
An investigation into database resilience

P. A Dearnley
School of Computing Studies, University of East Anglia, Norwich NR4 7TJ

The concept of data base resilience is defined. A particular class of data base systems is examined
for features which support resilience. The conduct of a series of experiments on an actual system is
reported.
(Received July 1975)

Definitions
In normal English usage the word resilience is taken to mean
the power to resume original shape after compression; in the
context of data base management the term data base resilience
is defined as the ability to return to a previous state after the
occurrence of some event or action which may have changed that
state. The particular state of interest is the logical content of a
data base. The physical state of the data base may also be of
interest if access to the knowledge of this physical state is
allowed to application programs. However this knowledge is
increasingly denied to application programs in the attempt to
preserve data independence (CODASYL, 1971) or to simplify
data access by removing the need for navigation (Date and
Codd, 1974) and thus returning to a previous logical state is
often sufficient. One type of event or action expected is an error
in the operation of the system. Hence a particular type of data
base resilience of interest is the ability to return to a previous
logical data base after the occurrence of an error which may
have damaged the logical data base. Terms related to the con-
cept of resilience are: privacy, security and integrity. Privacy
is denned as 'whether or not a particular individual should have
access to a specific piece of information' (Conway et al, 1972)
and security as 'preventing unauthorised access to a file'
(Dearnley, 1973). Integrity is defined as 'the safe-guarding by
the system of information entrusted to it' (Wilkes, 1972).
Thus data base resilience includes the ability to maintain
integrity and a particular type of occurrence for which resilience
is useful is the breaching of security with a subsequent un-
authorised change to the data base. Similar definitions of these
terms may be found in Browne (1972).

Provision for recovery
A conventional data base management system allows the data
administrator to make various provisions for the recovery of a
data base from erroneous change. The facilities provided usually
include one or more of physical copying, logical copying and
quick-looks (Fossum, 1974, Palmer, 1973). A physical copy of a
data base is produced by dumping both data and control
information on a track-by-track basis, from the original data
base medium to the back-up medium without any regard for
format or logical content. This operation is comparatively quick
but it does not allow validity checking or data reorganisation.
To remake the data base after an error has been detected the
physical copy is restored from the back-up medium. The
construction of a logical copy of the data base is performed with
the knowledge of the relationships between records and of the
format of records. While the data base is unloaded onto
the back-up medium, validity checks can be performed and
the opportunity occurs for 'garbage' to be deleted. During the
reload operation the data allocated to an area may be re-
organised to improve subsequent performance. Thus a logical
copy may be preferred to a physical copy; however the unload
and reload times for the logical copy will be longer than dump

and restore times of the physical copy. The quicklooks method
involves taking a copy of a page of the data base, on a direct
access file, immediately before a run-unit makes its first change
to that page. A limited number of such 'looks' are kept to
provide a rapid but limited recovery mechanism. All these
provisions for recovery consist of deliberately introducing data
redundancy into the environment of a data base system which is
usually designed to eliminate redundancy within the base
itself. Some systems do not explicitly include in their design
criteria the deliberate and consistent removal of duplicated
data. In such systems different methods of recovery may be
appropriate. Two of the types of systems which allow redun-
dancy are the 'conventional' data processing system based on
sequential files and the 'self organising' data management
system. The conventional data processing system based on
sequential files maintains 'grandfather', 'father' and 'son'
master files which are updated in reconstruction mode thus
allowing recovery to be effected by stepping back one generation
and rerunning the system (Clifton, 1969). The self organising
data management system creates and exploits duplication to
provide cost effective alternative access strategies. Depending
upon the nature of the redundancy and the location of the
erroneous change to the data base, this duplication can also be
used for recovery.

Self organising data management systems
This class of system is designed to meet the following criteria:
1. The system has the capability to determine and implement

suitable structures for the files held in the data base.
Structures are chosen with the object of minimising the total
cost of known or predicted accesses.

2. The access strategy adapted is constructed by the system.
3. Any correctly specified task can be completed by adopting

some access strategy and the user is given a cost quotation
in advance.

