
Discussion and Correspondence
Structured programming and input statements

J. Inglis
Department of Computer Science, Birkbeck College, University of London, Malet Street,
London WC1E 7HX

This short paper proposes a simple improvement to the input statements of the commonly used
programming languages.

One of the types of program most frequently set as exercises for
beginners is the type in which records of an input file (very often
a deck of cards) are processed sequentially. The natural form
of such a program is shown below as Program 0, written here
in an informal ALGOL-like notation; the function read{x)
obtains the next record from the file whose name is x.

Program 0 initialise;
while not end.of .file (x)

do [read (x); process. record];
finish;

It is unfortunate that this type of program cannot usually be
expressed naturally in current programming languages and
that students are compelled, very early in their learning, to
resort to an unnatural approach which sows the seeds of bad
programming style.
Appendix 1 describes the three common types of input

statement. Input statements in some variant of these basic
forms are to be found in COBOL, FORTRAN, PL/1 and
(implementations of) ALGOL 60. In each case Appendix 1
shows: (a) a 'well-structured' program—using while but not
go to—and (b) an 'unstructured' program—using go to—both
corresponding to Program 0, above. It appears that in all three
cases the 'well-structured' version is no more natural or
comprehensible than the 'unstructured' version.
There are two reasons why so-called 'structuring' does not

have the desired effect in these cases. In the first place, they
belong to a class of programs which cannot satisfactorily be
structured by the use of the while statement alone—Knuth
(1974) discusses additional constructs which have been sug-
gested or implemented to deal with such cases. In the second
place, and more importantly, the programs in Appendix 1
belong to that class of programs only because the input
operations provided in so many programming languages are
themselves unnatural and compel the programmer to distort
the structure of his problem.
An analogy should make this last statement clearer. When

I go home tonight, I shall look in the drawer in which my clean
shirts are kept. Now, I don't want a clean shirt until tomorrow
morning; but, if there are no shirts left in the drawer, I shall
have to take some action tonight (such as avoiding putting
today's shirt in the laundry basket; or ringing my friends to say
that I'll be staying at home tomorrow). If the standard logic of
input statements were applied to my shirt-handling, I would be
forced to take tomorrow's shirt out of the drawer tonight, and
not be able to put it back; I would have to put it somewhere
else where it wouldn't be crushed, and I'd have to remember
tomorrow morning to obtain it from there rather than from the
drawer. I could, of course, avoid all that trouble by not looking
in the drawer until morning; but if there were then no shirts
in the drawer it would be too late to take the action which is
possible tonight.
That is precisely the dilemma which faces the programmer

today in so many programs. He cannot test for the end-of-file
condition without the danger of receiving a record which he
may not want at the time of testing, nor can he ever ask for the

next record of a file in the secure knowledge that such a record
exists. (Of course, he is so accustomed to these limitations that
he doesn't really recognise a dilemma—he just writes messy
programs.)
What is needed is a system boolean function end. of.file (x),

which yields the value true at any time after the last record of
file x has been obtained by the program, rather than after the
first unsuccessful attempt to obtain a record from the file.
Most data management software would have no difficulty at all
in evaluating such a function; but, in cases where input is
direct from the device to the user, one additional buffer would
be necessary.
The required end-of-file function can, of course, be simulated

in today's languages by preprocessing or insertion of additional
data declarations and standard procedures, but such simul-
ations are distracting and have undesirable features. In any
case, the added code is usually repeating some of the processes
already carried out at a lower level by the data management
software.
Clearly, if such a function existed in the popular high-level

languages, it would make a large contribution to achieving
good structure in programs; perhaps the most significant
contribution would be that beginners could write natural well-
structured programs—even when they had input data! Yet it is
unusual in the literature of structured programming to find
more than an occasional passing reference to input statements—
the die-hard ALGOL 60 attitude of ignoring input and output
appears still to be very much with us.

Appendix 1
Programming with the three common types of input statement
(1) read (x) is defined: 'If the end of file x has been reached, then

abort the program; otherwise, make the next record from
file x available to the program.'

Note: (i) In this, the crudest, case, the programmer has to
know in advance how many records are in the file
or rely on information in the file itself (such as a
record count or a recognisable final record) or
stipulate that a final 'dummy' record be inserted
at the end of the file. The last of these alternatives
is assumed in the programs below. Clearly, all of
these practices are vulnerable to errors in the data.

