a = 15, b = 0.113 and R = 17 milliseconds.
(The effect of rotational position sensing is ignored.) For the
magnetic tape the records are singly blocked and have a size
of 1000 characters. The interblock gap time is 4.8 milliseconds
and transfer rate is 100,000 characters per second.
The effect on overall response time of a number of parameters

for different configurations are illustrated. The parameters
considered are

(a) the proportion of file accesses that are writes
(b) the amount of information that is logged
(c) the rate of file accesses.

Four configurations are examined. They are

(a) one disc device and one magnetic tape sharing a channel
(b) four disc devices and one magnetic tape sharing a channel
(c) one disc device and one magnetic tape each on separate

channels
(d) four disc devices on one channel and one magnetic tape on

another channel.

For any configuration the file access response time for a read,

— — 1 dice, 1 tit*:

l~i: H^-ic-t Rat/:

Fig. 1

Volume 19 Number 2 113

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/19/2/110/408539 by guest on 19 April 2024

6OO

4OO

Response

(msec)

2OO

4 Discs on 1 channel

1 Tape on 1 channel

4 discs, 1 tape on 1 channel

2 log records

50% reads,

1 log record

5O% reads

100% reads

1O . 20

Disc Request Rate

(per second)

30 40

Fig. 2

TR, is Tqt and for write, Tw, is Tqt + Tqt

The overall file access response time is
T=(l-p)TR + PTW . (14)

The different configurations have their main effect on the
channel service time for an individual type of request. Where
there are two channels there are two separate queues for the
file accessing traffic and the logging traffic.
In the example considered the limiting factor on overall

performance depends on the particular configuration. For the
case of a single disc storage unit (Fig. 1), the performance of the
disc will be the limiting factor whether or not it has a dedicated
channel. If it does have a dedicated channel, the performance
threshold is only increased marginally. Also the amount of
information logged has little effect on performance limits.
For the case of four disc storage units (Fig. 2), the provision of
a separate channel has a marked effect. If a dedicated channel is
provided for the tape unit then the utilisation of the tape unit is
the limiting factor. If a dedicated channel is not provided then
channel utilisation becomes the limiting factor. As would be
expected, the amount of information recorded has more effect
on performance for the single disc unit case. For the case of a
single channel, having two log records per write request instead
of one reduces the throughput capability by nearly 50%.

The performance of the tape unit will have a marked effect
on performance in any configuration. For example (Fig. 3) if
the IBM 3420 is replaced by the IBM 3410 which has a transfer
rate of 20,000 characters per second and an interblock gap time
of 48 milliseconds, then the overall throughput capability is
reduced by over 80% due to the bottleneck caused by the tape
unit.

2. Data base recovery time
The case of a system employing the dumping method of data
base security is considered. Recovery time for a system employ-
ing dual copies will be negligible (time for switchover plus
reprocessing of current transactions).

The time necessary for recovering when duplicate versions of
the files are maintained online is negligible, i.e. of the order of
seconds or less.
The size of the log which has to be scanned in the recon-

struction of a file is directly proportional to the rate of update
and the elapsed time since the last file dump. This assumes that
the log file contains only after image copies. The file has to be
reconstructed m times between file dumps. In many files as
additions and deletions are made, the search cost deteriorates
and a reorganisation to reduce the search cost is called for. It
would seem economical to perform such a reorganisation when
the file backup is.created, i.e. it is assumed that the interval
between failures is less than the interval between dumps (or
reorganisations).

The number of records, n, is assumed to remain constant, i.e.
the rate of additions to the file equals the rate of deletion.
Also most records can be retrieved in one access but some are
overflow records which require two accesses. It is assumed that
no records require more than two accesses. The number of
overflow records is n0. Shneiderman (1973) has dealt with
the optimum reorganisation interval problem.
The average search cost for retrieving a record whose entry

address is known is

((n- no)/n)b
b{\ + (no/«))

(no/n)2b (15)

114 The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/19/2/110/408539 by guest on 19 April 2024

6OO .-

4O0 .

