Tolerance to inaccuracy in computer programs

E. B. James and D. P. Partridge

College Computer Centre, Imperial College of Science and Technology, Exhibition Road,

London SW7 2BX

This paper reports on the performance of a system for recovery from inaccuracies in the specification
of program statements. The tolerance to inaccuracy is a natural by-product of the method of
- adaptive analysis, which is described in detail elsewhere (James and Partridge, 1973).
Probable inaccuracies are detected and accurate reconstructions are explored as an integral part
of the process of analysis. Specific examples of inaccuracy are selected from practical program
samples and the operation of the analyser is assessed with respect to them.

(Received July 1974)

1. The meaning of inaccuracy

It is difficult to define precisely what is meant by inaccuracy
in a computer program. In the broadest sense, any property
of a program which prevents it from achieving the objectives
which the programmer has in mind will have arisen from some
inaccuracy in specification. At a more detailed level, where
there exists some accepted definition of ‘normal’ practice, it
may be practical to talk of errors and their correction.

In program statement analysis, we are not aware of any
generalised approach to dealing with inaccuracies other than
those of a limited syntactic type. Most systems are limited to
the detection of four simple types of inaccuracy: one character
missing, one extra character inserted, one character wrong or
two characters transposed. (Damerau, 1964; Morgan, 1970;
Szanser, 1972). Another typical limitation is the expectation of
only one mistake in each statement, or in each word in a
natural language system. All the generalised systems mentioned
aim at recovering from the errors detected : they aim to produce
a syntactically acceptable structure which will enable the
process of analysis to continue. This is in contrast to the idea of
correcting the errors which can be described loosely as pro-
ducing ‘what the programmer meant’ (Irons, 1963). Those
systems which aim at correction do so by means of an ad hoc
collection of special techniques devised largely on the strength
of the system designers’ intuition (Conway and Wilcox, 1971;
Lafrance, 1971). None of the systems mentioned so far are
designed with a view to adaptively improving their method of
recovery to produce ‘better’ corrections.

The method of analysis which we describe here embodies no
restriction on the number and type of inaccuracies which can
be handled. It is a dynamic system which utilises past experience
in the processing of previous ‘correct’ and ‘incorrect’ state-
ments to improve its future performance. The use of previous
experience enables the system to extend beyond the domain of
syntactic inaccuracy, and it becomes possible to mark as
suspect those statements which are syntactically correct but so
unexpected as to make it seem likely that they have arisen from
an error in the specification of a more common type of
statement.

2. The adaptive analyser
The adaptive analyser is described in detail in James and
Partridge (1973) and Partridge (1972) and only particularly
relevant features of the system are outlined here. In the adap-
tive analyser we have extended the normal process of syntactic
analysis in several directions. The general principle is that the
tree structure defining the syntax of the language is no longer
. static but dynamic, reflecting changes in the pattern of language
usage by variations in the structure. An initial structure is
provided and is altered in many different ways as a result of the
continuing process of recognising the incoming statements.

Volume 19 Number3

At any particular point in time therefore, the structure of the
tree reflects the total experience of the process of analysis, and
it is convenient to call it ‘the experience tree’.

peojumoq

2.1. Improving the experience tree structure
The heuristic principles that are used to restructure the‘I>
experience tree were designed to exploit the non-uniform use of 3
language features by programmers. This non- un1form1ty3
proves to be stable over time, as in the case of natural language——
use and so the likelihood of future occurrence of the various<
possible structures can be predicted with a high degree ofg
accuracy. This means that as soon as the experience tree hasg
been altered sufficiently to mirror usage in a particular environ-=.
ment, subsequent alterations that may be necessary will haveo
little effect on the overall processing efficiency. The structure of>
the experience tree is also adjusted to reflect the fact that allS
statements contain a certain degree of redundant informationg
which can be ignored if we are to speed the analysis of accurate_
and tr1v1ally inaccurate statements, or utilised if required to\
assist in the interpretation of defective statements.

2.2. The automatic restructurmg mechanisms
The restructuring of the experience tree is aimed at mmlmlsmgo
the complexity of the total matching process, and so increasing?
its efficiency. There are two basic restructuring mechanisms.

