
Guidelines for the design of interactive systems
J. Hilden
University Institute of Medical Genetics, University of Copenhagen, Raadmandsgade 71,
DK-2200 Copenhagen N, Denmark

On the basis of experience with a special-purpose interactive processor the author makes several
suggestions that users are likely to welcome. A central idea is that of having one mechanism for
handling input, whether program, data, or error corrections, and to provide all language facilities
at all input occasions. It is shown that the interactive read operation, with its prompting message,
evolves naturally into a combined write-read operation. A section is devoted to a somewhat uncon-
ventional data retrieval (re-display) routine. An attempt is made to set up a conceptual framework
for the various suggestions made here as well as for those of others.
(Received April 1974)

Introduction
The purpose of the present paper is to draw attention to some
features that can make a conversational computer system a
pleasant tool to work with, with emphasis laid on processors
designed to perform tasks of some complexity, particularly
programming language implementations. The GENEX pro-
cessor built by the author is used as the point of departure. This
conversational system allows formula manipulation in pro-
bability calculus. It has been designed to assist geneticists in
deriving the type of probability formulae that the Mendelian
laws and other basic laws of inheritable traits give rise to. For
descriptions of the processor, seen from various points of view,
the reader is referred to Hilden (1973, 1976a, 1976b).
The available input/output equipment will inevitably influence

the choice of dialogue facilities. For instance, certain facilities
are highly desirable in a character display terminal system and
quite unnecessary where output is on paper, say in a teletype-
based system. Some of the design decisions discussed reflect the
specific environment in which the GENEX processor
originated, viz. UNIVAC's 1108 (later 1110) computer system
as seen through the UNISCOPE 100 character display unit.
All data that are held on its display screen can be changed,
moved around, and transmitted to the computer—one line at
a time—whether they were originally written on the screen by
the computer or via the user keyboard. These characteristics
imply that the GENEX processor evolved in an environment
with excellent local editing facilities but with no hard-copy
production. Nevertheless it is probably not too difficult to
modify the suggestions we are going to make to suit other
physical environments. For brevity's sake, this point will not
be mentioned further.

Some papers on design of interactive programming facilities
will be referred to repeatedly. They all resemble the present text
in that they try to show that the facilities of a particular lan-
guage or language implementation will meet typical user
demands. There is a high degree of agreement between the
proposals, although terminology and taxonomy of goals and
means vary a great deal. In the following these papers are
quoted only in case of conflicting views, or to point out how a
particular proposal fits into the conceptual framework of this
paper, or—naturally—when a general point we want to make
cannot be illustrated by examples taken from the GENEX
processor. The papers are: the one by Reinfelds et al. (1970),
who explain the philosophy of the AMTRAN language, the
one by Moore and Main (1968), whose analysis leads to the
TCL language proposal, and two papers discussing interactive
implementations of existing 'batch' languages: Barron, 1971
(FORTRAN) and Cuff, 1972 (PL/I).
The cost of programming flexible interactive facilities appears

to be small in comparison to the basic cost of a sophisticated

144

processor. The GENEX system, which was written in
FORTRAN, including a simulated virtual memory admini-
strator, was implemented by one man (the author) over a
period of some 18 months, and less than one fifth of the effort
is estimated to have been spent on adding the facilities discussed
in this paper to the basic language interpreter and its data-
manipulating subroutines. Otherwise, it is scarcely possible to
make useful statements about cost. Most of the papers cited
could, as a matter of fact, be criticised for not being specific
about the cost question.
The ideas with which we are concerned here are largely inde-

pendent of the nature of the data being communicated—
narrative, formulae, pictures, sound—so the vast literature on
interactive graphical techniques as well as voice communi-
cation could be considered relevant to our discussion, but no
explicit attempt has been made to cover interactive computer
applications employing messages other than character strings.
We also limit our attention to one-user systems; for a recent
discussion of a multi-user system, see McGeachie (1973).
Although the dialogue facilities to be discussed are highly

inter-woven, in use as well as in implementation, five main
areas can be distinguished.

1. The overall pattern of information exchange
i.e. the traffic rules of the man-machine dialogue, so to speak.

2. 'Mernor/ facilities
i.e. facilities that relieve the user of taking notes during the
session, of retyping data, etc. If nothing could go wrong the list
would end here. In practice, it is necessary to consider:
3. how to avoid losing control,
4. error handling
5. debugging
to the extent that this last subject is not covered by 1-4. Separ-
ate numbered sections are devoted to each of these areas. Finally
one ought not to forget the area of
6. facilities for user instruction.

