
CAM 01: A precedence analyser

S. J. Waters
LSE, Houghton Street, London WC2A 2AE

This paper discusses the concepts of precedence networks and matrices as applied to large infor-
mation processing systems. These concepts have been built into precedence analysers which are useful
software aids for systems analysts, designers and programmers. CAM 01 is a standalone precedence
analyser which requires little investment to exploit and is now available for field trials, demon-
strations and practical use.
(Received June 1975)

This paper is further 'fall-out' from the CAM research project
being carried out at the London School of Economics. This
research is investigating computer-aided methods of developing
computer-based information processing systems. The project,
outlined by Waters (1972), is adequately financed by the Science
Research Council.
The first phase of the CAM project studied current theory

and practice, mainly in the highly-technical field of computer
systems design. This research disproved some established but
false techniques and suggested some new techniques; further,
a manual design method was proposed which structures design
decisions, and their alternative choices, with respect to design
objectives to yield guidelines.

The current phase of the CAM project is attempting to prove
the technical feasibility of computer-aided design along the
lines suggested by Waters (1974c). A necessary first step has
yielded a precedence analyser that automatically traces some
of the relationships between elementary information items.
This program, CAM 01, has useful applications at all stages of
systems definition, design, implementation and maintenance
and is fundamental to further research into computer-aided
methods of systems development.
This paper discusses precedence networks, their associated

precedence matrices, and some precedence analysers with
suggested applications. Future developments to CAM 01 are
also indicated.

Precedence networks
An information processing system can be viewed as a collection
of procedures that transforms elementary information items
into further elementary information items. Here, as in systems
analysis, the emphasis is on information with procedures being
sub-servient to the flow of information. This is opposite to the
practice of many programmers who (possibly falsely?)
emphasise procedures to the detriment of information flow.

Following Stamper (1973), an elementary information item
(subsequently abbreviated as 'element') can be regarded as a
sign in semiotics that:

1. Represents an entity (e.g. stock number)
2. Represents a property of an entity (e.g. quantity in stock)
3. Represents a relationship between entities (e.g. substitute

stock number for an unavailable stock number), or
4. Represents an event (e.g. date that stock was last sold).

Once a 'real-world' entity, property, relationship or event has
been denoted by an element then it can be manipulated within
a logical model of the system.
Following Grindley (1966), an element of this model can either

be 'given' to the system or be 'derived' by procedures in the
system. Following Waters (1974a), an element can occur in
input messages, data base, output messages or as a transient,

122

strategic element. Fig. 1 reconciles these views by analysing all
possible occurrences of elements against the types of elements.
A procedure derives an element from other elements which are

given or previously derived. Thus, a procedure generates an
element from input elements that are termed 'first-order
precedents' of the output element. For example, the decision
table of Fig. 2 derives an element from four first-order pre-
cedents which are used in decision-making and/or in action
taking. As it stands, this particular procedure may be entirely
programmed, assuming the factual first-order precedents are
available to the computer; however, if the procedure were to
include a management reduction in Christmas bonus due to a
human decision on poor employee performance (based on
punctuality, dress, non-cooperation, etc.), then it may not be
entirely programmable. The contents of this paper are relevant
to both types of procedure and therefore embrace human
systems as well as computer systems; the reader can restrict his
view to the latter, if appropriate.
The elements of a system can be represented by the nodes of a

network where each branch denotes that its source element is
a first-order precedent of its destination element: this is
illustrated for the decision-table in Fig. 2, where a derived
element is synonymous with the procedure that derives it.
Such a directed graph is termed a 'precedence network'.
Clearly, a total system may inter-relate many sub-systems in
practice and therefore requires a large and complex precedence
network, possibly containing thousands of elements.
This concept of information precedence networks was first

introduced to the author during informal discussions with

Type of
element

Given

Derived

Occurrence of element

Input
messages

V

Fig. 1 Analysis of all

Input Transient
data base

V
V
V
V

V

Output
data base

V
V

V
V

V
V

Output
messages

V

V
V

combinations of element occurrences

The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/19/2/122/408670 by guest on 19 April 2024



Decisions Rules

Is employee a member
of the established staff?
Is employee's length of

V
service > 10 years?