¢/€/61/31911E

09989

The ‘branch swoppmg mechanism The principle behind this=
technique is that given a series of alternative structures in thec
language, those that have occurred most frequently in the pastﬁﬁ
are looked for soonest in the future. This can be realised byS
simply rankmg the sets of nodes which represent alternativeo
structures in the experience of the tree so that those most%>
frequently required are nearest the root of the tree and thereforq\—J
are reached most quickly in the matching process. Naturally,m
when a set of alternative nodes are reordered in this way, their
attachments to subsequent nodes remain undisturbed. All sets
of alternative nodes throughout the experience tree are thus
ranked in order of precedence with respect to the analysis
process.

The ‘promotion’ mechanism This mechanism can be viewed as
an inter-tree branch swopping mechanism. If the few highest
precedence itemson any tree within the tree-structured hierarchy
(the experience tree) are accessed on the vast majority of
references to that tree, then these items can be automatically
‘promoted’ up to a higher level in the total hierarchy, thereby
avoiding the time consuming recourse down through the
hierarchy via the appropriate references on the occasions when
these particular ‘promoted’ items are accessed. The price to be
paid is an increase in the total size of the hierarchy.

207

tree F tree R
—R-E-W-I-N-D-£R-t —-1-9-t
l | |
| A-D—(—£R-,—£S-)-£L-t 3t
| |
W-R-I-T-E-(-£R—,—£S-)-t 5-t
I |
£L-t 6-t
etc.

key: an upper case character represents an immediate symbol
‘£R’ is a reference to tree R
‘t’ is a terminal node

Fig. 1
tree F tree R
—-+W-R-I-T-E«(-£R—,—£S-)-t —6-t
| | |
| £t 5-t
| : |
R-E-A-D-(-£R-,—£S-)-£L-t 1-9-t
l
W-I-N-D-£R-t 3t
etc.
Fig. 2
tree F tree R
- W-R-I-T-E—~(-6—,—£S-)-t —1-9-t
| | | |
| | £L-t 3t
| £R-—£S-)-t |
R-E-A-D—(-5-,—£S-)-£L-t cen
| etc.
| £R-,—£S-)-£L-t
W-I-N-D-£R-t

Fig. 3

As an example of these two mechanisms consider the trivial
hierarchy of Fig. 1, that can match the FORTRAN statements,
READ, WRITE and REWIND (tree F), all of which require
a reference to some input or output device number. These
numbers comprise tree R. Tree S (for statement numbers) and
tree L (for lists of variable names) are not illustrated. Alter-
native nodes are connected by vertical lines and successive
nodes by horizontal lines.

If the analysis process revealed that the WRITE statement
occurred more frequently than the READ statement; and the
READ . statement more frequently than the REWIND state-
ment and that within tree R the item ‘6’ was referenced most
frequently, followed by the item ‘5’; then the branch swopping
mechanism would restructure the individual trees as illustrated
in Fig. 2. '

In many installations the usual form of the WRITE statement
is WRITE (6 etc. and the READ statement is READ (5 etc.
The REWIND statement is seldom accessed, and the vast
majority of references to tree R match either item ‘6’ or item 5°.
In this case, the promotion mechanism would restructure the
hierarchy as illustrated in Fig. 3.

The matching of the two commonest particular statements,
‘WRITE(6, etc.” and ‘READ(S, etc.’, will be quicker when
utilising the tree hierarchy of Fig. 3 than when using that of
Fig. 1. The statement beginning, ‘WRITE(6 etc.’, matched up to
the ‘6’ without querying any wrong nodes, as opposed to 4
wrong nodes being processed when utilising Fig. 1. These are
the root node of tree F containing ‘R’ and the first three alter-
native nodes in tree R, containing ‘1’, ‘3’ and ‘5°. The indirect

reference to tree R (the node containing ‘£R’) does not have to
be processed either.

A further important point is that the promotion mechanism is
context sensitive: a ‘6’ is promoted into the WRITE statement
and a ‘5’ into the READ statement. As we shall see, this is
important for the production of good error recoveries as well as
the efficient analysis of correct input and output statements.

2.3. Levels of confidence and the control of statement analysis
The improving techniques described above imply that there is
available a count of the previously successful match frequencies.
An obvious place to store and maintain these ‘frequency counts’
is within the experience tree itself. Thus frequency counts are
stored throughout the experience tree, and a frequency count is
stored and associated with each item in every tree and subtree
that comprises the total hierarchy.

