Programming improvements to Fike’s algorithm for

generating permutations
J. S. Rohl

Department of Computation, The University of Manchester Institute of Science and

Technology, PO Box 88, Manchester M60 1QD

In a recent article Fike describes an elegant new algorithm for generating permutations and gives
two procedures implementing this algorithm. In this paper we give improved versions with com-
parative measurements on two machine/compiler systems. The results show that on one of the systems

a recursive procedure is the fastest.
(Received July 1975)

In a recent number of this Journal, Fike (1975) has given a new
algorithm for generating permutations, which his experiments
indicate is comparable with the fastest known methods (see
Ord-Smith, 1970 and 1971). In this paper we consider some
programming modifications to the procedures Fike presents
which improve the performance by a factor of about 2. The
timings show that with a compiler which handles procedure
calls reasonably, a recursive procedure is the most efficient.

The algorithm
Fike’s algorithm is based on the following observations:

1. There are n! permutations of the » marks 1,2,3,.. ., 7.

2. There are n! sequences (d,, ds, . . ., d,) where d, denotes an
integer such that 1 < d, < k.

3. These sequences may be trivially generated.

4. There is a one-to-one correspondence between the sequences
and the permutations.

5. A permutation may be derived from the corresponding
sequence by a simple algorithm: starting with the original
arrangement of the marks, interchange the mark in position
k with the mark in position d, for k = 2,3,...,n.

Fig. 1 which is taken directly from Fike’s paper illustrates the
algorithm, applied to the marks 1, 2, 3 and 4.

At a first glance it seems that n — 1 interchanges are required
to produce each permutation; but on closer inspection it is clear
that if the permutations are generated in the order of Fig. 1
then in most cases two interchanges will suffice. Further, we
can arrange that each interchange of the pair is the same, the
first producing the required permutation, the second returning
to the status quo ready for the next permutation.

Fike’s recursive procedure
Fike has given a delightfully elegant recursive procedure for
implementing this algorithm. The original is in PL/I but since

Permutation Sequence Permutation Sequence

1234 2,3, 4) 2134 a, 3, 4)
1243 @, 3,3) 2143 {,3,3)
1432 (2,3,2) 2431 (1,3,2)
4231 @ 3,1) 4132 1,3, 1)
1324 2, 2,4 2314 (1, 2, 4)
1342 (2,2, 3) 2341 (1, 2, 3)
1423 (2,2,2) 2413 (1, 2,2)
4321 22,1 4312 1,2,1)
3214 1,4 3124 a,1, 4.
3241 (2, 1,3) 3142 (1,13)
3412 2,12 3421 1,142
4213 2, 1,1 4123 (1, 1,1

Fig. 1 The 4! permutations of the integers 1,2,3,4 and the 4!
sequences to which they correspond

the author has no PL/I compiler available he has used ALGOL
60 instead. The ALGOL 60 transliteration of Fike’s procedure
is given in Fig. 2, where the place at which a user of the
procedure might process the permutation is indicated by the
appropriate comment, even though it is syntactically invalid.

An improved recursive procedure
Consideration of Fig. 2 leads to the following observations:

1. Suppose we define the level of calling of the procedure as
starting at 2; then the level is synonymous with the para-
meter k. At level k the only element of d that is referenced is
d[k], so that the array d as such is redundant. It is sufficient
to use a scalar at each level for the appropriate element.

2. At the end of each loop p[k] is assigned a value which is
immediately over-written at the start of the next iteration.
The assignment then needs only to be done on the last
iteration and can therefore be moved outside the loop.

From these observations we produce the improved version of
Fig. 3.

