PATCOSY—A database system for the National Health

Service
J. M. Kerridge

Sheffield Polytechnic, Pond Street, Sheffield S1 1TW8B

PATCOSY (PATient COmputer SYstem) is a data base system which has been designed specifically
for the National Health Service environment. The structure of PATCOSY therefore reflects the
structure and inter-relationships which exist between the information created by the different parts
of the health services when a total medical information system is considered. This paper describes the
major features of PATCOSY and their relationship to the CODASYL recommendations.

(Received May 1975)

1. Introduction

A PATCOSY (Kerridge, 1975) data base is defined by a
definition program and the data is then manipulated by
applications programs.

A definition program is created from a series of PATCOSY
Definition Language (PDL) commands. The output from the
program is a sequence of data maps, one for each record type
in the data base.

The data maps are accessed by the PATCOSY Manipulation
Language (PML) commands so that particular record occur-
rences can be made available to the applications program which
originated the command. Hence the PML is a host language
access mechanism.

A medical information system requires that the following
should be considered when a data base system is being defined.

1. Maintenance of a non-hierarchical privacy structure.
2. Flexible data structures.

3. A means of specifying the type of storage device upon which
a record is to be stored.

4. A flexible access mechanism.
5. A means of utilising already existing programs.

These requirements can be related to the provisions of the
Data Base Task Group report for the CODASYL committee
(1971), but it will be shown that the CODASYL provisions are
unable to provide a solution for all these requirements. The
report defines both a Data Description Language (DDL) and a
Data Manipulation Language (DML).

The major difference between PDL and DDL is that PDL
defines the storage media to which a particular record occur-
rence will be allocated. This facility has meant that an explicit
access mechanism has had to be defined so that the full benefits
of such a facility can be exploited. Another difference is that
DDL is essentially a procedure orientated language. Examples
of this are the privacy and the encoding/decoding mechanisms.
It will be shown that a procedural privacy system is infeasible
in a medical information system. Similarly having procedures
to encode and decode data means that only one data item can
be processed at one time, unless the procedure itself contains
table or dictionary mechanisms which are part of PDL.

DDL uses a schema, sub-schema mechanism for defining the
whole data base and that part of the data base which is required
for a particular applications program. PDL has a similar
mechanism provided by basis and sub-basis definitions which
provide a high level privacy mechanism as well as restricting
access to part of the data base. One difference is that the DDL
sub-schema varies with host languages. This variance is not
needed in PDL due to the manner of construction of data maps
(described in Section 3) and due to the development of all
encompassing programming languages such as PL/I and
ALGOL 68 which allow pre-processing facilities.

98

PDL requires the designer to specify explicitly the aécess
mechanism to a record whereas DDL uses the set mechanism
which leaves the actual intricacies of access undefined. One
advantage of explicitly defining the access mechanism is that it
allows high level privacy to be incorporated as well as allowing
flexibility of data transfers.

The DML and PML carry out the same function, that is, they
access the data base as required by the particular manipulation.
The major difference is in the manner of access in that PML
uses an explicit index mechanism to locate a record occurrence
whereas DML uses the set mechanism of DDL. In DML this
leads to the problem of currency as sets are processed. In PML
all relationships are explicitly defined and because a stack is
used to implement the commands it will be shown that the
problem of currency cannot occur.

The other significant difference between PML and DML is that
PML incorporates the program into the body of the command.
This splits an applications program into sections each corres-
ponding to a particular manipulation command. Each com-
mand has associated with it the basis or sub-basis which is to
be used to control the access thus providing a high level
privacy mechanism and the reason why only one form of
PDL is required for all host languages.

2. The PATCOSY definition language

The constructs of the PDL are used to form a definition
program which is compiled and run to produce data maps.
The PDL provides a means of

(a) specifying the computer environment within which the
data base will operate

(b) defining the records which make up the data base
(c) specifying the privacy associated with quantities in the
data base
(d) specifying the relationships which exist between the different
entities

(e) defining the sequence of storage devices upon which a
particular record is to be stored.