Apart from the use of ‘improving’ strategies there is an impor-
tant further use of the frequency counts. They are utilised
during the matching of incoming statements to provide a
measure of the relative ‘likelihood’ of success with any par-
ticular substructure—or from another viewpoint, a measure of 8
‘confidence’ that any particular substructure will prove to be3
correct. Thus there is available at all times during the processmg 8
of a statement, some value representing the confidence in anm
overall successful match which can provide a criterion for—“
continuing or abandoning the current matching process. 5

Consideration of these confidence levels has a useful, if notg
essential part to play in the production of an efficient system 2
which can ‘learn’ to analyse statements with an arbitrary num-
ber of inaccuracies given sufficient learning and processinga
time.

By neglectmg the low likelihood structures within the language o
we gain not only by directing the interpretation of an 1ncorrectt>
structure to the high likelihood possibilities—but also from the 8
increased efficiency which stems from the effective reduction in&
size of the working definition of the language to be analysed.

Boe//:s

Jlwe

3. Dealing with inaccuracy
3.1. Structural redundancy and trivial inaccuracy

P
-+
i
w
®
=
=}
o
1)
3
o
B
[
o
=
o
172}
w
=
3
ae)
=g
o
=]
O
=
-
=
[¢]
b]
o
=
=)
(=N
1)
w
‘8
o
')
Q.
.':I"
]
[¢]
-
=2
o
-
Z/€/6L/9I3!U9/IU[LU0 w

we do not expect perfect specification of the mcommg state-
ments. Prime concern is with extracting the ‘meaning’ of the <
statements analysed which implies that within -the matchmgm
process the fit is not necessarily or even usually perfect. The fact g &
that statements can be ‘made sense of’ (matched) without a2

perfect fit means that there must be a certain amount of<
redundancy within them. m

As a result of our approximate matchmg techniques, o
inaccuracy does not have quite the usual meaning within our
analyser. We are not satisfied merely with classifying the incom- g
ing statements into one of the two mutually exclusive classes, S
correct or incorrect, which then invoke the normal processes
of syntactic analysis (and later compilation) or error processing X
techniques respectively. In our system, trivially incorrect
statements can be processed, that is, the critical features (the
ones that convey the essential meaning) can be extracted with
no loss in efficiency over the processing of completely correct
statements. A logical consequence of the high efficiency of this
technique is that we are not able to indicate the occurrence of
trivial mistakes in the incoming statements.

The realisation of this approximate yet discriminating match-
ing is seen in our ‘confidence jump’ technique. This mechanism
quite simply exploits the structural redundancy of the particular
language definition that comprises the experience tree. This tree
structure definition makes any structurally redundant features
of the language conspicuous as nodes that specify immediate
symbols and are not associated with any alternative structure.

When analysing the incoming statement, we have at any
particular point in the process a current input statement char-

The Computer Journal

tree F
1
—W-A-R-I-T-E-(-6-¢tc.
£R-etc.
! l 1
R-E-A-A-D—-(-5-etc.

£R-etc.

W-A-I-N-D-£R-t
key: ‘A’ is a jump node.
Fig. 4

acter to be matched against an immediate symbol associated
directly with or referenced from a current tree node or one of
its alternatives. If the current tree node contains an immediate
symbol and has no alternative nodes associated with it, then it
can be assumed that the match has been successful and controls
transferred to the next tree node and input statement character.
Clearly this mechanism extends easily and more efficiently to
longer sequences of structurally redundant symbols.

As an example, consider the partial syntax tree in Fig. 3.
Nodes R, I, T, E, and ‘(’ of the top branch are all structurally
redundant. If the first character of an input statement is a ‘W’
and thus is matched against the first node in the tree then
(given the language description of Fig. 3) either the statement is
a WRITE statement or it is incorrect. If it is assumed that
the statement is a WRITE statement, control is transferred to
node 6 in tree F and to the appropriate position in the input
statement, without checking that the intervening characters are
‘R, ‘I, ‘T’ and ‘E’.

A special tree node—a ‘jump’ node—controls this mechanism.
Jump nodes are automatically inserted throughout the
experience tree. Tree F of Fig. 3 with three jump nodes inserted
is illustrated in Fig. 4.

During the analysis of a statement, when control is passed to a
jump node, a decision is taken whether to pass control along the
jump path or whether to pass control to the successor node
and continue processing scrupulously. The decision is based
upon the level of confidence of the total matching of the current
statement.

Thus a trivially incorrect statement is defined by the scope
of the jump nodes, which is a function of: jump node position,
likelihood of current experience tree structure, likelihood of
current general strategy (see below) and ‘smoothness’ of prior
matching with the current input statement.