Response

(msec)

200 .

r 2 log i"e cords

r—

I

/1

1 log

" "

record 1]Log record

4

' L^

4 discs on

1 tape on

7 1 siow tape

/ /

/

^^^^ Fast tape

jL —

•

4 discs, 1 tape

- on 1 channel

1 channel

1 channel

2

1
1
1
1

y

log re
1

i

\

\

1

I

10 20

Disc Request Rate
(per second)

30

- 5O% reads

4O

Fig. 3

The loss due to not reorganising is

L(t) = L(vt'b/n)nsdt' = (vbns/n)(t2/2) (16)

where v is the rate of increase of overflows. The cost of re-
organisation, R is a function of the time since the last reorgani-
sation and can be estimated as the retrieval time for all records
plus the time to write every record again. Thus cost of re-
organisation is cost of retrieval plus cost of rewrite
i.e. R(t) = (nb + nob) + nb = 2nb + vtb . (17)
It is assumed that the average time between failures requiring
reconstruction is a and that t is some multiple of a. The cost
of reconstruction is proportional to the number of updates.
If it is assumed that the number of updates is a constant
fraction, p, of the number of requests then the rate of update is
given by pns (pn, > v).
The cost of reconstruction, E, is a function of the time since

the last reorganisation (or dump) and can be expressed as the
time to read and write the records held on the dumped copy
plus the time to read and write the log. It is assumed that the
average search cost for each access is b for both the dump file
and the log file. Extensions to deal with different search costs
are quite straightforward. Therefore E{i) the cost of the ith
reconstruction is given by

E{i) = 2nd + Ipnfibi .
The total reconstruction cost between reorganization is given
by (/ = ma).

E(t) = £ [2nb + 2pnsabi

= (2nb)(t/a) + pnsb{t + o)(r/o)] (19)
Summing the total loss from inefficient searching, the cost of
reorganisation and the cost of reconstruction for one interval,
the cost is given by

C(0 = (vbns/n)(t2/2) + (2nb + vtb)
+ (2nb)«la) + pnjb{t + a)(t/a) (20)

If the system is to run for a length of time T = Nt, then the
total cost is

C(0 = Z b(vnJ2n + pnja)t2 + In

+ (y + pns + 2n/a)t

= Tb{vnJ2n + pnja)t + 2n/t (21)
+ (v + pns + 2n/a)

Taking the derivative with respect to time setting the result to
zero

dC/dt = vnjln + pnja - 2n/t2 = 0 .
Solving for t

t = 2nl(vns + 2pnsn/a)i . (22)
If there were no insertions or deletions v would be zero and we
have the result obtained before by Drake and Smith (1971)

t = (2na/pns)
i . (23)

Volume 19 Number 2 11S

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/19/2/110/408539 by guest on 19 April 2024

Acknowledgements
The author wishes to thank his colleagues at SCICON and the
LSE Systems Research Group for their advice and assistance.
It is wished to make particular mention of Mr. F. F. Land and

Mr. S. J. Waters of the Statistics, Mathematics, Computing
and Operational Research Department, London School of
Economics.

References
BROWNE, P. S. (1972). Computer Security—A Survey, Data Base, Vol. 4, No. 3, pp. 1-12.
CANNING, R. G. (Editor) (1971). Security of the Computer Centre, EDP Analyser, Vol. 9, No. 12, pp. 1-15.
CANNING, R. G. (Editor) (1972). Computer security: Backup and recovery methods, EDP Analyser, Vol. 10, No. 1, pp. 1-15.
COLLMEYER, A. J. (1971). Database Management in a multi-access environment, The Computer Journal, Vol. 4, No. 6, pp. 36-46.
DRAKE, R. W., and SMITH, J. L. (1971). Some techniques for file recovery, Australian Computer Journal, Vol. 3, No. 4, pp. 162-170.
FLORENTIN, J. J. (1974). Consistency auditing of databases, The Computer Journal, Vol. 17, No. 1, pp. 52-58.
FRASER, A. G. (1969). Integrity of a mass storage filing system, The Computer Journal, Vol. 12, No. 1, pp. 1-5.
GUNTON, A. (1970). Recovery procedures for direct access commercial systems, The Computer Journal, Vol. 13, No. 2, pp. 123-126.
HOFFMAN, L. J. (1969). Computers and privacy: A survey, Computing Surveys, Vol. 1, No. 2, pp. 85-103.
MARTIN, J. (1967). Design of Real Time Computer Systems, Prentice-Hall.
MARTIN, J. (1974). Security Accuracy and Privacy in Computer Systems, Prentice-Hall.
OPPENHEIMER, G., and CLANCY, K. P. (1968). Considerations for software protection and recovery from hardware failures in a multi-access

multi-programming, single processor system, Fall Joint Computer Conference, Vol. 33, pp. 29-37.
SEAMAN, P. H., LIND, R. A., and WILSON, T. L. (1966). On teleprocessing system design: An analysis of auxiliary-storage activity, IBM