3. Is employee male?

Actions
Christmas bonus =
1.1% of annual salary
2. 2% of annual salary
3. 5% of annual salary
4. 10% of annual salary

V
V

X

X

X

X

V

X

X

X

X

V

X

V

First-order
precedents

Status

Length of _
service U '

Annual
salary

Christmas bonus—derived element

Fig. 2 Decision table procedure for deriving Christmas bonus

Professor P. A. Losty, now at Cranfield Institute of Technology.
A large engineering company was attempting to manually
examine such a precedence network for its total system but was
meeting with some difficulty! An alternative approach is to
input the precedence network into computer software that may
use graph theoretic approaches to automatically analyse the
network. Typical results output by such an analysis include:

1. Full precedence list
This identifies all precedent elements of each derived element.
If element A is a first-order precedent of element B, which is
itself a first-order precedent of element C, then element A is
termed a 'second-order precedent' of element C; for example,
if the procedure of Fig. 2 follows another procedure which
derives length of service from date of joining and current date,
then these latter two elements are second-order precedents of
Christmas bonus; similarly for precedents of order three, four,
five, etc. Thus, precedent elements of all orders are listed for
each derived element.

2. Full successor list
This identifies all derived elements that have each element as a
precedent, whatever the order of precedence. If element A is a
nth order precedent of element B, then element B is termed a
'wth order successor' of element A; for example, in Fig. 2
Christmas bonus is a first-order successor of length of service.
Thus, successor elements of all orders are listed for each
element.

3. Cycles list
This identifies all elements that are contained in each cycle of
the precedence network. If element A is a precedent of element
B, which is itself a precedent of element C, which in turn is a
precedent of element A, then elements A, B and C form a cycle
or loop in the precedence network. Notice that elements A, B
and C are each precedents of themselves in this case; further,
cycles may span hundreds of elements and be deeply embedded
in the precedence network.

4. Independent sub-networks list
This identifies all elements that are contained in each indepen-
dent sub-network of the precedence network. Two sub-
networks are independent if no element of one is a precedent
or successor of any element of the other; thus, there are no
branches between the elements of one sub-network and the
elements of another.

5. Similar elements list
This identifies all those pairs of elements having similar pre-
cedents or successors to each other. For example, the following
similarities can be listed:

5.1. First-order precedents
Elements A and B are similar if all the first-order precedents
of one are also first-order precedents of the other.

5.2. Given element precedents
Elements A and B are similar if all the given elements that
are precedents of one are also precedents of the other.

5.3. First-order successors
Elements A and B are similar if the first-order successors of one
are also first-order successors of the other.

5.4. Terminal element successors
An element is termed 'terminal' if it has no successors; elements
A and B are similar if all the terminal elements that are succes-
sors of one are also successors of the other.
Lists 5.2 and 5.4 would normally exclude element pairs where

one element is a precedent of the other.
Thus, computer software may automatically analyse a large,

complex precedence network to produce listings that are
tedious and costly to provide by manual means. Also, the
precedence network may be revised and re-analysed more
efficiently by computer software than by manual means.

Clearly, network analysis has been exploited in other appli-
cation areas. Burman (1972) and others discuss project control
using PERT for critical path analysis. Langefors (1966) and
others discuss production control using BOMP for parts
explosion or resources 'implosion'. Thus, the intention here is
to exploit similar techniques in the area of systems development
to achieve 'loose-end analyses' and 'derivation cascades'.

Precedence matrices
Langefors (1966) pioneered the application of precedence
networks to information processing systems. Although some
aspects of this thought-provoking work are not practical, it
does include a useful technique for representing the 'variable-
length' precedence networks as 'fixed-length' precedence
matrices. Some of the manipulations of precedence networks
are then conveniently described in terms of (Boolean) matrix
algebra.
A precedence network containing elements 1,2, ...,N is

represented by a first-order precedence matrix (Py)1 where
and j each take values 1, 2, . . ., N; thus, (Py)1 is a square
matrix of size N x N and contains one row and one column
for each element. An entry Py of the first-order precedence
matrix is given unit value if element i is a first-order precedent
of element j , otherwise Py is given zero value. Fig. 3(a) illust-
rates a simple precedence network and Fig. 2>(b) represents the
corresponding first-order precedence matrix (Py)1. Clearly,
given elements have zero columns, terminal elements have zero
rows and the leading diagonal should be zero since no element
is allowed to be a first-order precedent of itself (i.e. all PH = 0).
A «th order precedence matrix (Py)" contains entries Py

taking unit value if element / is a «th order precedent of element

Volume 19 Number 2 123

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/19/2/122/408670 by guest on 19 April 2024



j , otherwise taking zero value. Fig. 4 illustrates that
(p \2 (p \1 v (p \1
\^ij) — \Vij) x \rij)

\"ij) ~ Kt'ij) x \rij)

Christmas bonus

until the highest order of precedence is exceeded, using logical
addition. Further, Fig. 5 illustrates that the full precedence
matrix (Pi7), containing unit entries for precedents of all orders,
is given by

n - l

where the summation is performed by logical addition to yield
a Boolean matrix and the summation can be terminated once
the next (P0)n = 0.