Assuming the total level of confidence is high enough with the
experience tree of Fig. 4, the following statements would be
trivially incorrect and thus analysed with no loss in efficiency
over the completely correct statements:

WITE (6, 10) W(6, 10) WRIGHT(6, 10) .

3.2. Non-trivial inaccuracy and the strategy list

The method of analysis described has two components: the
experience tree, and an algorithm which matches the incoming
statements against this tree structure. The structure of the
experience tree is continually optimised and so it seems reason-
able to attempt a similar optimisation of the matching
algorithm.

Unlike the majority of statement analysers, our system does
not immediately consign seriously inaccurate statements to an
error exit. Instead we attempt to ‘force’ a match against the
experience tree by modifying the matching algorithm. The
various modifications or ‘strategies’ will in general be different
for dealing with different types of error. We can arrange these

Volume 19 Number 3

different strategies in an ordered list similar to sets of alter-
natives within the experience tree and there seems no reason
why the ‘strategy list’ should not be manipulated in a similar
manner. In this way successful strategies can be promoted so
that they are tried more often and unsuccessful strategies can
be demoted or deleted.

General strategies that might prove useful are, ‘assume one
character has been omitted from the input statement’, or
‘assume two successive characters have been altered within the
input statement’. One further feature at least would seem to be
necessary in the modification of a matching strategy, that is the
position within the input statement and the experience tree
from which the force match should be initiated. For it is by no
means necessary that the error occurs at the position in which
it is first detected.

The confidence levels also have a significant contribution to
make to the process of recovery when using the force matching
technique. The matching strategies are arranged, and will
therefore be tried, in order of decreasing likelihood and hence
also in decreasing confidence that they can effect a useful
correction; the confidence of the matching process at any par-5
ticular point would seem to be some function of the confidences
level of the particular strategy and of the particular expencncem
tree substructure. Thus an attempted matching could be aban-m
doned when some function of these two levels diminishes to-h
some present threshold value and a match has not beenS
obtained. Then, although the force match will be continued w1th,.
a less likely strategy, the chance that a fit mlght be obtained on\
a hlgh likelihood substructure of the experience tree couldO
result in an overall higher confidence correction than woulda
have been obtained by pursuing the previously abandonedB
matchmg

By using the confidence levels in this manner we expect too
produce high likelihood corrections which are superior to thed
initial results of the system, when it has not learned the patterns
of language use.

0|J,Je/|u[Lu

3.3. The introduction of allowable error
At all times during the processing of a statement there iso
available a measure of the likelihood of every structure Wlthlnr.o
the experience tree and of every general strategy within thq\\)
strategy list.

The possibility arises that a high likelihood correction mlghlﬁjo’
be a better result than a very low likelihood analysis with now1
modification. In other words, very low likelihood syntactlcg
structures might be usefully interpreted, if possible, as higlb
likelihood structures with one of the high likelihood errorsm
For example, the FORTRAN statement

WRITE (U, 32)
is syntactically correct but very unlikely, and is possibly bette§
interpreted as:

] uol

WRITE (6, 32)
which is a very likely statement and only differs from th
original in one character, and ‘one character wrong’ is a very
common error.

Thus we have the possibility of 51mp11fy1ng the total analysis
and increasing the scope, quality and efficiency of error correc-.
tion by neglecting the possibility of occurrence of very unlikely
structures within the language, as a first approximation. This
procedure implies the p0851b1]1ty of making mistakes when the
system fails to recognise very unlikely structures when they
actually do occur.

We may consider such a procedure as a partlcular example of
the more general feature, ‘allowable error’ (after Bloom, 1970).
This is defined as the small proportion of permitted errors
introduced into -an analysing system to gain a significant
increase in the overall processing efficiency of the system.
Clearly such a procedure could be fraught with danger and
adequate safeguards must be developed concurrently. For

20z 1ud

example we must be able to accommodate a sudden upsurge
in the popularity of a previously uncommon feature.

We are now investigating the possibility of a compromise
between increasing the efficiency of the analyser and decreasing
the number of mistakes that result. The usual view is that the
processing efficiency of a system should be improved only so
far as to be consistent with maintaining the theoretical number
of mistakes that the system can make at zero; no ‘allowable
error’ can be permitted. We relax this stipulation, and consider
methods of analysis which admit positive amounts of allowable
error to assess the practical feasibility of such a move.

