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This paper describes the job control part of the MUS operating system. The operating system provides
a set of virtual machines for the execution of user jobs and operating system tasks. Each has the
ability to create and control other virtual machines which run in parallel with it. A number of special
processes called supervisors exist within the system solely to perform job control functions up to the
point at which a new virtual machine is created. After this point the user process, running in the new
virtual machine, performs most job control functions for itself. The design is such that job control
requirements may be expressed in any programming language supported by the system, so that no job

confrol language is actually necessary.
(Received September 1974)

This paper presents the main features of a job control system
which has been designed and constructed for the machines of
the MUS5 complex at Manchester University. The system is
applicable to a wide range of machines, and is designed pri-
marily to simplify the task of making major or minor modi-
fications to the user interface. Morris (NCC, 1974) has already
discussed the MUS5 job control facilities in terms of their
development from other job control systems, particularly
Atlas. In this paper the MUS system itself is discussed in
greater detail.

1. The MUS operating system

The MUS5 complex consists of a number of interconnected
computers. Each is considered as an independent machine and
can, if required, run a complete and independent operating
system. In the normal mode of operation, however, operating
system modules are distributed at any given time among the
machines which are currently operational. Within each machine
in the complex there is a small operating system kernel whose
function is to map a set of compatible virtual machines on to
the actual hardware resources. It is within these virtual
machines that the remaining operating system functions and
user jobs are performed, each running as a separate process in
its own virtual machine (Morris, Detlefsen, Frank and
Sweeney, 1971).

Each virtual machine has a segmented virtual store into which
a number of ‘common’ segments are pre-loaded. The common
segments are write-protected from the user, and contain an
extensive set of library procedures available automatically
to every process. In addition to the mathematical functions
and input/output procedures required by most programming
languages, the library also includes all of the compilers, editors,
and similar programs. This library forms the basis of the job
control system described in this paper.

Certain of the procedures in the library interface with the
operating system kernel. These provide the process with an
ability to manipulate its own virtual machine, and also to
create, control and communicate with processes in other
virtual machines. As with the other library procedures, these
may be called by any process.

Interprocess communication (and therefore communication
between operating system modules) is by means of a message
passing mechanism which enables any process to send messages
to any other. The message system extends over all the machines
in the complex, so that system modules can easily be moved
from one machine to another without affecting other modules.
A full description of the message system may be found in
Morris, Frank and Sweeney (1972).

The input/output facilities of the virtual machine are entirely
based upon the message system. All input to a process arrives
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in the form of messages from other processes; all output is sent
as messages to other processes. Thus the concept of a peripheral
does not exist within the virtual machine. Instead, actual
physical input/output is dealt with by a number of special
system processes called device conirollers which are able to drive
the peripherals directly. These are responsible for converting
between physical input/output documents and messages. This
is their sole function. Thus for example an input device
controller is simply a means whereby the user can inject
messages into the system. Input may be directed at any process
by specifying on the first line of any input the name of the
process to which it is to be sent.

2. The job control supervisors

Clearly if the device controllers are to perform only message
switching functions there must be other processes in the system
to which input can be directed. The particular process chosen
will depend on what the user wishes to do. For example it may
be an output device controller if he simply wishes to obtain a
listing of the document, or a file manager process if he wishes
to file it, or it might be a user process. If the user wishes to start
a job, however, he will normally address his request to a process
which resides in the system for this purpose. Such a process is
called a supervisor.

The general philosophy in the design of the job control system
has been to arrange that the process created to execute a user
job, rather than its supervisor, be responsible for the majority
of job control functions. This is possible because of the exis-
tence within every virtual machine of the full set of library
procedures; most of the operations commonly dealt with in a
job control language simply correspond to library procedures in
MUS. The task of a supervisor is thus kept small, and the
supervisors are small, manageable modules. Also, the isolation
of most job control functions within the user virtual machine
means that an error in the implementation of these functions
only affects a single job, whereas an error in a supervisor might
affect many jobs.