2.1. Operating environment

Each computer installation is necessarily different and there-
fore, because PATCOSY includes a mechanism for specifying
storage requirements, a means must be provided of defining the
installation to PATCOSY so that necessary initialising
calculations can be carried out.

2.2. Record definition

2.2.1. Data items

At the lowest level (Fig. 1) of a PATCOSY data base are data
items which contain the pieces of information from which the
records are constructed. PATCOSY allows fixed and variable

The Computer Journal

¥202 Iudy 61 U0 1senb Ag L£880Y/86/2/6 L /2101 e/|ulWwoo/woo dno-ojwsepeoe//:sdiy wolj papeojumoq



data base

|

basis

records

l

data items
Fig. 1 Hierarchic levels of a PATCOSY data base

Table 1
STRUCTURE struct-1 PRIVACY 1 TO 10 CONTAINS
FIXED item-1 LENGTH 4 PRIVACY 2,4TO 8
FIXED item-2 LENGTH 8 COMPUTATIONAL
VARIABLE item-3 PRIVACY WRITE 1 TO 5;
READ 2, 5 TO 10;
7TO10
FIXED item-4 LENGTH 10

length scalers to be created as well as fixed and variable length
repeating groups. Fixed scalers can have associated with them
an attribute which indicates the mode of use, for example, as a
string of characters or as a numeric quantity in a particular
format. A fixed scaler always has associated with it the number
of characters which it occupies. Characters have been used as a
means of measuring lengths of data items because these are the
only units which are machine independent.

Table 1 contains the definition of a record containing only
fixed and variable length scalers. In this record four items are
defined; items 1, 2 and 4 are of fixed length and item-3 is of
variable length. In addition item-2 is to be held in a compu-
tational form so that calculations can be performed more
efficiently. (It is realised that different machines employ
different representations for numeric quantities, occupying
different numbers of characters. Therefore PATCOSY has a
means of translating data held on one machine into a form
suitable for another machine, hence the length associated with
numeric quantities will vary with machine). All other items are
held as a string of characters.

In Table 2 item-8 is a fixed length repeating group the contents
of which are repeated twice. The contents are contained in
parenthesis. The items of the group contents are items 9 and 10.
Item-10 is itself a variable length repeating group whose con-
tents are items 11 and 12.

The other major type of data item is called the associate item.
In a medical information system vast quantities of information
are going to be created and necessarily this information will
have to be encoded in some way. In fact, a simple encoding
procedure is not sufficient because in certain situations a
piece of encoded information may be constructed from more
than one data item. For example, in the encoding of phar-
maceutical information, a situation may require just the name
of the drug, whilst another may additionally require the maxi-
mum and minimum dose, other drugs having the same pro-
perties, side effects of the drug, and a means of obtaining a list
of all drugs which should not be prescribed with that particular
drug. PATCOSY contains a mechanism which provides all
these facilities.

In Table 2 there isan instance of such anencoding mechanism.
Item-6 is an associate item, that is of itself it occupies no storage
space but when accessed obtains information from another
source. In this example t-item-1 and 4 of t-table are made
available. The particular occurrence of the encoding mechanism
is specified by assigning the value of item-7 to t-item-5, another
element of t-table. Item-7 occurs within the record as a whole.

The encoding mechanism can take one of two forms; a fixed
length contiguous sequence of records called a table or a
non-contiguous sequence of possibly variable length records
called a dictionary.

Volume 19 Number 2

index

pointer mechanism

data in record

Fig. 2 Access to data items

Table 2
STRUCTURE struct-2 CONTAINS

FIXED item-5 LENGTH 4
ASSOCIATE item-6 WITH t-item-1, t-item-4 OF
t-table FOR t-item-5 = item-7
FIXED item-7 LENGTH 3
FIXED item-8 LENGTH 2 (FIXED item-9 LENGTH 2
VARIABLE item-10

(FIXED item-11 LENGTH 1
FIXED item-12 LENGTH 2))

2.2.2. Records

The next level of the data base (Fig. 1) is that of the record.