The particular method by which allowable inaccuracy is
introduced into the system can be considered as an exploitation
of a particular type of redundancy, statistical redundancy.
Substructures within the experience tree are, to a first approxi-
mation, ignored when the defined set of alternatives in the
language structure which they represent have been found to
occur in ‘statistically insignificant’ proportions. In practice,
for a particular application, ‘statistically insignificant’ will
mean substructures associated with frequency counts below a
certain value. This method of introduction of allowable error
can be incorporated naturally into the confidence jump mech-
anism, since that mechanism exploits the structural redundancy
within the experience tree and clearly, statistically redundant
nodes can be treated in exactly the same manner. For the
purpose of automatically inserting jump nodes within the exper-
ience tree, structural redundancy is considered as a limiting case
of statistical redundancy. Structural redundancy is statistical
redundancy when ‘statistically insignificant’ takes the value of
zero. In the current implementation, ‘zero’ actually implies a
frequency of less than 1 in 10,000.

4. Practical results
The adaptive analyser can be applied to the analysis of state-
ments in any programming language. We chose to analyse
programs written in FORTRAN since they were most easily
available. A hierarchical description of standard FORTRAN
was constructed and applied to 200 programs which were
drawn from five different environments. In all 20,121
FORTRAN statements were analysed. The frequency of
occurrence of errors was 0-3 per cent; that is three incorrect
statements in every thousand. This figure appears to be
surprisingly low until it is recast as one statement in every three
programs, which probably implies that over one third of the
sample programs would have been rejected by a conventional

computing system.
A total of 49 statements contained non-trivial syntactic
~ inaccuracies. Of these statements 29 contained a single error
which fell in one of the three classes commonly anticipated
within error correcting systems: one character wrong, one
character inserted and one character omitted. Surprisingly,
there were no occurrences of two characters transposed, which
is the fourth class of errors commonly catered for in existing
systems. Although only 59 per cent of incorrect statements
contained a single error involving a single character, more than
90 per cent of the isolated errors were of the single character
type. The frequency within each of the three classes of error
was: 32 characters missing, 13 characters wrong and 10
characters inserted. 10 statements contained more than one
isolated error, whilst in eight statements the error involved a
syntactic unit rather than individual character mistakes. We
have been unable to find any comparable statistics on errors in
computer programs. Most previous work does not include any
results of testing a system in depth, but rather the results of a
few selected examples. The statements concerned with input
and output operations—FORMAT, READ and WRITE
statements—account for 75 per cent of incorrect statements,
and the assignment statement contributes a further 10 per cent.
Within the total hierarchy, the principal tree F specified the

210

Backspace 0 characters on statement being analysed and
attempt to match assuming 0 characters omitted whilst expected
frequency of occurrence not less than zero (the ‘correct’
strategy)

Backspace 1 character and search assuming 1 character wrong

!

Backspace 1 character and search assuming 1 character inserted

!

Backspace 2 characters and search assuming 2 characters wrong

!

Backspace 0 characters and search assuming 1 character omitted

!
Etc.

Fig. 5 The strategy list

overall structure of each of 36 FORTRAN statement types. Y
This does not include the assignment statement which is dealt 5
with separately. 32 jump nodes were automatically inserted § 5
within tree F, with no allowable error introduced (i.e. only @
structural redundancy exploited). 100 nodes or 10 per cent of = 3
the total experience tree was found to be structurally redundant. 3
Very few trivial errors were encountered, but those that were = =
such as the misspelt keywords ‘DIMENTION’ and ‘FORMIT ?
were correctly interpreted with no loss in efficiency in compari- g?
son with the totally correct versions. An allowable error of less §
than 0-01 per cent was introduced to exp101t the statistical 3
redundancy within tree F. Then only 17 jump nodes were g
inserted but one third of the possible statement types (that is, 5
12) were effectively removed from the language, as a first 8
approximation to practical usage.

dn

Restructuring the strategy list and the utilisation of confidence
levels in the restoration of non-trivial errors

As described earlier, statements containing non-trivial inac-
curacies are analysed by utilising the general strategies in order
of precedence from the strategy list until a match is obtained or
a complete failure is reported.