1. The overall pattern of information exchange
1.1. GENEX message structure and general mode of operation
According to the standard definition, a message is the smallest
volume of data that can be submitted to a processor (man or
machine) for processing. An input message to the GENEX
processor is known as an input segment. Before discussing the
various interactive facilities it is necessary to say a few words
about this concept. A segment consists of one or more lines.
At the one extreme an entire GENEX program can be placed
in one large segment; at the other extreme a segment may

The Computer Journal

L

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/19/2/144/408703 by guest on 19 April 2024

contain just a single data item such as 'JOHN' or '5' (there is
no sharp distinction between data and program in the GENEX
language). The user normally indicates the end of a segment by
placing a special end-of-segment character at the beginning of
its last line. This character, which does not otherwise affect
the processing of the segment, will be left out in our examples.
Within a segment the format is free, spaces and line boundaries
being ignored.
In principle, the processor interprets one input segment at a

time. After completion, it asks for another segment; let us term
this an idle state input request. The net effect is cumulative,
in the sense that the output generated in the course of a lengthy
user-processor dialogue is no different from what it would have
been, had the entire sequence of instructions been presented to
the processor in one large segment.
This simple pattern of man-machine alternation is often

broken by the processor interrogating the user in the middle of
a piece of processing—a so-called busy state input request.
For our purpose this type of segment input request is far more
interesting than its idle state counterpart—as later sections will
show—because the user gets a chance to interfere with a com-
putation not yet carried to an end. The unified design to be
described implies that it makes little or no difference whether
the request is issued as part of a read operation or because the
processor is in some kind of trouble.
Reinfelds et al. (1970) distinguish three modes of interactive

operation: (a) the execute mode ('desk calculator' mode), in
which instructions are executed as they are entered, (b) the
suppressed (or delayed) mode, which allows the user to con-
struct a program for execution at a later time, and (c) a special
checking mode, which allows the user to execute parts of
suppressed programs while they are being constructed. Moore
and Main (1968) are able to fuse modes (a) and (c) by means of
a clever 'statement group' device. This distinction is not
applicable to GENEX, because all segments are executed
immediately (mode (a)). In particular, a procedure declaration
may be executed, emulating mode (b), i.e. the procedure is
declared, and procedures thus constructed can be called with
trial arguments, as in mode (c). The interactive language
interpreters these authors have in mind, which are also exempli-
fied by popular implementations of JOSS (with offspring),
JOVIAL and BASIC, are characterised by the view that the
typical purpose of an interactive run is to construct, check, and
modify a program, until it has acquired a satisfactory form, in
which it can then be saved for later use. The GENEX imple-
mentation, on the other hand, is directed towards obtaining
results, rather than producing programs for future compu-
tations (although the features described in Sections 2 and 4
make program-making runs possible). In this respect it
resembles APL.

Related to this dichotomy (program versus result production)
are the problems of interpretation versus compilation (with
intermediates), and of total versus partial recompilation after
program changes. Our excuse for not discussing these problems,
which Barron treats in detail, is that they do not concern the
user—except indirectly via response time, as Barron points out.
Compilation, however, is becoming less important these days
as contemporary languages tend to become more compact
(APL) or specialised (SNOBOL). At the same time efficient
ways of interpreting semi-compiled code are becoming more
desirable, but hardware designed for this purpose is not gener-
ally available, possibly because language-makers have not been
able to state what they need.
To make GENEX easier to learn it was decided that any piece

of output that could represent a (normal) computational result
should agree with the rules of the input language (otherwise the
geneticist would have to learn two languages). Also the fact
that output can be changed at the terminal, if desired, and
transmitted back to the computer spoke in favour of this

decision: it is very convenient for the user to be able to hand
the computer's answers back to it, knowing that they will not
only be syntactically correct but also have the same meaning
when re-input as they had when output Such re-interpretable
output is common in data structure handling languages for
scientific application (LISP, APL). Already the PRINT
RESULTS/READ DATA statement pair of MAD, the fore-
runner of the NAME LIST device of FORTRAN IV, which
was further developed in PL/I, represented a step in this
direction. On the whole, however, re-interpretable output is an
exception in numerical or commercial languages, even when
they are implemented for experimental interactive program-
ming. Future language implementers ought to consider this
possibility.
Input cancellation facilities must be provided in any interactive

system, in which the unit of physical input transmission is
smaller than the unit of execution: as far as practicable the
user should be allowed to reconsider. In GENEX, input trans-
mission is by lines, interpretation by segments. Therefore the
user should be able to revoke a segment some lines o\ which
have already been received by the computer. To this end, a line
beginning with a special character can be entered. Another type
of abortive segment is the re-display request (Section 2.3).
Such requests are attended to by a segment reader subroutine;
like cancelled segment lines, they are not allowed to pass
beyond this subroutine—which is therefore capable of inde-
pendent conversation on a shallow level. Any sophisticated
interactive system is likely to offer more than one 'layer' of
conversational facilities.

