
On the use of macros for iteration
A. G. Middleton
Department of Computer Science, University College of Swansea, Singleton Park,
Swansea, SA2 8PP, Wales

Iterative constructs are often associated with a stream of data items (a 'data path'). This paper
shows how macros can be used to allow the programmer, in certain circumstances, to request
iteration in such a manner that the data path utilised is made explicit. The resulting program text is
considered more natural and informative than that which might result from a straightforward
application of 'repeat'-constructs, 'for'-constructs, etc.
(Received November 1974)

General approach
The problem
The techniques discussed are considered to fall in the general
area of 'structured programming'. However, (see Denning,
1973 and Gries, 1974) the term 'structured programming' has
no precise, universally accepted definition. In this paper, the
term will be used to refer to the use of source constructs of the
type discussed by Dijkstra (see Dahl et al, 1972) to build up a
program from a small set of readily understood control
structures: these tools possibly being used to develop a
program by stepwise refinement (Wirth, 1971).

Such techniques will be referred to as 'conventional' structured
programming, as they have influenced current language design
(for example, Woodward and Bond, 1974 and Jensen and Wirth,
1974) and are at the centre of much debate on structured
programming (for example, Dijkstra, 1968 and Wulf, 1972).
It is felt that this 'conventional' approach does not always
convey an immediate grasp of what is happening in terms of
accessing data structures.
This paper discusses the use of macros to permit the source

constructs in a structured program to convey readily the nature
of the data path accessed in certain iterations.
All iterative constructs implemented take the form :

FOR x IN dp:
a
ENDFOR

where:
x—is used to denote a representative item from the data

path.

dp—is the data path associated with the iteration.

a—is the action to be performed each time an item is
accessed from the data path.

A comment on notation
The macros discussed were implemented in the programming
language POP-2 (Burstall and others, 1971). This is not a
widely used language, so one or two minor modifications were
introduced to convenience the general reader. In particular, the
symbols VARIABLES, HEAD, TAIL, PRINT and NEWLINE
were used instead of the less obvious VARS, HD, TL, PR and
NL.

Examples
Frequently, in discussing iteration, the programmer will use
such phrases as 'take a row at a time' or 'for all the items in the
list V. This suggests that the programmer finds it natural to
discuss iteration in terms of data paths. The conventional
structured programming approach does not make this aspect
of iteration immediately apparent.
Consider the following code for printing a list, L, at the top

PRINT("[");
WHILE NOT(NULL(L))
DO PRINT(HEAD(i.));

T A I L (L) L

level:

ENDWHILE
PRINTf]");

Use of macros permits the following, alternative code:
PRINTf [");
FOR X IN LIST I :

PRINT(X)
ENDFOR
PRINT("]");

It is felt that the second variation conveys the intent of the
construction much more clearly than the straightforward use
of the WHILE-construct.
The code actually generated in this implementation's:

lab^ IF NOTX/NULL^)) THEN
H E A D ^ ^ X ;
PRINT(X);
TAIL^)
GOTO lab1 CLOSE;

where labl is a unique label generated by the macro and vy is
used to save the original list value—in case the construct should
be repeatedly executed.
There is nothing new about using macros to implement

structured programming (see Barron, 1974 and Leavenworth,
1966). Nor does the author's approach differ radically from
recent developments. However, it is felt that an important, and
useful, change of emphasis is introduced. Using the conven-
tional approach, the programmer must think both about the
data path involved in the iteration and about the program
control mechanism he uses to effect access to this data path.
Using the alternative approach, he need only think about the
data path.
Another example emphasises the point. Frequently, a pro-

grammer wishes to operate on diagonals. This can be done in
the following manner:

0 ^ TOTAL;
FOR X IN DIAGONAL / J OF A [M N]:

X + TOTAL -+ TOTAL
ENDFOR

This would sum the elements of the /, 7th diagonal of an array
A (diagonals are taken to run 'downwards, from left to right').
The intermediate code generated is of the form:

0-^ TOTAL;
IF/ = 1 THEN N - J

ELSE /Vl - / CLOSE -> v ;̂
FORv2IN INTERVAL 0,^,1:
TOTAL + A(l + v,,l + v2) -> TOTAL
ENDFOR

170 The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/19/2/170/408767 by guest on 19 April 2024

(the notation: FOR v IN INTERVAL start, stop, step: is used
instead of the ALGOL:
For v : = start Step step Until stop)
It is not at all obvious in the second piece of code that a

diagonal is being accessed.
Suppose we wish to add 1 to each element in an M x N x P

array, A. This could be specified so:
FOR. X IN ARRAY A[MN P]:

X + 1-^X
ENDFOR

The code generated would have the form:
FORvJN INTERVAL 1,M,1:
FORv2IN INTERVAL 1.N.1:
FORv3IN INTERVAL 1.P.1:
^{Vi<v2,vs) + 1 ->- A(vvv2,v3)
ENDFOR
ENDFOR
ENDFOR

where vu v2 and v3 are distinct identifiers generated by the
macro. (An approach could have been used in which it was
unnecessary to declare the array bounds if they were declared
elsewhere—however, this is not essential to the main arguments
presented here.)