The strategy list illustrated below (Fig. 5) was utilised in the &
analysis of Data Set I (a batch of 8164 statements) and although o
40 per cent of the incorrect statements were restored, none of & S
the restorations were ‘correct’. All but one of the restorations< .
were performed by the second general strategy. This is the first 5 <
correction strategy since the first strategy matches only correct 7 2
statements and was given the highest precedence whilst the > >
other strategies were ordered randomly. This particular ©
strategy was always employed because the errors were detected S
within subtrees which presented several alternatives which were m
equally likely on the basis of confidence levels. For mstance, N
when a comma is omitted from between two variables the
confidence levels within the tree U which is the tree that can
match a valid variable name, are not sufficiently dissimilar to
dictate which of the possible restorations is ‘correct’. So in
each case the second general strategy is able to produce a
syntactically correct structure. The alternative strategies
employed are given in Fig. 5.

The first strategy does not modify the processing of incoming
statements as directed by the experience tree, and the opti-
misation that can be produced by neglecting the low likelihood
experience tree items is not being used: all the strategies con-
tinue the search for a correct match in the tree until the expected
frequency is ‘zero’, or less than 1 in 10,000.

The errors detected and restored ‘incorrectly’ by the method
just described during the analysis of Data Set I, were analysed
by hand and the strategy tree was restructured to place the

/102/8/6L/GIO!UE/IU[LUOO/LUO

The Computer Journal

backspace 0 characters, and search assuming O characters
omitted whilst frequency not less than zero

!

backspace 0 characters, and search assuming 1 character wrong
whilst frequency not less than 100

!

backspace 0 characters, and search assuming 1 character
inserted whilst frequency not less than 125

!

backspace 1 character, and search assuming 1 character
omitted whilst frequency not less than 143

backspace 0 characters, and search assuming 1 character
omitted whilst frequency not less than 166

!

backspace 2 characters, and search assuming 1 character
omitted whilst frequency not less than 200

1
Etc.

Note: No allowable error introduced because the first strategy
searches all of the experience tree.

Fig. 6 The strategy list of Fig. 5 restructured as a result of analysing
Data Set I

appropriate strategies in order of precedence. Further, a simple
linear function of the error frequencies was incorporated in the
decision mechanism to direct the force matching to the more
likely experience tree items. The restructured strategy list given
in Fig. 6 was utilised in the analysis of Data Sets II to V. The
results illustrate a significant proportion of ‘correct’ modi-
fications, and strategies as far down as the tenth actually
performed modifications.

A more direct comparison of the two strategy lists was made
with the incorrect statements show in Fig. 7, all of which were
found within the analysed Data Sets. The restructured strategy
list of Fig. 6 is clearly better in performance than the random
list of Fig. 5.

Another feature of the introduction of allowable error by
mean of the confidence levels is that we can detect inaccuracies
which are syntactically correct but nevertheless not ‘what was

meant’. A portion of these errors, as described earlier, become
apparent to the analyser when the analysis is directed by an
optimised experience tree, for they match statistically redundant
items within the tree.

Seven such statements were detected within the 8,164
statements that comprised Data Set I.

For example, a key punching mistake gave the syntactically
correct ‘WRITE (0, 2001) L3, N3’, which was detected as
unlikely as soon as the minimum allowable error (0-17;) was
introduced into the first matching strategy. In a practical system
it would clearly be useful to flag such a statement as suspect.
The system was able to ‘recover’ most incorrect statements
encountered and the use of confidence levels and the strategy
list certainly improved the quality of these ‘recoveries’.

As all error correction is based on the provision of redundant
information whose consistency can be checked, the FORTRAN
language as defined is not particularly amenable to error cor-
recting techniques. Nevertheless, the system was able to recover
most incorrect statements encountered and by the use of extra
information gained from past experience and statement
context, was able to effect a large proportion of ‘corrections’.5
A further source of extra information, which our analysers
discarded, is the blank characters that commonly occur w1th1nm
program statements. In retrospect it appears that within am
significant number of incorrect statements, ‘delimiting’ blanks:“
indicated the correct structure. Although the system descrlbedB
was able to detect a (presumably) small portlon of non-syn-g
tactic errors, any significant further advance in this direction”
requires extension of the hierarchical language description fromO
individual statement structure to total program structure. Thea
current implementation deals only with the internal structure 013
individual statements, and not with mterstatemenfo
relationships. U

Finally, a few words in defence of the usual charge that tolerg
ant computer systems encourage sloppiness in programmersg
We consider most current computer systems as too rigorouslyz.
pedantic, and so a few carefully considered steps in the direc
tion of relaxing some of the constraints customarily 1mposecﬁ’
upon programmers does not automatlcally warrant the charge®
of sloppiness. In projects which require large amounts of data2
which will mev1tably contain trivial mistakes, it is perhaps
case of coming to terms with features such as imprecision ofs