Fig. 4 gives some measurements taken on two machines, an
ICL 1906A using the Manchester ALGOL compiler and a
CDC 7600 which is nominally eight times faster using CDC’s

procedure generate permutations(n);
value #; integer n;
comment This generates the n! permutations of the digits
1,2,...,n;
begin
integer array p[1:n], d[2, n];
procedure permute(k);
value k; integer k;
comment This procedure controls the interchanges at level k;
begin
integer temp;
temp := plk];
for d[k] := k step — 1 until 1 do
begin
plk] := pld[k]l;
pld[k]] := temp;
if £k < n then permute(k + 1)
else comment permutation available;
pld[k]1] := p[k];
plk] := temp
end of loop varying d,
end of procedure permute;
integer i;
for i := 1 step 1 until n de p[i] := i;
permute(2)
end of procedure generate permutations
Fig. 2 Fike’s original recursive procedure transliterated into ALGOL
60

156

The Computer Journal

¥202 Iudy 61 uo 1senb Aq 92/80%/95 L/2/6 L /8101 e/|ulwoo/woo dno-ojwapeoe//:sdiy wolj papeojumoq

procedure generate permutations(n);
value n; integer n;
comment This generates the n! permutations of the digits
1,2,...,n; :
begin
integer array p[1:n];
procedure permute(k);
value k; integer k;
comment This procedure controls the interchanges at level k;
begin
integer temp, dk;
temp := pl[k];
for dik := k step —1 until 1 do
begin
plk] = pldk];
pldk] := temp;
if k& < n then permute(k + 1)
else comment permutation available;
pldk] := plk]
end of loop varying d;
plk] := temp
end of procedure permute;
integer i;
for i := 1 step 1 until n do p[i] := i;
permute(2)
end of procedure generate permutations

Fig. 3 An improved recursive procedure

ALGOL 4-0 compiler. If we concentrate on the ICL 1900
compiler we see a gain of 43 to 45 per cent, [the author could
not afford to run the program for n = 10!], the gain improving
slowly with increasing n. These figures are subject to a measure-
ment error of some one to two per cent.

The reason is obvious: not only is the number of interchanges
important, here 2n! + 2(n — 1)! + ... 2 instead of n! — 1 for
other algorithms, but also the cost of accessing the elements to
be interchanged, and the cost of deciding which elements to
interchange. [Further, the value of » is unlikely ever to exceed
10 for cost reasons alone]. The improved algorithm reduces the
cost of loop control and element accessing leaving the number
of interchanges the same. CDC’s ALGOL 4:0 shows less
improvement, 23 to 25 per cent, because the cost of procedure
entry is much more dominant. On the 1906A entry (and exit)
to a procedure with one value parameter takes 18-4 pusecs
while on the 7600 it takes 31-8 usecs.

A tuned procedure

It is clear that the improved procedure is a better procedure all
round in that it runs faster, occupies less store and has elimin-
ated a redundant concept. If speed is the criterion we can
produce a tuned procedure, at the cost of storage, based on the
observations:

procedure generate permutations(n);
value n; integer n;
comment This generates the n! permutations of the digits
1,2,...,n;
begin
integer array p[1:n];
procedure permute(k);
value k; integer k;
comment This procedure controls the interchanges at level k
begin
integer temp, dk, dn;
if k = n then
begin
comment permutation available,
temp := p[n];
fordn :=n — 1 step —1 until 1 do
begin
pln] := p[dn];
pldn] := temp;
comment permutation available;
pldn] := p[n]
end of loop varying d,;
pln] := temp
end of sequence for bottom level
else begin
permute(k + 1);
temp := p{k];
fordk := k — 1 step — 1 until 1 do
begin
plk] = pldk];
pldk} := temp;
permute(k + 1);
pldk] = pl[k]
end of loop varying d;
plk] := temp
end of sequence for other levels
end of procedure permute,
integer i;
for i := 1 step 1 until n do p[i] := i;
permute(2)
end of procedure generate permutations

Fig. 5 A tuned recursive procedure

1. At each level, the interchanges performed at the start and
end of each traverse of the loop are redundant since the
interchange takes place between p[k] and p[k].

2. The test for the bottom level (kK = ») takes place inside the
loop (where k is constant).

Fig. 5 gives a tuned procedure.