Obviously the most important function of a supervisor must be
actually to initiate the process in which a user job is to run. It
does this simply by calling library procedures which interface
with the system nucleus, specifying the name and password of
the user to be charged for the process. No privilege is required
to call these procedures, so that in principle any process may
act as a supervisor. Thus new supervisors can be added at any
time and a user who wishes to do so may provide his own
supervisor. However, it will usually be more convenient to use
the standard system supervisors.

One major job control function which is not easily dealt with
within the user virtual machine is scheduling. There are two
main objectives of scheduling in a computer system. The first
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is concerned with obtaining efficient use of the machine.
Although this may involve some decisions at the job control
level (for example to optimise the mix of jobs actually presented
to the kernel) it is primarily the concern of the kernel. The
second objective, however, is concerned with achieving speci-
fied response and turnaround times for the users of the system.
This is clearly the concern of the job control system.

In MUS, a supervisor is not expected to interfere at all in the
detailed scheduling of user processes. Instead the supervisor is
able to specify a priority level for each process it creates. The
priority level affects the way in which CPU time is allocated to
a process by the kernel. Use of the higher priority levels is
limited by relating the charge for CPU time to the priority
level at which a process runs. The same priority mechanism is
used to determine the relative priorities of the supervisors
themselves and of other system processes.

The system design deliberately allows for the simultaneous
existence of several supervisors. The main reason for multiple
supervisor operation is to enable the diverse needs of different
classes of users to be handled efficiently without the need to
construct a large, all powerful supervisor. Another important
advantage, however, is the ability to create and test a develop-
ment version of a supervisor without affecting users working
with the original version. The input to a supervisor simply
consists of messages, and may originate from an input device
controller or be created as the output from any other process.

3. Job control within the virtual machine

The main job control functions which remain to be performed
within the user virtual machine are concerned with providing
a means of

1. Performing some initialisation of the virtual machine in which
the job is to execute, for example by assigning actual files
and input/output documents to the logical input/output
streams of the process.

2. Specifying the sequencing of subtasks within a job.

3. Handling contingencies which arise during execution,
especially error conditions.

These operations form the bulk of job control statements in
most systems.

In MUS, both initialisation of the virtual machine and se-
quencing of subtasks are achieved simply by calling appropriate
library procedures. For each facility in the virtual machine
which requires initialisation, a library procedure exists to
perform that initialisation. For example by calling the library
procedure

SET FILE INPUT (2, ‘FILENAME’)

a process can assign the file ‘FILENAME’ to its logical input
stream 2. Similarly the sequencing of subtasks is achieved by
calling library procedures, as all the compilers, editors and
other such programs which commonly form subtasks within a
Jjob exist as procedures in the system library. Thus for example
the ALGOL compiler is entered simply by calling the library
procedure ALGOL. It will return control at the end of com-
pilation to the calling program which can then arrange, again
by calling library procedures, to enter the compiled program or
define it on a file for later execution.

Since all job control steps consist of calls to library procedures,
the main requirement, to be able to handle errors and other
contingencies, is a means of communicating status information
from library procedures. Two mechanisms are used in the
MUS library. Firstly, each library procedure sets a global
‘status return’ parameter before returning, indicating whether
or not it successfully completed its task. This status can then be
tested by the caller. Secondly, certain types of serious error
condition cause an interrupt within the virtual machine. The
effect of this is that control is forced into a trap procedure,
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which may be either a procedure supplied by the user or a
standard system monitoring procedure. These two mechanisms
may be used by a job control language interpreter to provide
any required degree of control.

4. MUS job control languages

As a consequence of the system structure outlined above, the
‘job control language’ seen by a user of the MUS system will
usually consist of instructions to three different processes,
though this need not be apparent to the simple user of the system.
The three processes are

1. The input device controller

2. The supervisor

3. The process executing the job

The instructions required by the device controller are minimal,
serving only to delimit the start and end of each input document
and identify the supervisor to be used. Fig. 1 shows the device
controller commands for a batch document and an online
communication,

With most supervisors the instructions to the supervisor will
also be small, serving mainly to supply parameters to the
‘CREATE PROCESS’ library procedure (time limits, size
limits, etc. for the virtual machine). In most cases these
instructions can be placed on the same line as the device
controller commands. Thus the instructions to the process
running the job form the bulk of the job control language.