That is, a data base is constructed of one or more records.

In PATCOSY classes of record are predefined, and all record

definitions must use one of these classes. The hierarchic

structure of the access mechanism to a particular data item is

shown in Fig. 2.

The access mechanism shown implies that all data is obtained
via an index and pointer mechanism. This is only true when
data belongs to a particular key value which can be contained
within an index. This means that there must be more than one
class of record for holding prime data.

The classes of record can be grouped as follows
1. Prime data records hold data which has been created by a

user application program. A structure is the physical record
of the data base and always belongs to a particular index key
value. A sub-structure is the logical record created from parts
of one or more structures. A /ist is similar to a structure
except that the data does not belong to a particular index key
value.

2. Accessing records For data recorded in structures a
mechanism has to be provided for obtaining the particular
structure which is required. This process is achieved by
using two or three different classes of record. A pointer-list
provides a means of finding the start of any string of
structures. An index points to a particular pointer-list so
that the start of a particular string of structures can be found.
The index contains the key value which is associated with
those strings of structures. A pointer-array is used when a
structure definition can be used for several applications
differentiated from each other by a key value which is
recorded in the pointer-array. Figs. 3 and 4 -show these
mechanisms using pointer-lists and pointer-arrays
respectively.

3. Encoding records Two classes of record are available,
dictionary and table. In either case a sequence of records is
maintained which contain data items which may or may not
be used as key items. To access the dictionary or table a
value is given to one of the key items, the particular record
(or records) containing that key value is found and then the
encoded or decoded information is extracted from the rest
of the record. Two classes of record are used so that two
essentially different encoding mechanisms can be provided.
A table is constructed from fixed length records and therefore
can be kept as a contiguous sequence and can be accessed
by a binary search.

A dictionary can be constructed from variable length
records using many key items and is likely to be imple-
mented using a combination of indexed sequential and
inverted file techniques.

99

¥202 Iudy 61 U0 1senb Ag L£880Y/86/2/6 L /2101 e/|ulWwoo/woo dno-ojwsepeoe//:sdiy wolj papeojumoq



Index

Pointer-list

Structures

Fig. 3 Access using pointer-list only

Pointer-list

Index 1

Structures

= F— 3

key pointer

1
+—1

Pointer-array

Fig. 4 Access using pointer-list and pointer-array

4. Transfer records One major problem associated with the
introduction of a data base system is the waste of previous
programming effort, because the majority of previously
written applications programs cannot be utilised. PATCOSY
overcomes this problem by transferring data to and from the
data base to traditionally organised sequential files main-
tained outside the control of the data base. The transfer
structure provides a mapping function between the data base
and the sequential file. The transfer structure can also be
used to transfer information from one computer to another,
or different types of computer in a multicomputer system.

2.3. Privacy

It is obviously vitally important that any data should be
maintained so that only authorised users can access the infor-
mation. The National Health Service is an environment in
which an hierarchic privacy structure is inadequate. For
example, in an hierarchic system it is impossible for a user to
be able to write a piece of data but to be unable to read the
same data. This is particularly true of the socio-economic
status of the person.

A home nurse may note that a child has no shoes and can
record that fact. However the nurse does not need to be able
to read other similar information. A social worker must be
able to both read and write such information. The nurse must
be able to write technical medical information certain parts of
which the social worker might be allowed to read but definitely
not write. This example would therefore falsify an hierarchical
privacy structure.

PATCOSY employs an absolute numerical privacy system in
which users of the system are given one or more privacy
ratings. A check is made to make sure that the particular
manipulation to be carried out is covered by at least one of the
user’s privacy ratings.