1.2. Busy state conversations
The data on which a batch mode user program is going to
operate must be prepared according to a fixed scheme, defined
at the moment of program writing. In an interactive run, on the
other hand, the information needed to solve a given problem
can be read in piecemeal as the need arises, provided the system
has got means for indicating which of several read instructions
in a large program is responsible for a given input request. The
processor must, so to speak, be able to ask suitable questions.
(In some terminal installations an additional reason for explicit
prompting is that the user has no other way of discovering that
the processor has halted and would therefore, if no signal were
given, begin to wonder why nothing happened). Realising that
an interactive read operation tends to become a combined
write-read operation, one is prepared to go one step further,
attaching a full-fledged write operation to every read operation.
The GENEX read instruction takes the form

READ: operand

and causes the operand value to be written (displayed), where-
upon the processor halts, expecting a reply. A small GENEX
dialogue, involving a piece of program that adds 1000 to
whatever is keyed in, could look as follows, 'SHOW:' being the
standard write (display) command.

input output
SHOW: (1000 + READ:WHAT)

WHAT
444

1444

To achieve complete interactivity, however, not only must the
program be able to say: 'In order to compute the desired
results I must know . . .', but the user must also be given pro-
visions for replying: 'Well, to answer that question of yours /
must know . .. '. In other words, after a busy state input
request he must be able to enter into a parenthetical conver-
sation with the computer, just as he would do with a human
assistant asking for his advice. In either case this conversation

Volume 19 Number 2 145

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/19/2/144/408703 by guest on 19 April 2024

necessarily consists of one or more messages (utterances) on his
part, to which the assistant or computer responds in action or
in words, followed by his final reply message. Each parenthetical
user message must be accompanied by a suitable indication
that this is not yet the final reply: GENEX employs a ' > > > '
replacing the usual end-of-segment mark.
In our case it is not appropriate to say that such busy state

conversations are carried on in a special immediate or 'desk
calculator' mode. As will become apparent in a moment, their
input segments are treated exactly as other input segments are
treated, except for two points: (a) it is possible to refer to
elements of the program context in which the input request
arose, (b) the last segment serves the additional purpose of
conveying the user's answer to the request.
When the input language is interpreted (rather then compiled),

there is no reason why the user should not be allowed to use all
facilities of the language during the conversation. For instance,
GENEX allows'111 + 333'to be entered instead of'444'in the
small example above. The busy state algorithm which is brought
into action when the operand of'READ:' has been displayed—
and, in general, whenever the GENEX processor halts expecting
a reply that will allow it to proceed—can be outlined as follows:

(Step 1) Let the user key in a segment.

(Step 2) Interpret the segment according to the rules of the
GENEX language. (Since the segment may itself
contain a read instruction or cause an error situation,
the present algorithm can be entered recursively).

(Step 3) Is ' > > > ' present? If so, revert to Step 1. Otherwise
go to Steps 4 and 5.

(Step 4 will be explained in Section 4).

(Step 5) Take the value of the segment as the user's answer: in
the case of a read operation the value of the segment
becomes the value of the phrase 'READ: . . . ' ;
proceed. (Like any GENEX language phrase, the
contents of an entire segment has a value—as in
ALGOL 68 or LISP).

The potentialities of this scheme are illustrated by means of an
example, written in a dialect of ALGOL which needs no further
explanation. Consider a procedure,

integer procedure abc (x, y, z); value x, y, z;
integer x, y, z;

begin Boolean B;
B:= y < x;
abc := 0;
abc := read ('abc?');

Q : if B then global: = global + 1;
end

Assume that this procedure has been called by

abc (100, 50, - 2) ;

the conversation that ensues might look as follows:
input

>>> show (global)

output
abc?

3417
if B then y else z

At exit from abc, abc = 50 and global = 3418, since B = true.
An entirely different effect would be obtained if the user
ventured to input something like:

input output
abc?

> > > global := 0; comment no output produced here;
begin B : = false; goto Q end

Being a label-free language, GENEX does not provide the

refinement exemplified by the jump out of context to label Q,
so the above algorithm need not cater for such jumps.
Thus, in an interactive interpretative system it is natural not

only to place all language facilities at the user's disposal at each
input request, but also to let the ensuing conversation as well as
the closing reply be interpreted in the context of the instruction
that causes the input request, insofar as the meaning of variable
names, etc. is concerned. In addition, the incremental nature of
interactive computations makes it desirable to be able to declare
new entities or to change declarations. In the case of an
ALGOL-like language, the variables and labels of all currently
active blocks ought to be accessible, for instance via the
QUALIFY device described by Cuff, but declarations are
likely to be disallowed—as in Cuff's PL/I system—due to
difficulty of implementation. (With GENEX, scope problems
do not arise; declarations are permitted in busy state conver-
sations, and they are automatically global).
In compiling systems part of the facilities described here can

be provided at a minimum of cost. Using the NAME LIST
device one can write quite satisfactory, though rather clumsy,
interactive FORTRAN programs that allow the user to examine
and modify variables.

2. 'Memory' facilities
As stated in the introduction, the devices we are going to
consider under this heading serve a common purpose: to enable
the user to retrieve relevant data at proper time and place. He
should never be forced to take extensive notes during the run—
or to rely on his own memory. Nor should he be forced to type
the same data twice. Three functions can be distinguished.