As described in the preceding section, a job control language
for MUS5 requires a means of steering the process through a
series of library procedure calls and providing the correct
parameters. Control statements and a means of testing the
status returned from library procedures are also probably
desirable. Barron and Jackson (1972) have observed that job
control is a form of programming, and that existing job control
languages are similar to assembly languages or simple auto-
codes. In MUS the fact that the main operations are procedure
calls makes the use of a programming Janguage seem even more
natural.

The MUS library is organised with a fully-recursive ALGOL-
like procedure structure, to the extent that even the compilers
may call one another if required. Also the parameter speci-
fications have been chosen such that, although the treatment of
parameters will be language dependent, it should be pos-
sible to generate all parameter types (and thus call all library
procedures) from a program in any programming language. This
is achieved by specifying parameter types for library pro-
cedures in terms of their physical properties (e.g. size) leaving
their interpretation in terms of logical entities to individual
compilers. The parameter types allowed for library procedures
are:

1. A single length (32-bit) operand, usually an integer

2. A double-length (64-bit) operand, which may be either a real
number or a long integer

3. A descriptor, yielding a vector or string

(a) Batch input document
***A PROCESS-NAME USER PASSWORD

(The document itself, sent as a single message to the named
process when the terminator is found)
***Z

(b) Online communication
***M PROCESS-NAME USER PASSWORD

(Lines of input, sent a line at a time as they are typed to the
process named)

***Z
Fig. 1 Device controller commands
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An ALGOL compiler might allow the following substitutions
for these parameter types:

1. An integer expression
2. (a) A real expression

(b) A string of not more than eight symbols which will be
packed according to the system convention for names
(user names, process names, file names, etc.).

3. (@) A symbol string, for which a descriptor is constructed
() A vector name
(¢) A variable name, yielding a descriptor to the variable.

Similar interpretations can be allowed in other high level
languages, so that each compiler can make all of the library
procedures available to its users. Indeed the library procedures
appear as pre-declared procedures in the target language into
which the MUS5 compilers translate (Capon, Morris, Rohl and
Wilson, 1971). This means that any programming language
available on MUS can be used for job control purposes.

This approach makes available at the job control level the full
power of a programming language. Furthermore, the user is
able to use the programming language with which he is most
familiar, rather than having to learn a completely new language
for the purpose. As an example of the use of a programming
language for job control, see Fig. 2. This is a program in
ALGOL to run student ALGOL programs against standard
test data, and mark the results. Its input consists of a batch of
student jobs on the file named ‘programs’, and the test data
on the file named ‘testdata’. Each job is assumed to begin with
the student’s name on a line by itself, followed by the program,
and the student’s own data terminated by the symbol §. Two
output streams are generated, output O being a list of student
names and their corresponding marks and output 1 the com-

piler monitoring and actual results from each job. Only jobs
which compile successfully are entered. The procedure which
does the marking is not given, but it is assumed that it somehow
compares the output generated with some standard results and
assigns and prints a mark.

Examination of actual jobs shows that the great majority of
jobs are not nearly so complicated, and do not require the power
of a programming language. Most jobs are very simple at the
job control level, and for these it may actually be inconvenient
and would almost certainly involve significant overheads if a
full programming language were used. A simpler ‘job control

**++A JOB USER PASSWORD TITLE

ALGOL ()

(...ALGOL PROGRAM . . )
ENTER ()

(...DATA..)

**%7

Fig. 3 Simple ALGOL compile-and-go job

**%A JOB USER PASSWORD ECOMP
SET FILE 1O (1,1, ‘SOURCE")
EDIT (1, 1)

(. . . the editing commands . . .)
END INPUT(1)

END OUTPUT(1)

SET FILE INPUT (1, ‘SOURCE’)
ALGOL ()

**SELECT INPUT (1)

ENTER ()

STOP (0)