4. The system can restructure or update files as a result of an
accepted cost quotation, or, by observing patterns of usage
and predicting that a different structure will be economically
advantageous to the body of users.

5. The user is allowed to leave requests for tasks in the system
in the hope that batching or structure changes will eventually
reduce the cost of his task to an acceptable level.

The original concept of self organising data management
systems is described in greater detail elsewhere (Stocker and
Dearnley, 1973; 1974). A natural consequence of such design
criteria is the complete separation of the user view of data
(called the folio) and the physical structure of this data (referred
to as versions of the folio); this is essential since the system is
free to change the physical structure according to data usage.
This separation means that to exhibit resilience a self organising
data management system's base need only return to a logically

Volume 19 Number 2 117

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/19/2/117/408660 by guest on 19 April 2024



correct state and a different physical state after an error con-
dition is permissible. This logically correct state may already
exist due to redundancy; that data originally used to answer one
type of request and which is now damaged may also exist (to
support data access for a different type of request) in another
part of the base. The ability to dynamically select access paths
(criteria 2 and 3 above) means that the self organising data
management system can automatically make use of the alter-
native copies of the data if the definition of the damaged part
is removed from the base; indeed the 'route finding' algorithm
will select the cheapest access strategy if several alternatives
exist. If the type of access for which the damaged version was
originally used is frequent then the folio management algorithm
may cause the version to be reconstructed by the system without
the intervention of a data base administrator (see criteria 1 and
4 above). Hence the concept of a self organising data manage-
ment system allows considerable potential for automatic data
base resilience. To investigate this potential a series of experi-
ments were conducted on an actual system.

Error detection
Before any recovery mechanisms can be employed it is neces-
sary to be aware than an error has occurred and that the data
base is damaged. Of the many types of errors that can occur one
of particular relevance is the damage to a page of data on, or
being returned to, the physical storage medium of the base.
The presence of this damage may be noted when a block of data
cannot be read back to primary memory or when it fails con-
sistency checks after reading but prior to processing. Checks
on field content and record format can be performed during the
invocation of a run-unit and the data base administrator
informed if errors are suspected. Checks on overall data base
structure can be carried out during logical unload and reload
operations or using a special structure auditing utility program
(Stross, 1972). If a run-unit suspects error in the base then the
data base administrator may, himself, use a special utility
program to validate (or locate errors) in part of the data base.
The experiments carried out on a self organising data manage-
ment system use the audit program approach.

Test system
The system on which a series of experiments into data base
resilience has been performed is a model of a self organising
data management system. The model system implements design
criteria 1 to 4 above and is a 'model' in the sense that it operates
on a reduced size data base (only up to one million bytes) and
does not deal with important but not crucial issues such as the
elegance of the user interface. However it is a working model
and contains the necessary route finding, folio management
and version access routines in addition to a simple user query
language. It is described in more detail in Dearnley (1974a).
The model system is used to demonstrate that a viable data
management system can be built along self organising guide-
lines and to obtain operational experience from such a system
using a number of data bases under varying conditions
(Dearnley, 1974b).
The system maintains three areas of data: a system directory,

a system map and an area holding versions of user data. The
system directory contains information describing the user view
of data and the system internal view of data at a logical level.
The user view of data is described in a record called the folio
header; this record contains a simple tabular presentation of all
the attributes known to a user for a particular collection of his
information, and, a list of the versions containing the various
physical representations of this information. For each such
version there is a version header record describing the parts of
the folio represented by that version, the record layout and the
type of organisation employed. A further record, the search

addendum is held for each version; this contains statistical data
on the usage of this particular part of the representation of the
folio. The system map is a series of blocks packed with the
mapping between pages of the data base with relative addresses
and the physical geometry of a particular direct access storage
device. Parts of the map are loaded into main memory when the
system is started up and only those parts which are changed to
represent the creation of new versions or the deletion of old
versions are written back to the system map area. The third
area contains the versions of user data and temporary work
files. The content is defined by the system directory, and, ver-
sions and work files are located according to the system map.
Thus this area can be thought of by the user as the 'data base'
and the two former areas are regarded as being private to the
system. In the model system the directory and map occupy less
than four per cent of the space occupied by the user data area.
There is no appreciable duplication in the system directory or
map but due to their comparatively small volume they can be
cheaply backed-up with physical dumps. The user data may
contain duplicate versions in different organisations or have
fields duplicated in subrecords or records duplicated in subfiles
depending upon the trade-off between the cost of the usage of
existing versions and the cost of creation (or restructuring),
followed by a preferred access method, on a new version. It is
in these versions that one might expect duplication to provide
some measure of automatic resilience without resort to back
up of user data by physical or logical copying.