2.1. Transfer of data, stored somewhere in advance, into the run
As a minimum it should be possible for the user to get hold of
procedures and data stored in his personal file.

2.2. Saving of data generated in the course of the run
(the converse of 2.1). Whenever a certain option is in force the
GENEX processor will copy its input and output into a report
file for later printing. Copying of input is essential, for otherwise
the user would be unable to document the validity of his results.

2.3. Revival of data from an earlier phase of the given run
The remainder of the section is devoted to this topic.
Because of the small capacity of the Uniscope display (12 lines

of 80 characters each) it is useful to have a facility for re-display
of input and results that are no longer on the screen. Since
re-displayed data can be changed, if desired, and re-transmitted
to the computer, the re-display facility which we are going to
discuss is really a re-use facility (see Section 1.1).
Input and output can be re-displayed, one segment at a time.

By an output segment we mean one or more lines generated by
one activation of a write command, typically 'SHOW:
Cancelled input segments are not available for re-display. Nor
are re-displays or re-display requests. Input is displayed in
compact form, longer stretches of blanks being suppressed. An
option governs whether or not output will become
re-displayable.
A re-display request is permitted whenever input is expected.

The request is a free-format input line that takes the standard
form

< segmentlabel

In many interactive text editors or compilers lines are numbered,
either automatically or by the user, and most often the line
number is displayed each time a line is accessed by the user.
In view of the fact that the GENEX user is not interested in
segment numbers until he decides that he wants a re-display,
it was deemed preferable not to take up screen capacity—and

146 The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/19/2/144/408703 by guest on 19 April 2024

detract the user's attention—by displaying segment numbers of
transferred segments. On the other hand, serial numbering was
felt to be indispensable. Therefore it was decided to do it
behind the scenes, as far as possible. In addition, it was recog-
nised that the user might sometimes prefer to reference a
segment by its contents or by some designation of his own
invention. These considerations led to the following approach.
Segment labels are associated with such segments as must be

available for re-display (see above), partly automatically,
partly on user request. They are generated—and the user is
informed of the automatically generated ones—according to
Rules 1-4.

Rule 1
Serial numerical labels are generated automatically. Input
segments are numbered from 1 upwards, output from 200
upwards. The successor of input segment 19 might for instance
run:
PROCEDURE; MAX=ARC 1 - ARG'2 # ARC 1 # ARG'2

Being the 20th input segment it can be retrieved by entering
<20

After display of the segment, the processor asks the user
obligingly if he wants the next segment to be displayed also.
To be specific, the message

appears on the screen, which, if re-transmitted by the user,
triggers a re-display of the next segment, and so on.

Rule!
A non-numerical label may be extracted from the input segment
itself and recognised in later re-display requests. This is done
heuristically: the processor tries to guess under what desig-
nations the user would wish to refer to the segment. In particular
the initial 'word' of the segment, if any, is always retained. As a
matter of fact, the procedure declaration of the above example
(which declares a procedure, MAX, that finds the largest of its
two arguments) can be retrieved, and the '<21?' message
obtained, by any of the three requests:

<20
<PROCEDURE
<MAX

Rule 3
A non-numerical label can be associated with an output
segment by the user by executing a special LABEL command.
For instance, the instruction 'LABEL: COPENHAGEN' will
output a segment that can be retrieved at a later time by means
of

< COPENHAGEN

After re-display of this segment (which itself contains nothing
but 'COPENH'), the usual question appears, e.g.

<224?
which in turn enables the user to unravel the output from that
point onwards, even though he has not been aware of the serial
numbering going on.

Rule A
When a segment label already in use is associated with a new
segment the old association is forgotten.

In deciding which segment is desired by the user the processor
behaves somewhat heuristically, so non-standard requests may
often have the desired effect. If a request specifies a label not in
use an IGNORED message is returned.
This re-display facility has been treated in some detail because

it is somewhat unconventional. It was very easy to implement
and is convenient to work with. At least it avoids bothering the
user with line numbers that he does not plan to use: it is a kind
of subconscious facility.

3. How to avoid losing control
The first thing that comes to mind is that a HALT command
must be provided. When the processor halts it must be able to
indicate where and why. The user will then investigate the
situation, perhaps, before entering some data that indicate that
the processor may proceed. Alternatively, he may want the
processor to resume operations at a different point in the
program. In a label-free language like GENEX, the latter
possibility is awkward and has not been implemented; instead
the current computations can be abandoned by means of the
special instruction