*Ekk 7

Fig. 4 Edit, compile and execute job

begin integer start, status, ch;
set output (1, (LPT), 10000);
set file input (1, {programs))
set file input (2, {testdata))
select input (2)
start := i pos
select input (1);
select output (0);
for ch := next sym while ch # 4 do

e we v owa

comment programs for testing;
comment standard test data;
comment remember start position;
comment in test data;

begin
for ch := in sym while ch # 10
do outsym (ch)
select output (1)
algol
status 1= pw0
for ch := in sym while ch # {3$) do
if status # 0O then begin
select output (0);
write text ({failed to compile)) end
else begin
select input (2)
set i pos (start)
select output (1);
enter;
select output (0);
mark
select input (1)
end
end;
write text ({end of run));
step (0)
end

e we wa o us we

comment next student;

comment print student name;
comment for compiler monitoring;
comment enter compiler;
comment pw0 globally declared,
comment discard old data;

comment select test data;
comment reset to start;

comment enter compiled program;

comment enter marking program;

Fig. 2 Job control in ALGOL Note: the character code 4 is used to indicate ‘end of file’ and 10 is ‘newline’
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language’ has therefore been introduced to the MUS system to
satisfy ‘the majority of ‘simple’ users. All processes begin
execution in a common library procedure called START. This
creates an output stream zero, and begins to read from input
stream zero (which is usually supplied by the supervisor by
forwarding the input supplied originally by the user). Successive
lines of input are read and executed interpretively as calls to
library procedures with literal parameters. On return from each
procedure the status returned is examined ; if a fault is indicated
the process is forced into a trap procedure, otherwise the next
line is dealt with in the same way. Fig. 3 shows a simple job,
which compiles and then immediately executes an ALGOL
program. Fig. 4 shows a rather more complicated job, which
first edits a source file, then compiles it and finally executes it.

The interpretation of these simple job statements involves
little overhead. All that is required is to read the procedure
name and its parameters, using procedures such as ‘read
symbol’, ‘read character string’, ‘read integer’, etc. and to call
the specified procedure. The full power of the library is avail-
able, and because of the direct correspondence between job
control statements and library procedures, any new facilities in
the library automatically become available at the job control
level. Sequencing of job steps is specified implicitly: the steps
are always obeyed sequentially unless a fault occurs, in which
case the process usually terminates. Job control statements can
also be inserted in the text of a program being compiled by
preceding them with ‘“**’. In this case the compiler detects the
“*** and calls the library interpretation procedure recursively.
An example of the use of this facility to switch to a new
input stream during compilation is shown in Fig. 4.

It has been found that few users actually ever need more than
the simple interpretive facility for their job control. Indeed
there are many useful jobs-which can be performed without
ever leaving the ‘job control’ level. The ability to use a program-
ming language for job control is there when it is needed,
without actually costing anything if it is not used.

5. Supervisors in the MUS system

The present MUS job control system has evolved as a result of
experience with using a prototype system implemented on a
modified ICL 1905E which now forms part of the MUS5
complex. In the original prototype system it was felt that three
supervisors would be required for normal computing service
applications, with a number of others fulfilling more specialised
requirements. The three standard supervisors were called
BATCH, JOB, and ONLINE.

BATCH was a supervisor designed to cater for the large,
batch-processing type of job, and provided facilities for the
user to specify scheduling requirements (deadlines, etc.),
complex input/output requirements and job sequencing. The
input/output specifications were similar to those of the ATLAS
supervisor (Howarth, Payne and Sumner, 1961) with extensions
to deal with files and multiple-document input streams. Job
sequencing was based on the notion of ‘program eveats’
similar in concept to those of the GEORGE 3 system
(Oestreicher, Bailey and Strauss, 1968) and implemented by
sending messages from the user process to its supervisor. There
seemed at the time to be a strong case for providing another
supervisor to deal with the simple jobs which are extremely
common in a university environment. This was the JOB
supervisor, which provided only minimal facilities and as a
result was simple to use and had low overheads. Finally, the
ONLINE supervisor handled interactive applications. It was
felt that the main requirement here was to allow the user to
‘become’ the supervisor, by providing him with the means of
performing the operations normally performed by supervisors.