Implementation
In POP-2, a macro can be regarded as a parameterless function
which is triggered by the occurrence of its identifier in the input
stream. The macro can use all the facilities available to any
other function in POP-2. Thus, in POP-2, macros have great
generality. It may, therefore, not be clear how readily such
macros may be implemented in some other macro-processing
system. To alleviate this problem, an explanation will be given
of the typical transformations involved and the reader may then
adjudicate on this point.
The following macro-expansion requires the most involved

mechanism:
FOR X IN ROWS OF A [M N]
NEWLINE(1);

FOR VINX;
PRINT(f)

ENDFOR
ENDFOR

This code would cause an array to be printed row by row, each
row being printed on a new line. The code generated is:

FORvJN INTERVAL 1./VI.1:
NEWLINE(1);

FORv2IN INTERVAL 1.N.1:
PRINT (A{vltv2))
ENDFOR

ENDFOR
The FOR macro expects the sequence:

FOR x IN keyword
x and keyword are saved and keyword is tested to determine the
nature of the expansion, x is maintained in a push-down list to
allow for nested macros. If the value of keyword is 'ROWS', the
result of the macro is:

ROWSMAC
which is the name of a macro to deal with iteration by rows.
When this macro is triggered, the flag FORFLAG is set to
TRUE. This flag is tested by FOR and will'cause that macro to
produce the result:

FORWORD
when set to TRUE. (The purpose will become apparent later.)
ROWSMAC scans ahead, expecting the pattern:

OF arrayname [dimensions]:
The arrayname and dimensions are saved, ROWSMAC then

A HYBRID STRir.TIIRF

FIRST M ITEMS
STORED IN ARRAY

ZJ

LIST OF N CELLS

Fig. 1 A hybrid structure

scans ahead, regarding FORWORD as a left bracket, accu-
mulating in a list (call it t) all intermediate text, until the
matching occurrence of ENDFOR is found. (Note that the use
of FORFLAG inhibits the expansion of FOR-macros until t is
processed as below.) The list t is then searched for occurrences
of the pattern:

FORWORD y IN x:
t'
ENDFOR

If such a pattern is found, a new version of t is generated in
which this pattern is replaced by:

FORWORD y IN INTERVAL 1.N.1:
t"
ENDFOR

where t" is a version of t' in which all occurrences of y are
replaced by:

arrayname{x, y) .

Then all occurrences, in t, of FORWORD are replaced by
FOR, the flag FORFLAG is switched off, and the final macro
expansion is

FORx IN INTERVAL 1,M,1:
t
ENDFOR

The main features required for macro-expansion are iteration,
manipulation of lists of symbols, reading and testing the input
stream, assignment to macro-time variables and conditional
branching.

A more unusual example
The technique may prove especially useful in an application
where unusual data structures are required. One example will
be given. Suppose a data structure of the type shown in Fig. 1
is used. This is a 'hybrid' structure. The first M items are
stored in a vector of length M + 1. The last element of this
vector points to a list of the remaining items. Such a data
structure might be desirable in a program in which a mixture
of both of the following operations was being performed on a
data structure:
(a) Random access, using a numeric index.
(b) Appending items to the end of the data structure.
(Such a choice offers a compromise between the characteristics
of a list and those of a vector—periodically the structure might
be reorganised to increase the number of items which can be
conveniently accessed randomly.)
A macro can be provided for iterating on such a structure, so

that to, say, sum all the items in the structure, one would write:

Volume 19 Number 2 171

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/19/2/170/408767 by guest on 19 April 2024

0 ^ TOTAL;
FOR X IN HYBRID H:
X + TOTAL -»• TOTAL
ENDFOR

(The code generated is not given—it is left to the reader to
realise that it is not particularly attractive.)

Summary
What does, and what does not, constitute 'convenience' in
programming languages is somewhat a question of individual
choice. The author feels that coding for iteration is more
easily understood if, whenever a data path is involved, the
nature of the data path is immediately apparent.
Like many language features, the above facility is decidedly

no 'cure-all', but its use appears advantageous for a certain
range of commonly occurring situations.
The techniques presented here are only suitable for iterations

involving a single data path. This is quite a serious limitation
(e.g. how does one handle element-by-element assignment?).
More general techniques are being developed to handle such
cases (this appears to involve the manipulation of text which
represents program actions having multiple entries and/or
multiple exits—and the use of 'connector functions' to combine
these components in a more general manner than is allowed in
'conventional' structured programming—however that is a
matter for further research).
One would expect the above techniques to produce (source)

program code which is relatively insensitive to choices of data
structure. This may allow convenient implementation of
decisions concerning the mapping of abstract data structures to
physical data structures when implementing very high level
languages. However, this is again a topic of further research.
The author would like to thank the referee for useful

suggestions on improving the presentation of this paper.