FORCE: ESCAPE
which can be executed at any time, including after a halt. It
makes the processor return to the idle state, as if all requested
processing had been completed. Otherwise, the facilities we
wish to have at our disposal at a halt are already provided: to
equip GENEX with a serviceable HALT command it sufficed
to make 'HALT' synonymous with 'READ'! (In doing so, we
adopted the harmless convention that the value of 'HALT: . . .'
is the value of the (arbitrary) user reply taken as a signal to
proceed, see the busy state input algorithm in Section 1.2). It is
hard to think of reasons why HALT and READ should not
always be treated as synonyms in similar interpretive systems.
It is essential in systems of this kind to be able to stop com-

putations that threaten to consume undue amounts of computer
time—-whether owing to a program error or to a misjudgment.
There are various ways in which this can be done. Firstly, the
actual amount of computer time can be measured. Either a
deadline can be chosen (by implementation or by the user),
after which he regains control, or the user can be given access
to the computer clock. In GENEX the instruction CHECK:
TIME returns as its value the amount of time consumed; there
is no deadline trap.
Secondly, the number of elementary operations performed, or

statements executed, can be used as an indirect measure of
resource consumption. This popular device would be easy to
put into the GENEX processor but has not been.
Thirdly, an algorithm may be implemented which tries to

discover when the program is caught in a loop.
Consider a programming language implementation in which,

under normal control, instructions are executed sequentially.
Let n denote the number of instructions, the last of which is a
stop instruction. By monitoring jumps a simple loop check can
be implemented. If the program is looping it must necessarily
make an ever-increasing number of backward jumps (i.e.
jumps from a high to a low address), because the program is
itself finite in size. The fact that n is finite further implies that
a backward jump the destination of which is higher than the
destination of the most recent backward jump is not potentially
dangerous, since, no matter how many such jumps take place in
succession, control will move towards high addresses and will
eventually reach the stop instruction (actually, after less than
»2/2 instruction executions). A natural loop check therefore
consists of counting the number of backward jumps to destin-
ations less than or equal to the last previous backward jump
destination and give the alarm if this count exceeds a certain
limit. This is, in a sense, the best possible algorithm, subject to
the restriction that the algorithm can keep record of one jump
destination only.
In practice, it may be easier to test all jumps, not just back-

ward jumps. Although in some properly working programs, the
count may rise faster than strictly necessary, this modification
will still catch all looping programs. It was employed in the

Volume 19 Number 2 147

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/19/2/144/408703 by guest on 19 April 2024

IBM 7094 implementation (Hilden and Jensen, 1969) of L7,
an L6-like list processing language with ALGOL-like syntax,
conceived by Lindblad (1968). The GENEX interpreter does
not use a linear instruction storage, but traverses a syntax
tree. The algorithm could perhaps have been modified to cope
with pointers instead of instruction addresses. A much simpler
approach is possible, however.

Label-freeness implies that a GENEX program can be caught
in a loop only in case of infinite recursion. Therefore its loop
check mechanism is based on counting the number of pro-
cedure calls. Actually, the interpreter need only, and does only,
worry about the number of calls executed since the last occasion
on which the user had control (i.e. since the last segment input
request). Now, to obtain at the same time loop protection and
undisturbed operation of correct programs that happen to
involve many procedure calls, the following strategy has been
adopted.
If a fixed limit of one hundred procedure calls is exceeded the

user regains control after an explanatory message (busy state
input request). If the user's answer (defined as the value of the
final reply segment, see Section 1.2) is 'GOON', computations
proceed; any other answer is taken as the value of the intended
100th procedure call, which is consequently not executed. (In
either case the loop count is reset to zero—because the user
has just had control). If this is insufficient to stop wild recursion,
he can make appropriate modifications during the busy state
conversation. In particular, he can redeclare the offending
procedure (without causing havoc). As a last resort the
ESCAPE mechanism can be used. Now, the instruction
CHECK: LOOP returns as its value the loop count and has the
side-effect of resetting the count to zero. This clearly enables
the user to program his own loop protection, if desired. In
addition, CHECK:LOOP can be inserted at suitable points in
procedure bodies to avoid interruption of properly working
programs known to involve many calls. On the other hand, it
obviously does not allow the user to disable the built-in check
as such. In a sense, then, GENEX allows its user to disable the
built-in check only where looping is expected, not where it is
unexpected.

In the system described by Cuff it is possible to regain control,
or to influence the course of computations otherwise, by pres-
sing the attention button. A new PL/I ON-condition enables the
user program to handle such asynchronous terminal interrupts
itself. In GENEX this type of device, however useful it might be,
was out of the question, as it would have involved a consider-
able amount of system programming. The attention button of
the UNISCOPE can, however, be used to terminate the
GENEX run—or to arrest temporarily the display 'handler',
for instance, if output is being produced at such a rate that it
disappears from the screen too fast to be read.