Fig 4 shows times for this procedure, showing a further
improvement of approximately 10 per cent over the original.
On the 1906A the procedure runs in less than half the time, a
gain of 55 to 56 per cent.

n=3_§

ICL 1906 A4 CDC 7600

Manchester ALGOL 4-0
Fike’s Recursive Procedure 4-53 seconds 0-936 seconds

(1-00) (1-00)
Improved Procedure 2:51 seconds 0-703 seconds

(0-55) 075

Tuned Procedure

Fig. 4 Comparison of the performance of the three recursive procedures on two different machines

Volume 19 Number 2

1-98 seconds
(044)

0-637 seconds
(0-68)

n=17

ICL 1906 A4 CDC 7600

Manchester ALGOL 4-0
Fike’s Recursive Procedure 0-58 seconds 0-126 seconds

(1-00) (1-00)
Improved Procedure 0-33 seconds 0-098 seconds

0-57) ©-77)

Tuned Procedure

0-26 seconds
(0-45)

0-090 seconds
©-71)

157

¥202 Iudy 61 uo 1senb Aq 92/80%/95 L/2/6 L /8101 e/|ulwoo/woo dno-ojwapeoe//:sdiy wolj papeojumoq

Fike’s iterative procedure
Fike has given an iterative procedure as well, in which, as he
says, the relation to the algorithm is not so obvious. Fig. 6
gives a transliterated version in ALGOL 60 (which, as it
happens, illustrates the weaknesses in the ALGOL 60 looping
construct). It is an interesting exercise to derive this procedure
from the original recursive one, and we leave that to the reader.
Measurements for this procedure operating under the two
systems are given in Fig. 7.
Although this non-recursive procedure is faster than the
original recursive one (20 per cent on the 1906A, 26 per cent on

the 7600) it is slower than either the improved or the tuned
recursive algorithms. Perusal of Fig. 6 shows why. Each
permutation involves, as well as the double interchange with
its heavy dependence of array accessing, the two tests associated
with the loops and a further test of k against 1. Since for given
values of (d,, d,, . . ., d,_) there are n permutations, we can
recover some of the inefficiency by producing these n per-
mutations in a loop. Fig. 8 gives such a procedure. This is not
derived from Fike’s original non-recursive procedure, but from
the recursive one, through a different route. There is a clear
affinity between this and the tuned recursive one.

procedure generate permutations(n);
value #; integer n;

comment This generates the n! permutations of digits 1, 2, . . ., n;

begin

integer array p[1:n], d[2:n];

integer i, dummy, temp, k;

Boolean more;

for i := 1 step 1 until » do p[i] := i;
for i := 2 step 1 until n do d[i] := i;
comment first permutation available;

more := true;
for dummy := 0 while more do
begin
k :=n;
for dummy := O while k # 1 Ad[k] = 1 do
begin
temp := p[k];
plk] := p[l];
pl1] := temp;
d[k] := k;
k:=k-—1
end;
if £ = 1 then more : = false
else begin

temp := p[d[k]];

pld[k]] := p[k];

plk] := pldlk] — 1];

pldlk] — 1] := temp;

dlk] :=d[k] — 1;

comment next permutation available;
end
end

end of procedure generate permutations

Fig. 6 Fike’s non-recursive procedure transliterated in to ALGOL 60

n=3_§
ICL 19064 CDC 7600
Manchester ALGOL 4-0
Fike’s Non-Recursive 3-62 seconds 0-693 seconds
Procedure (1-00) (1-00)
Improved Procedure 2-05 seconds 0-432 seconds
0-57) 0-62)
n=17
ICL 19064 CDC 7600
Manchester ALGOL 4-0
Fike’s Non-Recursive 0-46 seconds 0-092 seconds
Procedure (1-00) (1-00)
Improved Procedure 0-27 seconds 0-057 seconds
©-57) 0-62)

Fig. 7 Comparison of the performance of the two non-recursive

procedures on fwo different machines

As Fig. 7 shows this procedure is some 40 per cent better than
the original. There are still some unnecessary interchanges
though we have not considered whether the procedure could
be tuned with any significant gain.