Experiments
The experiments are run in four separate phases. The first
phase simulates the random damaging of the data base; this is
followed by an audit phase which attempts to find the location
of the damage. These two phases are repeated one hundred
times to provide variety in the location and extent of the
simulated damage. The result of the audit phase, if any, is in
terms of the damage at a physical level, the third phase takes
this result and determines the effect of this damage at the
logical level as viewed by the system. The final phase determines
the implications for the user view of the data base of the damage
at the system's logical level. The overall sequence of operations
and the use of the data base and intermediate files is shown in
Fig. 1.

Corruption
Before attempts to damage the data base are made a utility
program, REPORT, is run to provide information on the
current status of the data base at both the user level (i.e. folio
definitions) and at the system logical level (i.e. version defini-
tions). To simulate damaging the data base a special program,
CORRUPT, is loaded. CORRUPT selects, at random, one of
the areas of the data base; the directory, the map or the user
data. The frequency of selection of any one area is biased to
reflect their relative sizes. A page, word and extent within the
chosen area are then selected. These selections are, again, made
at random. The chosen page is read into primary store. The
undamaged copy of the page is written, along with the area
name and page address, to the 'save file'; this allows the data
base to be reconstructed prior to another experiment. The copy
of the chosen page in primary store is corrupted by storing a
sequence of random numbers starting at the randomly selected
word address and continuing for the randomly selected extent.
The corrupted page is then rewritten to the area. The page
transfers requested by CORRUPT are routed to a special
input/output package so as to avoid the validity checking and
housekeeping portion of the data base system file handler.

Audit
A second program, AUDIT, is loaded to attempt to locate the

118 The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/19/2/117/408660 by guest on 19 April 2024



Fig. 1 Overall sequence of operations

position of the damage. AUDIT has knowledge of the design
decisions made for page layout, location of control fields, etc.
but it does not use any of the information held in the current
directory or map (this could itself be corrupt). The auditing
consists of trying to read each page in each of the three areas
and performing consistency checks on successfully read pages.
The nature of the consistency checks varies with the type of
area and the type of record. Each page in the user data area
has both user data records and system control data; the system
data includes a page checksum, usage counts, the identity of
the version of which this is a page and time and date last
written. The checksum is recomputed and checked; the
remaining fields are tested for radix and range and the free
space in the page is checked to ensure that each unused word is
set to 'null'. The format of pages in the system directory (folio
and version headers, search addenda) is known exactly, thus
every field is checked for radix and range and the relationship
between fields is checked.
There are no checksums on system directory or system map

pages. The system contains a mapping between logical pages
and physical pages for every version. The map is followed (but
without accessing the pages of user data) for each version,
checking the radix and range of each map element and the
particular format of the first and last elements. All the empty
space in the map is checked for null element values. Whenever
a page fails the appropriate set of checks its area name and page
address are appended to a 'pages hit' file.
After the corrupt and audit phases have been run once the

data base is returned to its original correct state using a utility
program, RESTORE, which copies the contents of the 'save
file' back to the appropriate part of the base. This whole pro-
cess is repeated one hundred times creating a 'pages hit' file for
subsequent analysis. The first two phases are separated from

the analysis phases for operational convenience; the analysis
phases do not require the user data area to be on-line and thus
are more cheaply run apart from the corrupt and audit phases.