4. Error handling
In designing a computer system it is important to give con-
sideration to violations of the restrictions that the processor
will impose on the human. Ideally the restrictions should be an
integral part of the design. They should be as few, and therefore
as general, as possible. Further, the processor's error reactions
should have a natural one-to-one correspondence to the rules
violated. This will facilitate both documentation and use. In
particular, careful thought should be given to multi-error
situations: abnormal contingencies should not be allowed to
interact.
In an interactive system four categories of error reactions can

be distinguished: (a) default actions, performed without the
user being notified, (b) remedial actions accompanied by a
warning message, (c) errors left for the user to correct, and
(d) catastrophic errors. Some processors provide the user with
means for moving an error type from one category to another
(GENEX does not). The means for correcting errors should also

be conceived as an integral part of the design.
As to GENEX warning messages, these always indicate the

remedial action taken. For instance, so-called probability
'weight expressions' are required to be 'homogeneous'. The
message 'INHOMOG. WEIGHT EXPR. NULLED' informs
the user not only that he has tried to construct an inhomo-
geneous weight expression, but also that it has been replaced by
the null expression. Adding the word 'nulled' to the message is
enough to indicate this fact, so why refer the user to a manual ?
A GENEX correction request is simply a busy state input

request signalled by an error message, as exemplified by the
loop check mechanism discussed above. The error message is
accompanied by a small quotation of the offending source
program context, kept for this purpose in each node of the
syntax tree. The message normally hints at the phrase to be
replaced by the corrective answer. For example,
'(ALFA(l) + 5)'is meaningless if ALFA has not been declared.
The resulting message may look as follows:

ALFA(1 > > > ALFA IS NOT KNOWN

The user now knows that 'ALFA' is to be replaced. After
investigating the case, typically by means of re-display, he
simply replies 'ALPHA', if this is the intended spelling. If the
cause of the trouble is that he has forgotten to declare ALFA,
he enters the intended declaration and replies 'ALFA'.
The corrective answer applies to the present execution of the

incorrect phrase only. If replacement for the rest of the run's
lifetime is desired, the program can be repaired (patched) by
means of such reply as

PERMANENT: ALPHA

The permanent replacement mechanism is more general,
however: any source text phrase whose value is replaced by the
answer to a busy state input request can itself be permanently
replaced. For instance, suppose a procedure contains the
instruction 'READ: AMOUNT', which permits the user to
key in a different 'amount' each time it is executed. If, in a
particular run, the user decides to vary this 'amount' syste-
matically, his reply to the first 'AMOUNT' question might be

PERMANENT: S(R); P{\) + P(2)

indicating that this first 'amount' is the value of'P(l) + P(2)'
and all later 'amounts' are found by calling procedure S with
argument R.
What PERMANENT does is to remember a pointer to the

syntax tree branch representing the phrase after colon (lS(R)'
in our example). When Step 4 in the busy state algorithm is
reached, the following happens:

(Step 4) Did the reply message contain a PERMANENT
instruction? If so, change the syntax tree by sub-
stituting the new pointer for the one that points to the
phrase causing the input request.

A GENEX procedure may be declared at any time; this facility
and the PERMANENT repair facility clearly supplement each
other. By means of the editing facilities of the UNISCOPE a
re-display of the previous declaration can be changed to
produce the new declaration, with little risk of introducing new
errors.
In a stimulating paper devoted to the human engineering

aspects of interactive systems design, Hansen (1971) stressed the
principle ofdata structure integrity: a trivial mistake should not
be allowed to destroy a large amount of valuable data. GENEX
provides so-called assumption registers which can be used to
hold encoded probability distributions. The contents of an
assumption register may be a very extensive data structure,
which will be difficult and expensive to reconstruct. To
overwrite an occupied assumption register the user must
explicitly switch off a protection mechanism. This is in keeping

148 The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/19/2/144/408703 by guest on 19 April 2024

with Hansen's suggestions. He, however, goes one step further
and provides a 'bin' into which a data structure that becomes
unreferenceable is thrown, and from which it can be recovered
by a special instruction. Thus he has added a new dimension to
current techniques of garbage collection! This is but a special
instance of what he calls reversible action. He notes the desir-
ability of a general means for undoing computations, i.e. what
a user might prefer to call regret facilities. Such facilities can
possibly be borrowed from indeterministic programming
languages, but they are bound to be very expensive and are
likely to pervade the entire design, if they are to be truly general.

5. Debugging
Debugging is the activity of spotting and eliminating the cause
of error contingencies or of incorrect results. In the interactive
case a distinction could be made between debugging aimed at
producing a correct program for later application, on the one
hand, and correction of mistakes made in the course of instruct-
ing the processor to perform certain 'desk calculator' oper-
ations, on the other. In GENEX the repair facilities discussed
above and the detective facilities described in this section are
used for both purposes. The actual editing of an incorrect
program must, of course, be done afterwards, on the basis of
the experience gained during the GENEX run, since the
GENEX repair mechanisms only serve to make a piece of
program work as (/"its source text had been corrected.
Certain kinds of information which cannot be obtained by the

normal output operations of the given programming language
tend to be useful in elucidating an error situation. Source text
quotations or references offer a typical example. Often one
may want to know from where the current procedure was called.
More generally, speaking in terms of the run time stack, which
many language implementations employ or could employ,
much of the desired information is located in the uppermost
portion of the stack. Ideally, one would wish to see the upper-
most elements explained in source language and source text
terms. A trace of control flow is also desirable.
While the GENEX user has all normal output facilities at his