As the role of the library developed many of the functions of
the BATCH supervisor became redundant, as the same effects
could be achieved via the library. BATCH was therefore
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abandoned for a slightly improved form of the JOB supervisor,
which is now the standard system supervisor. The examples in
the preceding section show the use of the JOB supervisor. The
title line can also specify options such as time and size limits
and priority ratings for the job, but the default settings of these
parameters are usually adequate. It is still felt that a special
supervisor is useful for interactive work (though the JOB
supervisor can handle interactive jobs), but little experience
has been gained as yet with this mode of operation owing to
shortage of online devices.

Supervisors can also exist for special purpose environments
where the standard facilities would be inconvenient. Particular
cases of these are a special editing system which facilitates
editing by relatively unskilled staff, and online transaction-
oriented systems such as desk calculator systems and reser-
vation systems. Finally it is expected that a number of super-
visors will exist to simulate the job control facilities of other
operating systems on MUS.

6. Implementation of other job control languages

In MUS, job control requirements are normally specified by
using the simple interpretive scheme already described or by
using a programming language. However, this does not prevent
the existence of special job control language interpreters in the
MUS system. Indeed it is one of the aims of the MUS5 system
design that the construction of alternative user interfaces
should be quite simple. The main uses of such special interfaces
will be to provide facilities comparable with those of other
systems, so that for example a user of GEORGE 3 who occas-
ionally wishes to use the MUS5 system can do so using the job
control statements with which he is familiar.

As a general strategy, the implementation of a new job control
subsystem is likely to involve the insertion of a new supervisor
and some new library procedures. Either of these may be
omitted in particular cases, but the supervisor will usually be
concerned with creation and co-ordination of processes while
the library procedures map the ‘foreign’ virtual machine
facilities on to the MUS virtual machine. -

It is proposed that in the future a number of ‘foreign’ job
control systems be implemented on MUS5 to assess the cost of
implementing and running such systems. As a pilot study for
this project, an implementation of the ATLAS job control
system (Howarth et al., 1961) has already been attempted.
The ATLAS system was selected mainly because of its sim-
plicity, which made it suitable for a short investigation. It also
has the advantage that the input/output facilities of MUS5 are
similar to those on ATLAS (i.e. based on numbered logical
input/output streams accessed by operations such as read
character and print character). This means that an ATLAS
job description can relate sensibly to many of the jobs run on
MUS.

Because of the similarities in the ATLAS and MUS virtual
machines, it was not necessary to provide special library
facilities for use by ‘ATLAS’ jobs. The ATLAS job description
is read by a special supervisor (called ATLAS) which translates
into appropriate library calls the statements which in MUS5
require action in the user’s process. This was felt to be reason-
able as the supervisor must in any case scan the whole of the
job description to extract the information needed to create the
process. Apart from this the supervisor’s main functions are
queuing of jobs and association of input documents with jobs.
(This latter facility is not provided in the standard MUS5
system. Jobs which require many input documents are expected
to use files for all except the document containing the job
control commands.)

As far as the user is concerned, ATLAS jobs may be run
directly on the MUS5 and 1905E systems, subject of course to
the existence of a suitable compiler. The only change needed to
the JOB and DATA document is to precede each by a
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‘**x*A ATLAS’ line to direct them to the appropriate super-
visor. No provision has been made for the use of files, but a
straightforward extension of the INPUT and OUTPUT
sections of the job description would remedy this.

The supervisor was written in MUS5 Autocode, as a compiler
for this language exists on both the MUS5 and 1900 systems.
The whole exercise, including testing, took one day and the
supervisor was tested and introduced into the system as a
normal user program, without the need to interrupt the
normal computing service. The supervisor is quite small (less
than 1,000 orders) though by no means optimally coded, and
its use does not involve a large overhead.

7. Conclusions

The system described in this paper has evolved as a result of
experience with the operating system. It has now been in use
in almost the present form on the 1905E for about 24 years
and has proved a useable system even though the library
implementation on the 1905 is not fully recursive. This latter
restriction means that use of a programming language for job
control requires some care to avoid overwriting statically
allocated data areas. The simple interpretive system has proved
efficient and quite adequate for most jobs. Although the ability
to use a programming language for job control does exist it is
rarely used, and its existence imposes no cost either in com-
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