Analysis 1—physical to logical internal level
The third phase loads the first of the two analysis programs,
this program processes the 'pages hit' file and produces a file of
'versions hit'. If the page hit is in the system directory area then
the analysis performed depends on the type of record damaged.
The type of the record is deduced from the inverse of the key-to-
address transformation function used to locate records in this
area. If the record damaged is a search addendum then no user
information has been lost. Although the system has lost a set
of search statistics this does not affect the validity of the version
searched but means that the reorganisation of the version may
be postponed since the statistical evidence supporting re-
organisation must be collected again from the current time
period. If the record position hit is a version header then the
folio header is checked to see if this version position is in use;
if the position is in use then the version identifier is written to
the 'versions hit' file. If the record position hit is a folio header
then the definitions of a complete set of versions have been lost
and the system cannot continue without this folio header being
reloaded. Fortunately folio headers occupy only a small part
of the system directory area which itself occupies less than
four per cent of the total space allocated to the data base.
When a user data area page is hit the system map is processed

with each logical to physical map being followed until the value
of the next physical address corresponds with the damaged
page. The identifier of the version owning the map being pro-
cessed is then written to the 'version hit' file. Suspect system
maps are processed in a similar fashion. Each map is followed
until the next map element would be on the damaged page.
All the maps are processed since one page of the system map
may have map elements from more than one map and thus
more than one version may be inaccessible due to damage on a
single page of the system map. The overall iogic of this process
is shown in Fig. 2.

Analysis 2—logical internal to user level
The fourth phase loads the second of the two analysis programs.
This program reads the folio and version headers from the
system directory and builds a table containing the description
of the data base. A record from the 'versions hit' file is read and
the part of the data base defined by the record as damaged is
deleted from the data base description. The resulting data base
description is restructured as a graph with each field represented
as a node and each version represented as a set of arcs between
the fields of that version. If the graph is connected then the
user view of the data base is unchanged and the data in the
damaged version can be accessed by some route using one or
more other versions. In this case no action is required to return
the data base to the correct logical state. If, upon analysis, the
graphical representation of the data base description is more
than one connected graph then to restore the data base to its
correct form it is necessary to supply links between the graphs
to create a single connected graph. The user is informed by the
system of the fields within the groups making up each graph
and of those fields with the fewest duplicate values to help him
decide which links to provide. Thus the user may be able to
provide a comparatively small portion of the data base and
hence effect recovery without the high cost of a complete
physical reload. This process is repeated for every record on the
'versions hit' file.

Experimental results
The CORRUPT and AUDIT programs ran one hundred times.
This caused one hundred different parts of the data base to be

Volume 19 Number 2 119

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/19/2/117/408660 by guest on 19 April 2024



FOLLOW

MAPS TO

IDENTIFY

VERSION

o
-/STOP J

DIRECTORY

INVERT
KEY-TO-ADDRESS
FUNCTION

ADDENDUM

Fig. 2 Analysis 1—Physical to internal logical

damaged. The audit program was able to detect 98 of the
occurrences of damage; two occurrences were not found and
no spurious occurrences were reported. The 98 occurrences
•were comprised of four version header positions, one search
addendum position, nine pages of the system map area and 84
pages of the user data area. The first analysis program identi-
fied 11 versions which were damaged. The second analysis
program found that in all 11 cases the version damaged was not
essential and that the data base continued to be usable. This
last result was due to the large amount of redundancy in the
test data base (the data used is that example one in Dearnley,
1974b). The second analysis program was also tested on an
artificially contrived set of damaged versions to ensure that the
graph processing algorithms functioned correctly. These
results are summarised in Table 1.

Cost comparison
If the number of disc accesses required to read or write the
entire data base is n and the number required for the system
directory and map together is m then the cost of the physical
copy dump and restore method is 4(« + m), i.e. read the data
base and write the dump followed by read the dump and load
back to the data base. The cost of using the inherent resilience
of the self organising system with the appropriate audit and
analysis programs is 3m + 5 + B where (a) if the data base is
still usable 5 is zero else 5 is the cost of providing that set of
links that join the usable section of the base and (b) e is the cost
of writing the 'pages hit' and 'versions hit' files. It is assumed
that e is insignificant. Thus the best case is 3m and for other
cases the value of <5 may vary considerably but it is reasonable

Table 1 Experimental results from test data base
1. Page positions 'hit'

System directory area
Folio headers 0
Version headers 4
Search Addenda l
System map area
Starts of Maps 0
Map Element blocks 9
User data area
Data pages 84

98

Corrupt pages not found 2

Total 100

2. Versions lost due to 98 occurrences of corruption 11
User supplied linkages required to allow base to be
used 0
Natural resilience allowed base to be used 11

Total 11

to assume that it will always be less than copying the entire data
base. Since n ~ 25m in the current system the value of 5 can
approach An before the physical copy system becomes economic.