disposal when trying to find a good reply to a correction request,
few facilities of the present kind are provided. To supplement
the source quotation, the instruction 'CURRENT:
PROCEDURE' was implemented; it returns the name of the
procedure being currently executed, if any. In addition, as
ARG denotes its argument list, 'ARGT or 'ARG(l)' gives
access to its first argument, etc.
Types are checked dynamically in GENEX. Actually they

must be, because it is not until execution that the types of the
addends in 'READ:/* + READ:5' can be matched against
the requirements of the ' + ' operator. If an illegitimate
operator/operand(s) combination is encountered, the correction
request will indicate the operand type(s) and the operator. For
instance, the meaningless phrase '(22 = ARG)' would cause
the message:

22 = ARG > > > INVALID PHRASE, NUMERAL = LIST

(The user's answer will be substituted for '22 = ARG' in this
case.) To obtain not only the types but also the values of the
operands, a special instruction, SHOW :OPERANDS, can be
entered. In our example it would display '22', followed by
output explaining the current argument list. Thus the instruc-
tion effectively gives access to the two top elements of the
stack.
In addition to facilities for elucidating error circumstances,

the detective phase of debugging employs facilities for watching
the program as it works: apart from questions of rounding
error as well as some special problems presented by heuristic
and time-dependent programs, it is safe to say that the pro-
grammer often gets the decisive clue to the cause of program
malfunction by noting the first step at which something un-

expected happens. This idea underlies the many popular trace
devices, with which the reader is undoubtedly familiar.
GENEX provides but a simple TRACE command (possibly a

misnomer), equivalent to SHOW (the normal output command)
except for two modifications: {a) it can be switched off when
TRACEing is no longer needed; (b) output is preceded by an
octal dump of the operand. This dump is of little importance
at the moment, but served a useful purpose when the processor
was itself being debugged. It is possible to TRACE subphrases
at all levels without changing program structure, because
'TRACE:' is transparent, that is to say,

5 + ALPHA(l) and 5 + (TRACE :ALPHA)(1)

are equivalent phrases, apart from the possible output side-
effect of the latter. ('SHOW:' works the same way). Procedure
redeclaration is the favourite tool for inserting TRACE
instructions.
The GENEX interpreter will never (touch wood!) produce an

invalid result of its own accord, because it reports for correction
all illegal operator/operand combinations. However, a special
invalid value results when the instruction

FORCE: INVALID

is executed. The invalid value can be placed as an element of a
list, given as an argument to a procedure, and, of course, output.
But it cannot be subjected to any kind of processing. As soon
as one attempts to add something to it an INVALID PHRASE
message will result. This is an automatic consequence of the
dynamic type check because a unique invalid type is associated
with the invalid value. FORCE :1NVALID can therefore serve
as a delayed action bomb, which returns control to the user at
the proper time and place. When used as 'corrective' answer it
may create a second opportunity for the user to make a
permanent program repair, typically involving a larger branch
of the syntax tree than the twig that has caused the alarm.
In terms of a run time stack (see above), it enables the user to
peel off a few elements before fixing matters. Space does not
permit examples.
Experience with this device suggests that an invalid value is a

useful interpretive language feature, not just for the con-
ventional purpose of flagging undefined variables (a problem,
which does not arise in the GENEX language), but also as a
piece of data that the programmer can introduce at suitable
places by an explicit command. One would expect it to be the
more useful, in comparison with tracing of access to program
variables, the more functional (and hence poor in variables)
the language is. When used as a tracing tool, it raises some
questions, however, one of which is: Should it be necessary to
hand control to the terminal each time an attempt is made to
use the invalid value? Would it not be more informative to let
the invalid value propagate, a message to the effect being issued,
e.g. until a conditional jump governed by an invalid Boolean is
encountered ?

Conclusion
Hopefully the ideas expounded in this paper will stimulate
designers of conversational computer systems. The six areas
listed in the Introduction and the subareas mentioned in the
individual sections provide the beginning of a framework which
may prove useful in itself. To those readers who have personal
experience with designing such systems the material of Section
1.2 will probably appear novel. This includes the combined
write-read nature of the GENEX read command, the flexible
dialogue organisation laid down in the busy state input algor-
ithm, and the emphasis on putting program entry, data entry,
and error corrections all on the same footing. A user-processor
interphase designed along these lines should be tidy and, in
addition, easy to implement. Readers with a batch processing
background may have been struck by the fact that programming

Volume 19 Number 2 149

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/19/2/144/408703 by guest on 19 April 2024

for conversational operation is more profoundly different from
batch programming than one would think in advance. Con-
sequently it is worth while to study such papers as the ones
referred to here before embarking upon a non-trivial interactive
system, be it administrative, scientific, medical, or general-
purpose.

Acknowledgements
The staff of RECKU (the Regional Educational Computing
Centre at the University of Copenhagen) have been immensely
helpful throughout the years. The author is also grateful to
Peter Naur and Peter Gardner for critical reading of the
manuscript.