(ii) In program 1(6) (and in program 2(6)), it appears
more 'natural' to regard the call of the procedure
finish' as a top-level statement, rather than to use
else. 'Finish' may in many cases constitute the
main part of the program.

Program l(a) initialise;
read (x)
while not last. record

do [process.record; read(xj];
finish;

Program \{b) initialise;
again: read(x);

188 The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/19/2/188/408822 by guest on 19 April 2024



if not last. record
then [process.record; go to again];

finish;

(2) read (x) is defined: 'If the end of file x has been reached,
then assign the value true to a system variable end. of.file;
otherwise, make the next record from file x available to
the program.'

Program 2(a) initialise;
read (x);
while not end. of .file

do [process. record; read (x)];
finish;

Program 2(b) initialise;
again: read (JC) ;

if not end. of .file
then [process. record; go to again];

finish;

(3) read (x), at end s; is defined: 'If the end of file x has been
reached, then execute the statement-sequence s; other-
wise, make the next record from file x available to the
program and do not execute the statement-sequence s.'

Program 3(a) initialise;
flag«- 0;
read (x), at end flag <- 1;
while flag = 0

do [process.record;
read (x), at end flag «- 1];

finish;

Program 3(6) initialise;
again: read (x), at end go to end;

process. record;
go to again;

end: finish;

Reference
KNUTH, D. E. (1974). Structured programming with go to statements. A.C.M. Computing Surveys, Vol. 6, pp. 261-301.

Blind programmers—their manager's experience
D. L. Fisher
Director, Computer Laboratory, University of Leicester, Formerly Programming Manager,
Computer Services Division, Bank of Scotland

This paper does not subscribe to the view that good braille facilities are necessarily of prime con-
sideration in expanding the role of the blind programmer. Perhaps it is wiser to limit his dependence
on braille by developing better access to media that can be shared with sighted colleagues.

Introduction
The May 1975 issue of The Computer Journal included a paper
by P. W. F. Coleman entitled 'Integrated training for the blind
programmer'. Coleman ended his paper by highlighting the
problems of providing documentation in braille as if this was
the right and proper way to provide blind programmers with
the information they require. This paper challenges that
supposition and offers instead the approach born of the
experience of the Computer Services Division of the Bank of
Scotland.
By the end of the sixties, the Bank's complement of approxi-

mately 40 programmers included two who were blind. One is
quiet and restrained, and the other a rugged extravert. The
extravert has been totally blind since early boyhood, whereas
the other slowly went blind and is still able to detect light.
Both are graduates, so that both had registered notable
achievements, despite their handicap, prior to entering
computing.
This is important because both are proud. Both are happy to

accept that they are different from sighted people, perhaps at a
disadvantage, but neither is prepared to accept that they are
inferior to their sighted colleagues. Indeed they gain con-
siderable satisfaction from being treated as their equals,
although they can enjoy a little fuss when their lack of sight
commands some special attention.

Education
The extravert was the first to be recruited and initially his
computer education followed the conventional lines for a blind
person. His companion was recruited about a year later and
gained so much from the experience of the first, that most of

his early education came by way of their man-to-man
communication.
Their main problem was the lack of braille versions of the

necessary manuals, and those they did hold were usually
several years out of date by the time of acquisition. Fortunately
the two did appear to compensate by making considerable
gains from discussions and lectures they attended.

If one eliminated the conventional courses for sighted
programmers, courses appropriate to their programming needs
were almost impossible to find, so it was decided to turn to the
conventional courses instead of eliminating them. Eventually it
was decided to send the 'quiet' one on a conventional IBM
closed-circuit TV COBOL course! He went with three other
programmers from the installation, the idea being that they
could spread the load of filling in the gaps for him whilst
studying the course themselves.
The exercise was extremely successful, so much so that the

'robust' one was sent on a similar Assembler course, this time
with two colleagues although three were originally planned.
This particular exercise took a little longer to bear fruit. The
material of the course was more difficult as is well recognised,
but the blind programmer also had greater difficulty preparing
himself for the course due to the lack of suitable braille reading
material.

Nonetheless the approach was considered to be basically
sound. Formal education was no longer considered to be a
major problem, and when the installation moved towards
audio-visual education given in-house, the two blind program-
mers were not considered to be seriously disadvantaged.

Lecturers performing live at the installation had to be
persuaded not to use 'this' and 'that' but describe or name

Volume 19 Number 2 189

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/19/2/188/408822 by guest on 19 April 2024