Systems Journal, Vol. 5, No. 3, pp. 158-170.
SHEMER, J. E., and COLLMEYER, A. J. (1972). Database sharing: A study of interference, roadblock and deadlock, ACM SIGIDET Workshop

on Data Description Access and Control, pp. 147-163.
SHNEIDERMAN, B. (1973). Optimum data base reorganisation points, CACM, Vol. 16, No. 6, pp. 362-365.
TONIK, A. B. (1971). Recovery of on-line data bases (Panel), ACM National Meeting, pp. 103-112.
WAGHORN, W. J. (1968). Shared files, File 68, International Seminar on File Organisation, Copenhagen.
WILKES, M. V. (1972). On preserving the integrity of data bases, The Computer Journal, Vol. 15, No. 3, pp. 191-194.

Book review
Combinatorial Programming: Methods and Applications, edited by

B. Roy, 1975; 386 pages. (D. Reidel Publishing Company, $3600)

This is the proceedings of a NATO Advanced Study Institute held
at Versailles in September 1974. The contents are largely concerned
with graph-theoretic problems, branch and bound programming and
set partitioning. The authors and titles of the individual papers are:

Part I General methodology
H. Miiller-Merbach. Modelling techniques and heuristics for
combinatorial problems.
P. Hansen. Les procedures d'exploration et d'optimisation par
separation et evaluation.
P. L. Hammer. Boolean elements in combinatorial optimisation.
G. B. Dantzig and C. B. Eaves. Fourier-Motzkin elimination and its
dual with application to integer programming.

Part II Paths and circuits
B. Roy. Chemins et circuits: Enumeration et optimisation.
M. Gondran. Algebra and algorithms.
N. Cristofides. Hamiltonian circuits and the travelling salesman
problem.
J. Rrarup. The peripatetic salesman and some related unsolved
problems.
J. F. Maurras. Some results on the convex hull of the Hamiltonian
cycles of symmetric complete graphs.
F. Glover and D. Klingman. Finding minimum spanning trees with
a fixed number of links at a node.

Part III Set partitioning, covering and packing
E. Balas and M. W. Padberg. Set partitioning.
R. E. Marsten. An algorithm for large set partitioning problems.
J. Frehel. Le probleme de partition sous constrainte.
M. W. Padberg. Characterisations of totally unimodular, balanced
and perfect matrices.

116

J. Edmonds. Some well-solved problems in combinatorial
optimisation.

Part IV Other combinatorial programming topics
D. de Werra. How to colour a graph.
I. Tomescu. Problemes extremaux concernant le nombre des
colorations des sommets d'un graphe fini.
D. de Werra. A few remarks on chromatic scheduling.
A. H. G. Rinnooy Kan, B. J. Lageweg and J. K. Lenstra. Minimising
total costs in one-machine scheduling.
E. L. Lawler. The quadratic assignment problem: a brief review.
P. Hansen. Fonctions devaluation et pe"nalites pour les programmes
quadratiques en variables 0-1.
C. Sandi. Solution of the machine loading problem with binary
variables.
H. Miiller-Merbach. The role of puzzles in teaching combinatorial
programming.
The papers form a very mixed bag: some of them are good or at

least respectable, while others would probably have been rejected
by referees if they had been submitted to journals in the usual way.
It is a pity that this habit of publishing conference proceedings in
book form has grown up. It bypasses the normal filtering system by
referees, it deflects good papers from the journals which are regularly
scanned, it imposes an additional financial burden on libraries, and
it often (though not in this case) results in delays in publication.
(Amongst the papers in this collection, the Dantzig and Eaves paper
had previously been published in the Journal of Combinatorial
Theory).
There is more theory than practice in this book. Some of the authors

take the trouble to investigate whether their methodology or their
algorithms would actually work if put on a computer; but, taken as
a whole, the book is not an adequate guide or introduction to sound
computing practice in this field.

J. M. HAMMERSLEY (Oxford)

The Computer Journal

• I

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/19/2/110/408539 by guest on 19 April 2024