The analyses of the previous section can be obtained from this
full precedence matrix. The columns yield a full precedence
list and the rows yield a full successor list; cycles are detected
by the leading diagonal containing non-zero entries; indepen-
dent sub-networks and similar elements are found by comparing
the rows and columns.
Thus, precedence matrix notation is convenient for describing

some of the manipulations of precedence networks. A fuller
account is given by Langefors (1966) but the reader is warned
that the design methods developed from precedence matrices
are open to doubt; for example, some doubts are outlined by
Waters (19746). Further, the usefulness of precedence matrices
as a description tool does not imply they should be used as an
implementation technique.

Precedence analysers
A precedence analyser is a computer program that reads a
first-order precedence network and automatically generates
lists of full precedence, full succedence, cycles, independent
sub-networks and similar elements (or some of these, at least).
As such, a precedence analyser is therefore of fundamental
importance to any computer-aided method that aims to take
full advantage of the computer in all stages of systems definition,
design, implementation and maintenance.

The significance of precedence networks has been duly
recognised by several research and development groups who
have included precedence analysers in their project software.
These pioneers include:

1. The ISDOS group at Michigan University, USA. Teichroew
and Sayani (1971) outline the aims of the ISDOS research
and development project. One aspect is a Problem Statement
Analyser (PSA) which derives a static model of a system from
its Problem Statement Language (PSL) definition: this
contains a precedence analyser.

2. The CASCADE group at the Technical University,
Trondheim, Norway. Solvberg (1972) mentions a precedence
analyser as an integral part of systems analysis software aids.

3. The DATAFLOW group at NCC Limited, Manchester,
England. Boot (1969) discusses the DATAFLOW project
which included a precedence analyser in systems definition
software. Unfortunately, the project has since been
terminated.

No doubt there are numerous other groups tackling these
problems of precedence analysis, particularly in America and
Scandinavia. Clearly, the wide influence of Langefors (1966)
has had a profound impact within these latter countries and
they are to be commended for tackling some of the fundamental
problems of information processing in an effort to base the
subject on a firmer, theoretical foundation. The difficulty is to
recognise which problems are or are not solvable.

124

Christmas
holiday

Sex

(a) Precedence network

1
2
3
4
5
6
7
8

1

0
0
1
1
1
1
0
0

2

0
0
0
0
0
0
1
0

3

0
0
0
0
0
0
1
1

4

0
0
1
0
1
0
0
0

5

0
0
0
0
0
0
0
0

6

0
0
0
0
0
0
0
0

7

0
0
0
0
0
0
0
0

8

0
0
0
0
0
0
0
0

{b) Corresponding first-order precedence matrix

Fig. 3 An eight-element precedence network represented as a first-
order precedence matrix

Although there are successful implementations of precedence
analysers, some have failed to overcome severe limitations
including restrictions on network size (e.g. less than 100
elements only), lengthy computer runs (e.g. hours) and high
computing cost (e.g. hundreds of pounds per computer run).
Further, some of the successful implementations are tightly
embedded in large software projects involving, perhaps,
hundreds of man-years effort; thus, a prospective user may be
deterred from exploiting the precedence analyser because the
total software project is unattractive.
The CAM research project, with few resources, has attempted

to overcome these drawbacks by developing CAM-01 which is a
stand-alone precedence analyser with an acceptable per-
formance. CAM-01 is now available for field trials, demon-
strations and practical use as a 1,000-statement FORTRAN IV
program that runs on the University of London Computer
Centre CDC configuration. CAM-01 analyses a precedence
network of up to 10,000 elements, typically within seconds of
CPU and disc transfer time (plus controllable input/output
time). The computing costs are therefore trivial. Further,
CAM 01 requires little extra documentation effort from a
systems team to exploit it, merely a list of elements and their
first-order precedents; some compilers and data base manage-
ment systems generate such lists automatically. Notice that
CAM 01 is one logical extension to the data dictionary
schemes that are currently being developed.