€

5
A
Incorrect statement Fig. 5 strategy Fig. 6 strategy ;
N
1. IFINISH =0 failed IFINIS = 0 &
2. FORMAT(1X, FK.2) failed FORMAT(1X, F1-2) S
3. READ(, 21) failed failed °
4. EDASH = 1.*COS (M)*E) failed failed Z
5. . WRITE(6, 20 failed WRITE(6, 20) %
6. FORMAT(4H NAME 12X/X failed FORMAT(4H NAM 12X/1X) S
7. FORMAT(1X, F10-0/) failed FORMAT(1X, F10-1)) =
8. FORMIT(X 22A6) FORMAT(1X, 2A6) same
9. M = IFINISH/2 M = IFINI + H/2 M = IFINIS/2
10. DO9%I = M failed failed
11. KJ +1-2)=K() failed K{J + 1,2) = K(J)
12. READ(5, 24)KPLUS WAYB ..(..)KPLUSW, AYB ..(. .)KPLUSW, YB
13. FORMAT(3, X, F9-5) failed FORMAT(I3, /, F9-5)
14. WRITE(6, 21), K(1) failed WRITE(6, 21)IK(1)
15. WRITE(60, 25) (J, KJ),J = 1, M) failed WRITEC(, 25) (J, K(J), J = etc.
16. K(1) = (KPLUS + 3) 14 K(1) = (KPLUS + 3)/4 same
17. 96(M.LT.2)KPLUS = 2 IF(M.LT.2)KPLUS = 2 same
18. FORMAT (16H-FILE LENGTH failed ..J(5X, 9A1))

12/(5X 19A1))

19. GOTO(11,12) M GOTO (11, 12),M

same

Fig. 7 The performance of the strategy trees of Figs. 5 and 6

Volume 19 Number 3

specification and the resulting action or imposing a severe
block upon the type of problem that can be solved.

Szanser (1972) states that the Machine Translation project of
the National Physical Laboratory constantly ran up against
the problem of coping with errors in the input, ‘even if the
error was trivial by human standards (such as to pass unnoticed
—obvious evidence of the existence of ‘automatic error
correction’ in the brain)’.

References

Again we would emphasise that our position is not to let
programmers ‘run riot’ with the system. A well designed
tolerant system will naturally provide incentives to encourage
precise programming in that ‘correct’, that is expected program
statements, will be processed faster. It will exploit the redun-
dancy in program specification to increase the chances of
recovering from inaccuracy while it will not penalise the correct
programs.

BLoom, B. H. (1970). Space/time trade-offs in hash coding with allowable errors, CACM, Vol. 13, No. 7, pp. 422-426.
Conway, R. W.,and WiLcox, T.R. (1971). Design and implementation of a diagnostic compiler for PL/I, Research Report 71-107, Department

of Computer Science, Cornell University, September 1971.

DAMERAU, F. J. (1964). A technique for computer detection and correction of spelling errors, CA CM, Vol. 7, No. 3, pp. 171-176.

Irons, E. T. (1963). An error-correcting parse algorithm. CACM, Vol. 6, No. 11, pp. 669-673.

JamEs, E. B., and PARTRIDGE, D. P. (1973). Adaptive correction of program statements, CACM, Vol. 16, No. 1, pp. 27-37.

LAFRANCE, J. (1971). Syntax-directed error recovery for compilers, Ph.D. thesis, University of Illinois at Urbana-Champaign.

MorGaN, H. L. (1970). Spelling Correction in systems programs, CACM, Vol. 13, No. 2, pp. 90-94.

PARTRIDGE, D. P. (1972). Heuristic methods in the analysis of program statements, Ph.D. thesis, Department of Computing and Control,

Imperial College, University of London.

SZANSER, A. J. (1972). Automatic error correction in natural texts, National Physical Laboratory, Part II COM 52 and Supplement COM 63.

Book reviews

FORTRAN to PL|I Dictionary, PL|I to FORTRAN Dictionary by
Gary De Ward Brown, 1975. (John Wiley & Sons, New York,
£5-10).