All syntactic forms of the privacy system are shown in Table 1.

Struct-1 as a whole is limited to users who have a privacy
rating of 1 to 10 inclusive. Only users with a rating of 2, 4, 5,
6, 7 or 8 can access item-1. Users with privacy 1 to 5 can write
item-3; item-3 can be read by users with privacy 2 or 5 to 10
inclusive. Hence only users with 2 or 5 can both read and write
item-3. The restriction for all other users manipulation com-
mands is for users with privacy of 7 to 10.

Such a system would be prohibitively expensive to program
in a procedure based privacy system because a procedure

100

would have to be written for each combination of privacy
ratings. Therefore a procedure orientated system would more
than likely invoke an hierarchic system.

2.4. Relationships
So far all that has been created are record occurrences with
some undefined way of relating them. Relationships have to be
defined to reflect the structure existing between records.

First, basic linking mechanisms have to be provided; link
provides a ‘pointer to next’ mechanism; double-link provides a
‘pointer to next and prior’ mechanism. Link and double-link
are used to form strings of structures and lists and to provide
the basic linkage within dictionaries. A particular link or
double-link relationship can only join records of the same
definition.

The tree mechanism provides a means of joining similarly
defined records into the form of a binary tree. That is, the tree
relationship maintains two ‘pointers to next’; one for sub-
sequently written records with lower key values, and the other
for those with higher key values.

Within tables or dictionaries it is necessary to indicate those
items of the table or dictionary which can act as a key, because
necessarily internal system relationships will have to be created.
Accessed by indicates the items which can act as a key item,
and the order in which the items are to be held.

Secondly, inter-record relationships are provided by the
group and chain relationships.

Any record defined to belong to a group can be added to that
group by an applications program; that is, there is no auto-
matic addition of a record to a group, of chain relationship.
In a data base only one group of a particular identifier can
exist and therefore that start of that group is maintained by the
system.

The chain relationship provides the data base designer with a
means of creating inter-record relationships which start within
a particular record. Hence a record can be the start of a chain
or a member of a chain. Hence many chains of the same
identifier can exist. For example, for each record in a drugs
dictionary a chain could be created of other drugs which must
not be prescribed with the drug which was the start of the chain.
Hence it is possible for a record to be a member of a chain,
with the same identifier, a variable number of times, each one
started by a different record. Further it is possible for a record
to be both the start and a member of the same chain identifier.

Dictionaries could become very large, a drugs dictionary
could contain about 25,000 records, hence it is vital that some
means of affecting the structure of the dictionary is available.
The frequency relationship provides a means of counting the
number of accesses to a record, per unit time. At the end of this
period the dictionary is re-organised to reflect the rate of usage
of particular records. The most frequently used records are
grouped together and searched first and so on until the required
record is found.

In certain instances it may prove desirable to order the ele-
ments of a repeating group in some way. Therefore the accessed
by relationship can be used to specify the order in which the
elements of the repeating group are to be maintained.

The relationships are implemented using one of three different
mechanisms

(a) direct
(b) displacement
(¢) algorithmic.
In the direct mechanism the physical location of the record is
used as the pointer in any record which is to be related to the
record.

The displacement mechanism uses the displacement of the

record from the start of the record string as the pointer.
Hence in inter-string relationships the pointer will be con-

The Computer Journal

¥202 Iudy 61 U0 1senb Ag L£880Y/86/2/6 L /2101 e/|ulWwoo/woo dno-ojwsepeoe//:sdiy wolj papeojumoq



structed from the displacement plus an indication of the
particular string in which the record exists.

The algorithmic method allows a data base designer to
implement his own relationship mechanism using a procedure
specifically designed to reflect the structure of the data base.

Table 3 shows the format of most of the relationships. The
privacy of each relationship is defined by the item which acts
as the key item, except for groups and chains which have no
key item and therefore the privacy must be defined.