Implementation and assessment
The results of the series of experiments suggest that it is worth-
while to implement a single program based on the audit and
analysis programs used in the test. This program would be used
to investigate suspected corruptions of the data base and to
report any action which might be required to effect recovery.
In addition to relying upon the inherent resilience of the self
organising data management system it would be prudent to
maintain a physical copy of the system directory and map. In
the experiments performed the first phase never damaged a
folio header, but if this occurred in normal operation access to
all versions of the folio would be lost, hence some back-up
facility is highly desirable. The data base used in the experi-
ments contained considerable duplication which will not
always be the case and a user of such a system may wish to
ensure that complete recovery will always be possible. The user
could keep a physical copy of the data base to either completely
reload if the task of supplying missing links is too great for him
or to select those parts containing the damaged versions by
examining the system map. This combination of techniques
would cost 5m + d + E + 2n; the addition 2n covers creating
a physical copy of the user data area and the additional 2m is a
copy of the system directory and map. Ignoring e, as before,
and assuming n ^ 25m then the combination of physical
dumping and 'natural resilience' costs 55m + 3 against 104m
for the normal physical dump and reload. Thus the 'best'
saving is 49m, when 6 is equal to zero (as occurred in all the
test cases) and the worst possible case is a loss of m when a
complete reload is necessary and 6 is equal to 2«. Most cases
would involve reloading a relationship of less than the entire
data base and thus 5 would usually be much less than 2« and a
saving would accrue.

References
BROWNE, P. S. (1972). Computer Security—a Survey, Data Base, Vol. 4, No. 3.
CLIFTON, H. B. (1969). Systems Analysis for Business Data Processing, Business Books, London.
CODASYL Data Base Task Group Report, 1971.

120 The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/19/2/117/408660 by guest on 19 April 2024



CONWAY, R. W., MAXWELL, W. L., and MORGAN, H. W. (1972). On the implementation of Security Measures in Information Systems
CACM, Vol. 15, No. 4.

DATE, C. J., and CODD, E. F. (1974). The Relational and Network Approaches: Comparison of the Applications Programming Interface,
Proc. 1974 ACM-SIGFIDET workshop on Data Description, Access and Control.

DEARNLEY, P. A. (1973). Low-cost File Security, Management Informatics, Vol. 2, No. 4.
DEARNLEY, P. A. (1974a). A Model of a Self-organising Data Management System, The Computer Journal, Vol 17, No. 1.
DEARNLEY, P. A. (1974b). The Operation of a Model Self-organising Data Management System, The Computer Journal, Vol. 17, No. 3.
FOSSUM, B. M. (1974). Data Base Integrity as provided for by a particular Data Base Management System, In Data Base Management

edited by Klimbie, J. W. and Koffeman, K. L., North Holland.
PALMER, I. (1973). Data Base Management, Scicon.
STOCKER, P. M., and DEARNLEY, P. A. (1973). Self-organising Data Management Systems, The Computer Journal, Vol. 16, No. 2.
STOCKER, P. M., and DEARNLEY, P. A. (1974). A Self-organising Data Management System, in Data Base Management, edited by Klimbie,

J. W. and Koffeman, K. L. North Holland.
STROSS, C. O. M. (1972). Operation of a Disc Data Base, The Computer Journal, Vol. 15, No. 2.
WILKES, M. V. (1972). On preserving the Integrity of Data Bases, The Computer Journal, Vol. 15, No. 3.

Book review
Microcomputers: Fundamentals and Applications, edited by G. Cain,

1975; 211 pages. (Miniconsult, £900)
Minicomputer Evaluation and Selection, edited by G. Cain, Y.