This book explains FORTRAN and PL/I in terms of each other.
The first section consists of alphabetic lists in the style of English-
French and French-English dictionaries but the major part of the
book is taken with explaining the concepts of the languages from
basic statements through data storage and control statements to
input/output and debugging aids with where there are differences, as
there usually are, FORTRAN to the left and PL/I to the right of
the page. There is a chapter on features which have no parallel in
FORTRAN, such as multitasking and recursion, and there are
appendices on PL/I character sets and abbreviations, interlanguage
communication on the IBM 360/370 and answers to the exercises
which terminate each chapter. The chapters are ordered as for a
reference, not an initial teaching work. There is a good index.

It is assumed that the reader is familiar with the basic concepts of
programming, punched cards, and so on and it is visualised that the
main use of the book would be to teach one language to a person
who knows the other, or to act as a reference for such a person. It is
also suggested that the book could be used as a text for a course in
which languages are learned in sequence or as a text for a course in
comparative languages, or as a language reference.

Of these multifarious targets the one missed by the greatest dist-
ance is the function of the single language reference. The FORTRAN
covered is described as all of ANS plus ‘most of the widely-used
non-ANS FORTRAN 1V features’ including ‘those of WATFOR
and WATFIV’. What is actually covered is all of ANS plus most of
the IBM 360/370 FORTRAN extensions plus a few references to
language fragments from other systems, particularly CDC 6000. The
earlier chapters are concerned mainly with IBM facilities but later
there is more acknowledgement of other systems. The reader, in-
evitably, must look elsewhere to decide if a particular statement
is acceptable to a particular language processor. Similarly the PL/I
is unequivocally stated to be IBM version 5 level F with additional
features of the IBM checkout and optimising compilers but by
Chapter 7 there is an exception indicating a difference between IBM
360/370 and the rest. The book therefore attempts to reference a
phantasm.

Further, one must demand accuracy of a reference work and it is
not acceptable for example in FORTRAN to use a variable name
for both a real and a logical variable in the same statement (p. 48)
or to describe the skip/format code as Xw with examples X6 and
X10 (p. 127). These are possibly due to printing errors; the general
standard of presentation is high, especially given the split-page
format, though there are occasional lapses such as using the wrong

212

dny wouy pspeojumoq

type face for a word and there is the common error of sometimes =
continuing a program statement across lines as if it were a natural 2
language sentence.
These minor infelicities will not trouble the experienced programmer
who will probably not even notice that page 1 contains an element-§
ary error, a near-illegible example and a spelling mistake. In its5
basic function of setting out the two languages side by side and line2
by line with abundant examples the book is excellent and one cans
imagine it being of great utility to the programmer who is familiar%
with one of the languages and is rusty at the other and who isg
prepared to crosscheck with the manual of the processor he is using.3.
A fortiori, for comparative language study the book can be used%
very easily to give an overview of the facilities offered by the two =
languages. 2
Those who have read thus far will have gathered that the third of
the five aims of the book, to teach the languages in sequence, is not o
really fulfilled as there are better ways for those who must learn’™>
FORTRAN and PL/I from scratch. The author uses the analogy of S
an English-French dictionary: to give this book to an inexperienced &3
programmer would be to invite translations of the level of ‘]ettre§
Frangaise’. o
D. T. MuxworTHY (Edinburgh),
C

oe/

]

~
fiy
©

uo jse

Elementary Algol by A. Brundritt, 1976; 80 pages. (Macdonald &
Evans, £1-25).

This book may be ideally suited to students on Alan Brundritt’s=
ALGOL courses. I would not recommend it to anyone else. Theg
order in which the language is taught is completely at variance with =
modern ideas of programming: goto is taught early and used heavily
throughout the book; and although the safer control statements are
introduced, they are badly illustrated (for j: = 1,7 + 1 while j > 0
do...... with a goto to leave the loop, in one example!). Comment
is included as an afterthought in the last chapter—it might have
helped to explain examples like the one above.

Both input/output and Job Control Language are described with-
out mention of their ICL 1900 dependencies, an omission which is
made more grave by the promise in the Introduction that such de-
pendencies would be ‘made clear’.

The style is uncomfortably chatty—acceptable in a lecture, but
irritating and obtrusive in print.
‘There may not be many cheaper books than this, but there are
better ones’. Day (1976).
A. C. Day, reviewing Computer Programming/FORTRAN in
Computer Bulletin, series 2 no. 7 March 1976, page 40.

ANNE ROGERS (Bath)

Z ludy 61

The Computer Journal