References
BARRON, D. W. (1974). APL and POP-2: What can we learn from Interactive Languages?, High Level Languages—The Way Ahead, BCS

Conference Proceedings.
BURSTALL, R. M., COLLINS, J. S., and POPPLESTONE, R. J. (1971). Programming in POP-2, Edinburgh University Press.
DAHL, O. J., DIJKSTRA, E. W., and HOARE, C. A. R. (1972). Structured Programming, Academic Press.
DENNING, P. J. (1973). Letter to the Editor, SIGPLAN Notices, October 1973.
DIJKSTRA, E. W. (1968). Go To Statement Considered Harmful, CACM, Vol. 11, No. 3, pp. 147-148.
GRIES, D. (1974). Letter to the Editor, CACM, Vol. 17, No. 11, pp. 655-657.
JENSEN, K., and WIRTH, N. (1974). PASCAL—User Manual and Report, Lecture Notes in Computer Science, Springer-Verlag.
LEAVENWORTH, B. M. (1966). Syntax Macros and Extended Translation, CACM, Vol. 9, No. 11, pp. 790-793.
WIRTH, N. (1971). Program Development by Stepwise Refinement, CACM, Vol. 14, No. 4, pp. 221-227.
WOODWARD, P. M., and BOND, S. G. (1974). ALGOL 68-R Users Guide, HMSO.
WULF, W. A. (1972). A Case Against the GOTO, Proceedings of ACM National Conference, Boston, pp. 63-69.

Book reviews
Computer Science and Technology and their Application, General

Editors: N. Metropolis, E. Piore and S. Ulam, 1975; 310 pages.
Administrative Editors: Mark I. Halpern, William C. McGee;
Contributing Editors: Louis Bolliet, Andrei P. Ershov, J. P.
Laski. (Pergamon Press, £15-00)

Contents
A Tutorial on Data-Base Organization, R. W. Engles.
General Concepts of the Simula 67 Programming Language, J. D.

Ichbiah and S. P. Morse.
Incremental Compilation and Conversational Interpretation,

M. Berthaud and M. Griffiths.
Dynamic Syntax: A Concept for the Definition of the Syntax of

Programming Languages, K. V. Hanford and C. B. Jones.
An Introduction to ALGOL 68, H. Bekic.
A General Purpose Conversational System for Graphical Program-

ming, O. Lecarme.
Automatic Theorem Proving Based on Resolution, A Pirotte.
A Survey of Extensible Programming Languages, N. Solntseff and

A. Yezerski.
It appears immediately that this volume is not annual, nor is it a

review; it is hardly automatic programming, and the contributing
editors did not contribute. Nevertheless, it is a selection of articles
on topics closely related to high-level programming languages. They
might have been contributed to a learned journal; but instead they
have been collected in a book. On the whole they deserve to be: the
general standard of the papers is distinctly higher than the average,
and they are likely to appeal more consistently to a reader interested
in high-level programming languages.
But it would be a rash reviewer who would venture to pass comment

on all the papers individually; and to do so within the space allotted
would be even more foolhardy.

C. A. R. HOARE (Belfast)

Computer Science: Programming in FORTRAN IV with WATFOR
WATFIV, 210 pages. (John Wiley and Sons, £2-65)

The very successful Computer Science: A First Course has now been
re-issued in a second, considerably expanded, edition which neces-
sitates a similar revision of all the language supplements. This, the
FORTRAN one, is the first that I have seen of the second editions.
There are some changes in the set of authors and it is now in photo-
typescript rather than print, but the overall impression of workman-
like competence remains.

C. M. REEVES (Keele)

Environmental Data Handling, by G. B. Heaslip, 1975; 203 pages.
(John Wiley, £12-25)

Environmental Data Handling is not a book about computing but
about the way transducers and sensors work, how their outputs are
generated, coded, transmitted, recorded, analysed and presented. It
is simple in its approach with many a homely (in the British sense)
line illustration to carry home a point. Remote sensing as practised
in Earth resources programmes provides much of the inspiration to
the author's approach, befitting his background in the NASA
Lunar Program and the Grumman Environmental Data Services.
Practical experience is evident in every page and the approach is not
analytic. Transducers are only very simply described; the frequency
response of an accelerometer, for example, is not discussed. Again
the filtering of data at the demodulation stage, an all-important and
technically interesting operation, is treated at an elementary level.
The book will be a useful reference to those unfamiliar with the
subject.

E. B. DORLING (Dorking)

172 The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/19/2/170/408767 by guest on 19 April 2024