2.5. Storage
One major aspect of a medical information system is that it
would require complete control over the allocation of storage
space. When a patient is receiving treatment the relevant parts
of his medical record must be immediately available while all
other information can be held in a less immediate but still
accessible form.

PATCOSY provides a means of indicating the sequence of
storage devices to which a particular record will be subjected.
The controls which can be applied to the sequence are

1. Records will be removed from one device to another when a
specified period of time has elapsed.

2. Records will be moved when a particular flag is set. Set is
one of the manipulation commands which can be used by
applications programs. A flag is defined by its inclusion in a
storage control sequence, and all flag identifiers are unique.

3. A combination of the above two cases in which the sooner
to occur will cause the data transfer.

Table 4 shows the format of the storage control commands.
The sequence of storage commands results in one of two
events. Either the records are destroyed or the records are
archived onto a suitable storage media. Once the records have
been archived it is possible for them to be on-lined again and
restart the storage control sequence as necessary. In any
on-lining operation the amount of data transferred is controlled
by the set command.

2.6. The basis

In Fig. 1 the highest level of a data base, apart from the data
base itself is described as a basis. A basis is a collection of
records each of which can be accessed at the same time. Each
manipulation command has associated with it the basis which
is to be used for the particular operation. If the manipulation
extends to records not contained in the basis, the command
will be halted. If a basis includes structures then necessarily the
basis must also contain an index and a pointer-list.

A sub-basis is a collection of one or more parts of one or more
bases. It is also possible to define a sub-basis which contains
only part of a record, providing a high level privacy mechanism.
Hence it is possible to describe a sub-basis which only contains
part of a pointer-list which will automatically restrict the
structures which are available to the manipulation.

The basis structure means that more than one index can be
created, each being used for a particular requirement. In such a
system there must be one index which is capable of pointing to
all records; this is called the master index. Hence in a medical
information system many bases and sub-bases could be defined
for specific purposes, each with their own index, and therefore
their own access mechanisms.

(a) the basis for containing the master index.
(b) a basis for those currently receiving hospital care.

(c) a basis for those currently receiving general practitioner
care.

(d) a sub-basis derived from (b) of those receiving care under
particular specialities.

Volume 19 Number 2

Table 3

DOUBLE-LINK d-link-1 BY item-1 ASCENDING MECHANISM
IS DIRECT .

LINK link-1 BY item-2 DESCENDING MECHANISM IS

DISPLACEMENT
TREE a-tree BY item-4 USING ‘ABCD1234" AS INITIAL NODE
MECHANISM IS DIRECT
GROUP group-1 MECHANISM 1S DIRECT PRIVACY 5;
group-2 MECHANISM IS DISPLACEMENT PRIVACY
4 6 TO10
MEMBER CHAIN chain-1 MECHANISM IS DIRECT PRIVACY
ERASE 5
START CHAIN chain-2 MECHANISM IS DIRECT
OWNED BY index-1

Table 4

KEPT FOR 10 DAYS ON DRUM THEN
KEPT UNTIL flag-1 ON FIXED-DISC THEN
KEPT FOR 7 DAYS OR UNTIL flag-2 ON EXCHANGEABLE-
DISC THEN
KEPT FOREVER ON TAPE
ON-LINED WHEN flag-3 TO index-1, flag-4 TO index-2
READ WHEN flag-5 RETURN IMMEDIATELY,
flag-6 RETURN AFTER 6 DAYS

(e) a sub-basis derived from (c¢) of those receiving care from
each of doctor, dentist, optician.

Further it may happen that information created in one basis
may have been archived and is then required in another basis,
which essentially means tranferring the data from one index to
another. This can be achieved by the setting of the appropriate
flag in the storage control sequence.