Procedure structure

As it stands each procedure generates the permutations of the
natural numbers 1, 2, 3, ... because the array p is initialised
to that value on entry. The body of the procedure is, however,
invariant to the nature of the marks and so permutations of a

procedure generate permutations(n);
value », integer n;
comment This generates the n! permutations of the digits
1,2,...,n;
begin
integer array p[1:n], d{1:n — 1];
integer i, temp, dummy, dn, k;
Boolean more;
fer i := 1 step 1 until n do p[i] := i;
for i := 1 step 1 until n — 1 do d[i] := i;
more .= true;
for dummy := 0 while more do

begin
comment permutation available;
temp := p[n];
for dn := n — 1 step —1 until 1 do
begin
pln] = pldn];

pldn] := temp;
comment permutation available;
pldn] := p[n]
end of loop producing n permutations;
pln] := temp;
temp: = p [dln — 1]I;
pldln — 1]] := p[n — 1];
pln — 1] := temy;

k:=n-1;

for dummy := 0 while k > 2Ad[k] = 1 do
begin
dik] :=k;
k:=k-1;

temp .= p[d[k]];

pld[k]] := plk];

plk] := temp

end of loop moving up completed levels;
if d[k] = 1 then more := false
else begin

dlk] :=d[k] - 1;

temp := plk];

plk] := pld[k]1];

pld[k]] := temp

end of sequence at first uncompleted level
end of loop producing all permutations

end of procedure generate permutations

Fig. 8 An improved non-recursive procedure

158

The Computer Journal

¥202 Iudy 61 uo 1senb Aq 92/80%/95 L/2/6 L /8101 e/|ulwoo/woo dno-ojwapeoe//:sdiy wolj papeojumoq

different set of marks can be produced merely by changing the
assignment to p.

If permutations of the natural numbers are required, all three
new procedures could be improved slightly. The variable temp,
is redundant, its value being known. For example, in the
recursive procedures on entry to permute at level k, p[k] = k.

To return to the general case, the specification of the procedure
could have been altered to include p as a parameter. This has
not been done because it is not clear that either structure is the
best.

The family of procedures described here have a common
structure. A procedure is called once and generates all the
permutations, these permutations being processed by code
embedded within the procedure or by subroutine. The pro-
cedures described by Ord-Smith have all been cast in a form
in which the permutation procedure is called n! times as a
subroutine of the procedure processing the permutations.
This suggests that all the procedures might better be recast as
co-routines.

Conclusions
In this paper we report the results obtained by accepting an
algorithm and taking a programmer’s view of the procedure

References

implementing this algorithm. Gains of between 40 to 55 per
cent have been obtained. However, when we compare Fig. 4
with Fig. 7 we see that the improvements are very much
machine and compiler dependent. If we rank the five procedures
for the two systems considered, we produce two different
rankings. On the 1906A, the best procedure, marginally, is a
recursive one: on the 7600 it is, by over 30 per cent, a non-
recursive one,

That the recursive procedure on the 1906A should prove the
fastest is of significance in that it supports Fike’s observations
about his original algorithms on IBM 360. The figures suggest
that the much quoted assertion that recursion is inefficient
(which the figures for 7600, on their own, would support) is an
assertion more about the compiler used than about recursion
itself. If procedure entry and exit is handled sensibly, as it is on
the 1906A compiler used, then recursion is not expensive, and,
where the algorithm involved is essentially recursive, can be
used to advantage.

Acknowledgements

I should like to record my thanks to C. T. Fike who, on reading
the first draft, pointed out a serious weakness in the procedures,
and to Mrs. E. M. J. Chadwick who tested and timed them all.