References
BARRON, D. W. 0971). Approaches to conversational FORTRAN, The Computer Journal, Vol. 14, No. 2, pp. 123-127. CR 22307.
CUFF, R. N. (1972). A conversational compiler for full PL/I, The Computer Journal, Vol. 15, No. 2, pp. 99-104.
HANSEN, W. J. (1971). User engineering principles for interactive systems, AFIPS conference proceedings, (1971 FJCQ, Vol. 39, pp. 523-532.
HILDEN, J., and JENSEN, P. (1969). Programming i L7, Northern Europe University Computing Center technical report C. 535/69, Lyngby

(Denmark).
HILDEN, J. (1973, being continuously updated). The GENEX Uniscope System. Xerox copies available from the author.
HILDEN, J. (1976a). Probability problem solving by computer—the GENEX system, to be published.
HILDEN, J. (1976b). Finite categorial probability problems and the GENEX algebra, to be published.
LINDBLAD ANDERSEN, P. (1968). L7—-et listeorienteret programmeringssprog, Nord DATA 68, (conference proceedings), Helsinki.
MCGEACHIE, J. S. (1973). Multiple terminals under user program control in a time-sharing environment, CACM, Vol. 16, pp. 587-590.
MOORE, R. K., and MAIN, W. (1968). Interactive languages: design criteria and a proposal, AFIPS conference proceedings (1968 FJCC)

Vol. 33 (part 1), pp. 193-200. CR 17069.
REINFELDS, J., ESKELSON, N., KOPETZ, H., and KRATKY, G. (1970). AMTRAN—an interactive computing system, AFIPS conference

proceedings (1970 SJCC), Vol. 36, pp. 537-541. CR 20658.

Book reviews
Lang-Pak—An Interactive Language Design System, by L. E. Heindel

and J. T. Roberto; 1975, 184 pages. {American Elsevier
Publishing Company Inc, US S9.75)

Overall this is a very well presented and interesting book. However,
the title is slightly ambiguous; the book in the main emphasises
language design which is interactive, rather than a design system for
interactive languages. Although little emphasis is placed on the latter,
the system presented does not preclude their design and
implementation.
The book is divided into four parts: an introduction to languages,

grammars and parsing, design of languages using Lang-Pak,
implementation of Lang-Pak and sizeable appendices including
Lang-Pak listings in PL/I and FORTRAN. It appears to be largely
aimed at the reader who wishes to include a syntax analyser in his
work with the minimum of fuss and previous experience of language
design. As such it is excellent and makes no attempt at taking its
study of grammars any further than needed by a Lang-Pak imple-
mentor. The references included, however, give a good cross section
of further reading on such topics.
For the user of a system such as Lang-Pak, the introduction to

languages is both clear and concise. Terms are introduced in a simple
way with plenty of examples, almost certainly leaving the novice
with a good understanding of the topic.
Like many other introductions to grammars, semantics are super-

ficially dealt with in the introduction. However, the balance is
certainly redressed in the part dealing with use of Lang-Pak. This
deals with the interfacing of semantic routines to the syntax analyser
and the detailed design of a language. Whilst the language design
sessions included are instructive, by the end of the section they pall
and one has the feeling that some of the material could have been
presented more concisely.
Further depth is included, specifically aimed at the Lang-Pak

implementor. This is very detailed material about internal data

structures and subroutine interfaces and obviously has to be studied
in conjunction with the PL/I and FORTRAN listings of Lang-Pak
provided in the appendices.
The book is recommended as a reference and implementation

manual for those requiring a flexible, well designed language design
system.

S. R. WILBUR (London)

The Design of an Optimizing Compiler, by W. Wulf, R. K. Johnsson,
C. B. Weinstock, S. O. Hobbs and C. M. Geschke, 1975; 165
pages. (American Elsevier, £6-30)

This book describes the overall structure of an optimising compiler
to translate Bliss/11 source code into PDP-11 object code. In the
preface the authors state that they have attempted to walk the fine
line between a purely formal, implementation-independent treatment
and tedious implementation detail—in this they have succeeded
admirably. The book is terse, to the point, eminently readable and
leaves one with a good picture of a complete system—indeed itching
to go away and implement a similar system.
However the book is not for novices. Before reading it one should

be familiar with the general structure of a compiler and with com-
piling techniques; such terms as lexical analysis, tree representation,
hash tables and binding should be familiar. Short primers describing
BLISS and the PDP-11 are included and give sufficient information to
enable one to follow the overall design.
This book is highly recommended as a case analysis of the overall

design of complete system combining known algorithms with neces-
sary heuristics and taking into account the various interactions which
arise. If you have the necessary general background and want to see a
complete optimising compiler, read the book. If you are looking for
a book for students' use in an in-depth study into a particular
compiler then this book is worth looking into.

D. C. COOPER (London)

150 The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/19/2/144/408703 by guest on 19 April 2024

