
different set of marks can be produced merely by changing the
assignment to p.
If permutations of the natural numbers are required, all three

new procedures could be improved slightly. The variable temp,
is redundant, its value being known. For example, in the
recursive procedures on entry to permute at level k, p\k~] — k.
To return to the general case, the specification of the procedure

could have been altered to include/? as a parameter. This has
not been done because it is not clear that either structure is the
best.
The family of procedures described here have a common

structure. A procedure is called once and generates all the
permutations, these permutations being processed by code
embedded within the procedure or by subroutine. The pro-
cedures described by Ord-Smith have all been cast in a form
in which the permutation procedure is called «! times as a
subroutine of the procedure processing the permutations.
This suggests that all the procedures might better be recast as
co-routines.

Conclusions
In this paper we report the results obtained by accepting an
algorithm and taking a programmer's view of the procedure

implementing this algorithm. Gains of between 40 to 55 per
cent have been obtained. However, when we compare Fig. 4
with Fig. 7 we see that the improvements are very much
machine and compiler dependent. If we rank the five procedures
for the two systems considered, we produce two different
rankings. On the 1906A, the best procedure, marginally, is a
recursive one: on the 7600 it is, by over 30 per cent, a non-
recursive one.
That the recursive procedure on the 1906A should prove the

fastest is of significance in that it supports Fike's observations
about his original algorithms on IBM 360. The figures suggest
that the much quoted assertion that recursion is inefficient
(which the figures for 7600, on their own, would support) is an
assertion more about the compiler used than about recursion
itself. If procedure entry and exit is handled sensibly, as it is on
the 1906A compiler used, then recursion is not expensive, and,
where the algorithm involved is essentially recursive, can be
used to advantage.

Acknowledgements
I should like to record my thanks to C. T. Fike who, on reading
the first draft, pointed out a serious weakness in the procedures,
and to Mrs. E. M. J. Chadwick who tested and timed them all.

References
FIKE, C. T. (1975). A permutation generation method, The Computer Journal, Vol. 18, pp. 21-22.
ORD-SMITH, R. J. (1970). Generation of permutation sequences: part 1, The Computer Journal, Vol. 13, pp. 152-155.
ORD-SMITH, R. J. (1971). Generation of permutation sequences: part 2, The Computer Journal, Vol. 14, pp. 136-139.

Book review
The Principles of Systems Programming, by Robert M. Graham,

1975; 422 pages. (John Wiley, £8-25)

In writing this book, the author has tackled a formidable task. The
phrase 'systems programming' is taken, particularly in the USA,
to include almost all programs except those specifically directed
towards applications. The book is correspondingly long, (about
180,000 words) and contains several major sections:
An introduction to systems (30 pages)
Machine and assembly languages, assemblers,

macroprocessors and loaders (92 pages)
Programming languages and compilers (113 pages)
Operating systems (130 pages)
Appendices (40 pages)
The book has many appealing features. A strong unifying thread is

the consistent use of INSTRAN, a 'private' high-level language
somewhat similar to Pascal or ALGOL 60, throughout most of the
main sections. INSTRAN serves to describe all the algorithms used
for assembly, loading, compilation, scheduling and peripheral
operation, and itself forms the example for an extensive discussion on
language translation techniques.
The text is always readable, and markedly fresher at the end than

at the beginning of the book, where many of the sentences are
cumbersome and repetitious. The best part of the book is the last
section on Operating Systems. My guess is that this is what really
interests the author. The section begins with an introduction which
singles out and describes some of the important characteristics of a
modern multi-access system such as its response ratio, file storage,
arrangements for privacy and protection, and adaptability to change.
Next, there is a good chapter on process control and communi-
cation. The writer describes both the classical P and V operations
and the alternative 'block', 'wake-up' and message passing mechan-
isms. The chapter on memory management covers segmentation and
paging (without confusing the two) and the organisation of file

stores. The next chapter deals with input and output of all kinds,
giving several device driver routines in INSTRAN. The section ends
with a short chapter on the sharing of information and protection
against unauthorised access.
The rest of the book filled me with somewhat less enthusiasm. For

all that the text is described as 'machine independent', it is clear that
most of the writer's experience was gained on the IBM 360 series and
on the various incarnations of MULTICS. Thus, although very little
is said about job control languages, those samples which are pre-
sented are derived from OS 360. The author sees nothing wrong with
the seven job control statements needed to compile and run a simple
program in PL/I, and nowhere does he suggest that a JCL might be
a genuine programming language instead of a series of rigid primitive
commands. The lack of any discussion on this point, and of any
suggestion that the user interface might be an important aspect of an
operating system, are two unfortunate omissions from the text.
The section on assemblers and loaders again seems to lack breadth.

No mention is made of a one-pass assembler, and the various
details, which are exceedingly precise, refer quite specifically to the
IBM 360 computer. Similarly, the section on compilers to a specific
(and not generally known) language, and such general information
as it contains is better presented in other books such as those by
Gries or Rohl.
The book gives only 19 references, and they are scattered through-

out the text instead of being collected together as is normal. However,
the names of the authors given—Dijkstra, Wirth, Gries, Brown,
Knuth, Denning, etc. are reassuring.
In conclusion, the section on Operating Systems will make good

background reading for Computer Science students, and those who
teach assembly code programming in the context of the IBM 360
might find that section of the book a possible alternative to the
standard IBM documentation as source material. The book will be
a useful addition to a college library, but—in view of the price—the
student would do well to spend his book allowance elsewhere.

A. J. T. COLIN (Strathclyde)

Volume 19 Number 2 159

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/19/2/159/408728 by guest on 19 April 2024