Fikg, C. T. (1975). A permutation generation method, The Computer Journal, Vol. 18, pp. 21-22,

OrD-SMITH, R. J. (1970).

Generation of permutation sequences: part 1, The Computer Journal, Vol. 13, pp. 152-155.

ORrD-SMITH, R. J. (1971). Generation of permutation sequences: part 2, The Computer Journal, Vol. 14, pp. 136-139,

Book review

The Principles of Systems Programming, by Robert M. Graham,
1975; 422 pages. (John Wiley, £8-25)

In writing this book, the author has tackled a formidable task. The
phrase ‘systems programming’ is taken, particularly in the USA,
to include almost all programs except those specifically directed
towards applications. The book is correspondingly long, (about
180,000 words) and contains several major sections:

An introduction to systems (30 pages)
Machine and assembly languages, assemblers,
macroprocessors and loaders (92 pages)

Programming languages and compilers (113 pages)
Operating systems (130 pages)
Appendices (40 pages)

The book has many appealing features. A strong unifying thread is
the consistent use of INSTRAN, a ‘private’ high-level language
somewhat similar to Pascal or ALGOL 60, throughout most of the
main sections. INSTRAN serves to describe all the algorithms used
for assembly, loading, compilation, scheduling and peripheral
operation, and itself forms the example for an extensive discussion on
language translation techniques.

The text is always readable, and markedly fresher at the end than
at the beginning of the book, where many of the sentences are
cumbersome and repetitious. The best part of the book is the last
section on Operating Systems. My guess is that this is what really
interests the author. The section begins with an introduction which
singles out and describes some of the important characteristics of a
modern multi-access system such as its response ratio, file storage,
arrangements for privacy and protection, and adaptability to change.
Next, there is a good chapter on process control and communi-
cation. The writer describes both the classical P and V operations
and the alternative ‘block’, ‘wake-up’ and message passing mechan-
isms. The chapter on memory management covers segmentation and
paging (without confusing the two) and the organisation of file

Volume 19 Number 2

stores. The next chapter deals with input and output of all kinds,
giving several device driver routines in INSTRAN. The section ends
with a short chapter on the sharing of information and protection
against unauthorised access.

The rest of the book filled me with somewhat less enthusiasm. For
all that the text is described as ‘machine independent’, it is clear that
most of the writer’s experience was gained on the IBM 360 series and
on the various incarnations of MULTICS. Thus, although very little
is said about job control languages, those samples which are pre-
sented are derived from OS 360. The author sees nothing wrong with
the seven job control statements needed to compile and run a simple
program in PL/I, and nowhere does he suggest that a JCL might be
a genuine programming language instead of a series of rigid primitive
commands. The lack of any discussion on this point, and of any
suggestion that the user interface might be an important aspect of an
operating system, are two unfortunate omissions from the text.

The section on assemblers and loaders again seems to lack breadth.
No mention is made of a one-pass assembler, and the various
details, which are exceedingly precise, refer quite specifically to the
IBM 360 computer. Similarly, the section on compilers to a specific
(and not generally known) language, and such general information
as it contains is better presented in other books such as those by
Gries or Rohl.

The book gives only 19 references, and they are scattered through-
out the text instead of being collected together as is normal. However,
the names of the authors given—Dijkstra, Wirth, Gries, Brown,
Knuth, Denning, etc. are reassuring.

In conclusion, the section on Operating Systems will make good
background reading for Computer Science students, and those who
teach assembly code programming in the context of the IBM 360
might find that section of the book a possible alternative to the
standard IBM documentation as source material. The book will be
a useful addition to a college library, but—in view of the price—the
student would do well to spend his book allowance elsewhere.

A. J. T. CoLIN (Strathclyde)

159

¥202 Iudy 61 uo 1senb Aq 92/80%/95 L/2/6 L /8101 e/|ulwoo/woo dno-ojwapeoe//:sdiy wolj papeojumoq