Using a precedence analyser
A framework is now necessary to discuss the use of a precedence
analyser such as CAM 01. This is provided by the typical
systems approach (or life-cycle) of Fig. 6. Here, an information
processing system is developed through major stages of
definition, design, implementation and maintenance; each stage
can advance to the next stage, retreat to a previous stage or
abort.
Systems definition yields the information processing require-

The Computer Journal

fc^

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/19/2/122/408670 by guest on 19 April 2024



1
2
3
4
5
6
7
8

1

0
0
1
0
1
0
1
1

2

0
0
0
0
0
0
0
0

3

0
0
0
0
0
0
0
0

4

0
0
0
0
0
0
1
1

5

0
0
0
0
0
0
0
0

6

0
0
0
0
0
0
0
0

7

0
0
0
0
0
0
0
0

8

0
0
0
0
0
0
0
0

1
2
3
4
5
6
7
8

1

0
0
0
0
0
0
1
1

2

0
0
0
0
0
0
0
0

3

0
0
0
0
0
0
0
0

4

0
0
0
0
0
0
0
0

5

0
0
0
0
0
0
0
0

6

0
0
0
0
0
0
0
0

7

0
0
0
0
0
0
0
0

8

0
0
0
0
0
0
0
0

(/>„)" = Oif/i > 3

Fig. 4 Higher-order precedence matrices for the precedence network
of Fig. 3

ments as a 'black box' which is aimed to meet the user organi-
sation's needs. This 'black box' defines the input, data base
and output information plus the procedures that transform
the given information into derived information (where
definable). The result is a total system specification that pays
little regard to subsequent implementation strategy but
concentrates on satisfying the user organisation's objectives;
usually, this specification is achieved by analysing the logic of
an existing system and synthesising the logic of an improved
system.
Systems design partitions the total system into human and

computer systems and their manual and automatic procedures
are designed with due regard to available resources. The eight
information flows between these two systems and their 'outside
world' (see Fig. 6) are also designed. The results are human and
computer system specifications that respectively define manual
procedures with associated paperwork and computer programs
with associated files.

Systems implementation builds the human and computer
systems (with their respective, initial data bases) and brings
them to satisfactory operational performance. The results are
procedure manuals and computer programs with supporting
documentation and training.

Systems maintenance monitors the human and computer
systems and evaluates them against their objectives. The
previous stages of definition, design and implementation are
re-entered to revise the systems as and when necessary.
This systems approach can benefit from using a precedence

analyser as follows:

1. Systems definition
1.1. Full precedence list
This helps to check that a system is completely defined. The
list highlights given elements, which should be obtained from
input messages or data base, and undefined elements, which are
used in derivations but are not themselves specified.

1.2. Full successor list
This helps to check that a system is completely defined. The
list highlights terminal elements, which should be used as
output via messages or possibly data base. Alternatively, any
unused elements may be spurious to the system and therefore

may be eliminated; for example, if an output message (and
its elements) are no longer required from the system, then any
resulting obsolete elements can be traced.

1.3. Cycles list
This helps to check that a system is consistently defined because
cycles should not normally occur.

1.4. Independent sub-networks list
This helps to partition a large system into smaller sub-systems
which can be developed independently from each other.
Alternatively, the list may indicate that a system is incompletely
defined because relationships should in fact exist between the
sub-networks.

1.5. Similar elements list
This can help to rationalise a systems definition. Similarities
may be exploited by eliminating elements and redefining
procedures to achieve a simpler systems definition.

2. Systems design
2.1. Full precedence list
This helps when grouping procedures, for example into clerical
departments or computer programs. The list helps to define the

1 2 3 4 5 6 7

(/>.,) =

Fig. 5 Full precedence matrix for the

1
2
3
4
5
6
7
8

the

0
0
1
1
1
1
1
1

0
0
0
0
0
0
1
0

0
0
0
0
0
0
1
1

precedence

0
0
]
0
1
0
1
1

0
0
0
0
0
0
0
0

network

0
0
0
0
0
0
0
0
of

0
0
0
0
0
0
0
0

Fig.