Paker and P. Morse, 1975; 172 pages. (Miniconsult, £900)
Minicomputers: In Industrial Process Control, edited by G. Cain,

Y. Paker and P. Morse, 1975; 172 pages. (Miniconsult, £900)

These three volumes form part of a series of (so far) six sets of course
proceedings. They comprise the proceedings of three three-day
courses given at the Polytechnic of Central London. It is one of the
duties of polytechnics to provide education in technology by running
both long and short courses. These volumes record how well short
courses at a professional level are run by the Polytechnic of Central
London. They are 'professional' in that they are aimed primarily at
users and potential users of mini- and micro-computers. Though
the courses are organised by academics, the authorship of the col-
lected papers forms a nice mixture of academics and professionals
each operating from their own standpoints.
The great advantage of organising courses as distinct from con-

ferences, on technical subjects, is that the organisers can choose their
authors and guide them as to what is wanted and how it should be
presented. This allows the whole presentation to have continuity
and completeness in a way that conferences often have not. It allows,
too, the inclusion of papers and presentations of a basic and intro-
ductory nature. Thus the people attending the courses are all brought
to within a common basis of knowledge and vocabulary so that they
can benefit from the more advanced and specialised material which
must, for many, be the main interest in the course. The organisers
of these courses have had this point much in mind and so each of
these volumes emerges as a text-book of a rather expensive, 'state-of-
art' kind, even though it is a collection of papers by different authors.
Thus, the books are truly useful to people who did not, or could not,
attend the courses themselves. They are useful, too, in that they
contain quite a lot of valuable basic and reference material such as
glossaries, surveys and lists of participants which help the reader to
gain an idea as to who, and what organisations, are interested in the
subject material, in their capacities as makers, developers and users.
So much for the general review; the remainder of this review deals

with the individual sets of proceedings in date order.
Minicomputers in Industrial Process Control, edited by Y. Paker,

G. Cain and P. Morse; the course was held in March 1973.
This volume is aimed at process control engineers. Since the
organisers were aware that some of the course participants were not
over familiar with the entrails of digital computers, the proceedings
start with a paper by Y. Paker on 'Basic principles'. This is a subject
covered by many people many times before but rarely so well. This
paper would provide a good introduction to any text on digital
computers, whether mini or otherwise. It would be a good set of
proceedings, indeed, if all were as good as Paker's, which they are
not and so they suffer by comparison. Cain's paper which follows,
entitled 'The Minicomputer as a control element' attempts to bridge
the gap between what computers can do and what control engineers
want to do, or should want to do. It is somewhat more flowery than
Paker's paper and it loses by contrast also by leaning towards selling
the mini as a device. A third introductory paper by D. J. Fraade, of
Swiss Ciba-Geigy, is entitled 'Minicomputers in process industries'.
It is somewhat replete with 'overviews'—which are 'in' things and
some comparative cost studies. It loses in objectivity by being
largely an exhortation by an enthusiast. Nonetheless, these three
papers do make up a useful introduction to the papers which follow,
which become increasingly detailed and instructive. The first of this
group by B. West of UMIST is entitled 'Control of processes' and is
considerably more down to earth and objective than its predecessor.
This is followed by useful contributions on interfacing, software
and system design as general topics.

The final group is made up of three interesting and well assembled
applications lectures.on 'Control in the oil and chemical industries'
by J. D. F. Wilkie of GEC-EUiott, 'Continuous control in rolling
processes' by M. Dean of British Steel Corporation and 'Sequence
control in fine chemicals, plastic and dyestuff production' by P.
Burton of Kent Automation. It would be difficult to make a signi-
ficant improvement on these three applications as a cross section of
the subject. In all, this is a useful book both for reading and
reference.
Minicomputer Evaluation and Selection, edited by G. Cain, Y

Paker and P. Morse, based on the course held in June 1973.
There are now many minicomputers available and many people who
could afford to use them. A principal problem is to map the one

Continued on page 131

Volume 19 Number 2 121

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/19/2/117/408660 by guest on 19 April 2024