2.7. Other features
PATCOSY contains other features, not specifically designed
for the National Health Service, that would be useful in a
commercial environment. During the development and sub-
sequent running of computer based information systems certain
eventualities may not have been accounted for. PATCOSY
provides a means of editing secondary applications programs
which will carry out the required modifications. A secondary
applications program is one which will be executed every time
a particular applications program is executed so that the
integrity of the data base can be maintained. Further these
eventualities may require redefinition of the data base which
can be carried out using a different form of the data definition
program which allows definitions to be altered, deleted or new
ones inserted.

To help in the initial introduction of the data base a utility
feature has been created to allow dictionaries, tables and
indexes to be rapidly initialised.

3. Data maps
The intermediary between the PDL definition of a record and
its use in the course of a manipulation command is the data
map. A data map is a sequence of contiguous elements which
reflect the constructs of the PDL. The purpose of each element
or group of elements of a data map is to indicate the location
of the start of data item or relationship within the record,
together with any other information which was defined for the
item. The data map also maintains the detaiis of the storage
commands but these do not occupy any storage space within
the record. Hence a discussion of the output from a data
definition program devolves into how the data map is formed.
In Kerridge (1975) a description of a system is given in which
each element of a data map contains five fields. These indicate:
the identifier associated with the definition; the type of data

101

¥202 Iudy 61 U0 1senb Ag L£880Y/86/2/6 L /2101 e/|ulWwoo/woo dno-ojwsepeoe//:sdiy wolj papeojumoq



map element; the length of storage space occupied by the
data item; the starting position of the data item in the record,
or a means of finding the start of the item; and finally an
indication of the number of following elements which are also
used to form the definition. These elements indicate privacy
restrictions and some definitions require more than one element.

Five fields were chosen because such a number is required for
the majority of the constructs. The use of five fields also ensures
that the minimum amount of space is wasted if not all fields are
used.

4. PATCOSY manipulation language

The manipulation language (PML) is of the host language type,
that is, applications programs are written in any language
together with PML commands which are able to access the
data base and obtain the records which are required for
processing. The PML can be divided into three types

1. Prime data commands
2. Relational commands

3. Other commands.

The structure of the first two types of command can be
generally discussed as: verb; type; specification; basis; mode;
optional program.

The verb indicates the particular command which is to be used.
The type defines the record definition which is to be processed.
The specification indicates which record or records are to be
processed. It is formed by assigning a value or range of values
to one or more data items occurring within the record.

The basis indicates which basis or sub-basis is to be used to
control access to the data base. In a high security system it
would be advisable to create a different sub-basis for each-
applications program.

The mode specifies the manner in which the command will
proceed. The mode will only be necessary in multiprogramming
environments, in which it is possible for two or more accesses
to overlap. If concurrently is specified then the different access
will be ordered according to the command priorities specified
in the definition program. If exclusively is specified then all
other commands will be halted and the current command,
being the only one to use the basis or sub-basis defined, will
proceed.

Depending on the command the mode could then be followed
by the actual program which is to process the data obtained
by the command. The program has been incorporated into the
body of the command so that it becomes obvious which parts
of the program relate to particular commands. It also means
that an automatic looping mechanism can be incorporated into
processing so that all records which are presented by the
command are processed by the program.

4.1. The prime data commands

1. The write command allows new data to be added to the data
base. Any type of record can be added but the majority will be
structures and lists. A new record will be positioned according
to the value of the key item which is used in a direct or algorith-
mic relationship. If more than one such relationship is defined
the first so defined will be used.

2. The read command allows the application program to read
data from the structures, sub-structures and lists within the data
base. A particular read command is associated with only one
list, structure or sub-structure.

One form of the read command allows lists to be used for
operator and technician tasking. In this form the read starts
from the point where the last such read finished. Thus if a
technician is to be given three jobs at the same time the read
will obtain the next three elements from the list and a record
will be kept of the point reached.

102

One alternative of read allows relationships which may cross
structure/sub-structure boundaries, to be identified for
processing.