0
0
0
0
0
0
0
0
3

Definition

Design

Implementation

Maintenance

Fig. 6 Major stages in a typical systems approach

Volume 19 Number 2 125

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/19/2/122/408670 by guest on 19 April 2024



elements that must flow between groupings and the sequence in
which these groupings can operate. Further, critical elements in
output messages can be examined to see which input message
elements are also therefore critical; for example, which elements
must be highly accurate or must be available on time.

2.2. Full successor list
This can be used to design data base amendments. Given an
incorrect value of an input message element then the list
highlights all those data base elements whose values are also
incorrect as a result. Thus, composite amendments can be
arranged to overcome such errors. Generally, the list can help
trace the effects of errors and, similarly, delays.

2.3. Similar elements list
This helps when grouping elements, for example into messages
and records, and also when grouping procedures, for example
into clerical departments or computer programs.

3. Systems implementation
The full precedence and successor lists can help to plan the
implementation where phasing is necessary. For example, if one
part of the system must be built before another (for testing or
operational purposes), then these lists indicate which procedures
generate the output elements from each part of the system.

4. Systems maintenance
Maintained systems often 'grow like Topsy' and include
numerous inefficiencies, such as obsolete elements, even though
they may be working reasonably satisfactorily. These lists can
be used as above to help rationalise such a system.
Thus, a precedence analyser can be widely used by systems

analysts, designers and programmers; it is particularly useful
for co-ordinating the work of the many systems people
involved in a large project. One aim of the CAM 01 research is

to discover other possible uses for this tool.
It is recognised that a major difficulty is the general acceptance

of such a tool.

Conclusion
This paper has presented CAM 01, a precedence analyser
capable of producing lists of full precedence, full succedence,
cycles, independent sub-networks and similar elements. The
data required from a systems team is merely a list of elements
with their first order precedents. CAM 01 is proven, fast and
cheap to use.
CAM 01 results from research into the problems of analysing

the precedences of large information processing systems.
Some applications of the software have been discussed and
users will no doubt find other ways of exploiting this powerful
tool. A specification is available, for prospective users and the
author would be pleased to discuss this research with any
interested organisations.
The CAM research project is now attempting to introduce

structure and identification properties into the precedence
analyser. Structuring allows information elements to be grouped
into sets (e.g. records, messages, files, sub-schema, schema, etc.)
and processing procedures to be grouped into systems (e.g.
subroutines, modules, programs, applications, etc.) Identifying
allows occurrences of information elements and sets to be
pin-pointed in the sense of Grindley (1966). Both of these
properties are seen as necessary steps towards the computer-
aided design approach of Waters (1974c) and as useful additions
to the basic precedence analyser, CAM 01.

Finally, the author wishes to acknowledge the assistance of
his colleagues in the LSE Systems Research Group, partic-
ularly Mr. S. Paramasamy who was responsible for program-
ming CAM 01, and Mrs. C. L. Warner, a former student of
Birkbeck College who presented an M.Sc thesis on this
subject.

References
BOOT, R. (1969). DATAFLOW Internal Reports, NCC Limited, Manchester
BURMAN, P J. (1972). Precedence Networks, McGraw-Hill.
GRINDLEY, C. B. B. (1966). Systematics, The Computer Journal, Vol. 9, No. 2, p. 124
LANGEFORS, B. (1966). Theoretical Analysis of Information Systems, Studentlitteratur, Sweden.
SOLVBERG, A. (1972). Formal Systems Description in Information Systems Design, Proceedings of NCC Conference on Approaches to

Systems Design.
STAMPER, R. K. (1972). Information, Batsford.
TEICHROEW, D., and SAYANI, H. (1971). Automation of System Building, Datamation, 15 August.
WARNER, C. L. (1974). Computer Assisted Design: The Use of Precedence Matrices in Systems Definition, M.Sc. Thesis, London University.
WATERS, S. J. (1972). A Survey of CAM and its Publications, Proceedings of NCC Conference on Approaches to Systems Design.
WATERS, S. J. (1974a). Introduction to Computer Systems Design, NCC Limited, Manchester.
WATERS, S. J. (1974b). Methodology of Designing Computer Systems of Files and Programs, Ph.D Thesis, London University.
WATERS, S. J. (1974c). Computer-Aided Methodology of Computer Systems Design, The Computer Journal, Vol. 17, No. 3, p. 211.

126 The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/19/2/122/408670 by guest on 19 April 2024