3. The delete command allows one record to be deleted from the
data base at one time.

4. The alter command allows a record, which has been pre-
viously written, to be changed. Only one record can be altered
at a time. However, many items of the record may be changed
at the same time. The format of the command requires speci-
fication of the value of the item which is to be changed as well
as the value to which it is to be changed. This mechanism
provides a means of safeguarding what has already been written.

If, instead of altering a record, a particular application needs
to keep adding similarly defined data to a record, the write
command can be used. The data to be added is defined as a
sub-structure. The related structure is the record to which data
is repeatedly added. In the structure a variable repeating group
is defined, the items of which are those defined as the sub-
structure. When the write command operates upon the sub-
structure another occurrence of the variable repeating group
is added to the record. If the sub-structure is used to read from
the record, only one occurrence of the repeating group will be
released at one time. The whole of the repeating group can be
made available either by reading the structure or defining a
sub-structure which contains the identifier of the repeating
group. '

This facility is required to allow patient records to be built
up in a form which was defined by Weed (1971). Weed des-
cribes a ‘problem-orientated record’ to which information is
repeatedly added after the initial consultation.

The doctor states what is wrong with the patient as a series of
headings or problems. He also describes what treatment he is
prescribing for each problem. If the treatment cures the prob-
lem the doctor can then state precisely what was wrong with the
patient, which in due course will lead to more accurate illness
types statistics. If the problem was not alleviated another course
of treatment can be prescribed, possibly after redefining the
problem.

5. The set command is used to initiate the operation of a flag.
This causes data to be moved from one storage device to
another. It is also possible to specify the amount of data which
is to be moved.

6. The find is similar to the read command except that it has
been extended in power. It allows logical combinations of
specifiers to be formed (the read command logically ‘ands’ all
the specifiers together) and more than one key index value to be
specified. The records found can be processed as found or
saved for subsequent processing. These extensions mean that
any program using find proceeds more slowly than one using
read even if the effect of each program, in a particular case, is
the same.

7. The sort command allows a sequence of records to be ordered
upon any item contained in the record. The sorted order can
either be saved for subsequent processing or the records can be
processed as they are sorted. Strings of records, relationships
and files containing information which has been saved can all
be sorted.

8. The destroy command deletes any information which has
been saved by the find or sort commands, or by the commands
which operate upon relationships.

4.2. The relationship commands
1. The add command allows a record, which is currently being

The Computer Journal

¥202 Iudy 61 U0 1senb Ag L£880Y/86/2/6 L /2101 e/|ulWwoo/woo dno-ojwsepeoe//:sdiy wolj papeojumoq



processed or which already exists, to be included in a particular
relationship. The relationship must be a group or a chain.
These are the only relationships which cannot be completed
when a record is included in the data base. Link, double-link
and tree all join records of a similar type, and are dependent
for their logical order upon the value of an item contained
within the record. Group and chain can join dissimilar records
and therefore have no item which can act as a key for the
logical ordering of the relationship.

2. Erase allows the current record to be removed from a group
or chain relationship.

3. The give command allows the user to step his way through a
relationship, without retaining any trace of the records which
have been processed. Give also makes available any records
which have been saved by other commands.

4, Follow allows a user to process relationships, at the same
time maintaining a trace of the path followed so that he can
return to any previous point. Follow commands can be nested
to as great a depth as necessary to reflect the data structure
which is being processed. Other commands can be issued from
within the follow sequence, although no trace will be kept of
where these commands led. The trace created by a follow
command is implemented by a first in, last out stack. The
return and retrace commands, which can only be issued from
within a follow sequence, are used for back-tracking.

5. The return. command In a nested sequence, one option of the
follow command allows the user to specify that a particular
follow command in the subsequent program sequence should
be more fully traced. This is achieved by the user associating a
name with the particular follow command. Whenever this
particular command is encountered during the dynamic
program sequence, the name specified by the user and the
information about the appropriate record occurrence are
entered on the stack. The return command allows the user to
jump to the most recent occurrence of that name in the
stack.

6. The retrace command allows the user to process his way
backwards through the stack until a particular record is found.
The stack is not destroyed so that it is possible for the user to
return to the place from which the retrace was issued because
the retrace command employs the same naming mechanism as
the follow command.

7. Create allows the initiation of new relationships which are
equivalent to groups. The created relationship is intended to be
used for a short period of time only and not as a redefinition of
the data base. Pointers needed to maintain the relationship are
external to any records which may have been added to the
relationship. The relationship can be subsequently destroyed
by the user.

8. Membership commands allow a user to ascertain of which
relationships a particular record is the start or a member. One
form of the command yields all such relationships; the other
yields information about specified relationships.

4.3. Other commands
These commands are mainly for the use of the data base

References

designer so that he can interrogate certain system maintained
items to find out how efficiently the data base is running.
Examples are: the frequency counts of dictionaries can be
interrogated and altered so that elements can be artificially
moved when the next re-organisation takes place; the balance
of a tree relationship can be investigated and altered so as to
produce a more balanced tree.

5. The operating environment of a PATCOSY data base

The interaction of data bases in general and PATCOSY in
particular with the operating system is one in which many
functions overlap. For example, storage device allocation has
been the role of the operating system but PATCOSY assumes
this role because of the need for dynamic control of storage
allocation.

To this end data bases will either become extensions of
operating systems or the operating system will become part of
the data base system.

Whatever attitude is taken there is need for an easily specified
means of assigning storage to records and then being able to
easily join records into strings. PATCOSY contains three
different pointer mechanisms; namely direct, displacement and
algorithmic (see relationships).

In both the direct and algorithmic mechanism a strategy has
to be developed for assigning storage of the required type to a
record at whatever stage of a storage control sequence is
reached. The strategy must also ensure that relinquished
storage space is immediately made available for other records.

One possible strategy is that the total available storage space
on each storage device type is divided into fixed length units,
the length chosen depending on the actual length of the record.
A ‘free-list’ will have to be maintained of all elements which are
unused so that the direct mechanism can obtain an element of
storage as necessary.

If algorithmic pointers are used then no free list will be
required but the algorithm will have to cope with the problems
of synonyms.

If both direct and algorithmic pointers are used a free-list
will have to be maintained in which ‘next and prior’ pointers
are maintained so that elements can be removed from the
free-list when they are used by the algorithmic pointers.

The operating system will also have to obtain the identity of
users so that privacy ratings of the user can be established. This
information will then be passed to the data base system so that
the control of data access can function.

6. Conclusions

PATCOSY is a system which has sufficient facilities to enable a
designer to implement a total medical information system. The
main conclusion which can be drawn from carrying out this
piece of work is that PATCOSY highlights the interaction of a
data base system and its operating environment, and that the
latter can only be excluded to the detriment of the design of the
former.

Acknowledgements
This work was carried out whilst the author was a research
student at the Department of Computer Science, University of
Manchester. The author acknowledges the guidance and assis-
tance provided by Professor F. H. Sumner and Miss H. J. Kahn,
The author is indebted to Mr. I. W. Draffan for his help in the
preparation of the manuscript.
The research was financed, in part, by the SRC.

KERRIDGE, J. M. (1975). A Proposal for a Data Base for the National Health Service, Ph.D. Thesis. University of Manchester.
CODASYL Data Base Task Group April 1971 report, British Computer Society.

WeeD, L. L. (1971). Medical Records, Medical Education, and Patient Care: the problem-orientated record as a tool, Cleveland Ohio: Case

Western Reserve University Press.

Volume 19 Number 2

103

¥202 Iudy 61 U0 1senb Ag L£880Y/86/2/6 L /2101 e/|ulWwoo/woo dno-ojwsepeoe//:sdiy wolj papeojumoq





