specification and the resulting action or imposing a severe
block upon the type of problem that can be solved.

Szanser (1972) states that the Machine Translation project of
the National Physical Laboratory constantly ran up against
the problem of coping with errors in the input, ‘even if the
error was trivial by human standards (such as to pass unnoticed
—obvious evidence of the existence of ‘automatic error
correction’ in the brain)’.

References

Again we would emphasise that our position is not to let
programmers ‘run riot’ with the system. A well designed
tolerant system will naturally provide incentives to encourage
precise programming in that ‘correct’, that is expected program
statements, will be processed faster. It will exploit the redun-
dancy in program specification to increase the chances of
recovering from inaccuracy while it will not penalise the correct
programs.

BLoom, B. H. (1970). Space/time trade-offs in hash coding with allowable errors, CACM, Vol. 13, No. 7, pp. 422-426.
Conway, R. W.,and WiLcox, T.R. (1971). Design and implementation of a diagnostic compiler for PL/I, Research Report 71-107, Department

of Computer Science, Cornell University, September 1971.

DAMERAU, F. J. (1964). A technique for computer detection and correction of spelling errors, CA CM, Vol. 7, No. 3, pp. 171-176.

Irons, E. T. (1963). An error-correcting parse algorithm. CACM, Vol. 6, No. 11, pp. 669-673.

JamEs, E. B., and PARTRIDGE, D. P. (1973). Adaptive correction of program statements, CACM, Vol. 16, No. 1, pp. 27-37.

LAFRANCE, J. (1971). Syntax-directed error recovery for compilers, Ph.D. thesis, University of Illinois at Urbana-Champaign.

MorGaN, H. L. (1970). Spelling Correction in systems programs, CACM, Vol. 13, No. 2, pp. 90-94.

PARTRIDGE, D. P. (1972). Heuristic methods in the analysis of program statements, Ph.D. thesis, Department of Computing and Control,

Imperial College, University of London.

SZANSER, A. J. (1972). Automatic error correction in natural texts, National Physical Laboratory, Part II COM 52 and Supplement COM 63.

Book reviews

FORTRAN to PL|I Dictionary, PL|I to FORTRAN Dictionary by
Gary De Ward Brown, 1975. (John Wiley & Sons, New York,
£5-10).

This book explains FORTRAN and PL/I in terms of each other.
The first section consists of alphabetic lists in the style of English-
French and French-English dictionaries but the major part of the
book is taken with explaining the concepts of the languages from
basic statements through data storage and control statements to
input/output and debugging aids with where there are differences, as
there usually are, FORTRAN to the left and PL/I to the right of
the page. There is a chapter on features which have no parallel in
FORTRAN, such as multitasking and recursion, and there are
appendices on PL/I character sets and abbreviations, interlanguage
communication on the IBM 360/370 and answers to the exercises
which terminate each chapter. The chapters are ordered as for a
reference, not an initial teaching work. There is a good index.

It is assumed that the reader is familiar with the basic concepts of
programming, punched cards, and so on and it is visualised that the
main use of the book would be to teach one language to a person
who knows the other, or to act as a reference for such a person. It is
also suggested that the book could be used as a text for a course in
which languages are learned in sequence or as a text for a course in
comparative languages, or as a language reference.

Of these multifarious targets the one missed by the greatest dist-
ance is the function of the single language reference. The FORTRAN
covered is described as all of ANS plus ‘most of the widely-used
non-ANS FORTRAN 1V features’ including ‘those of WATFOR
and WATFIV’. What is actually covered is all of ANS plus most of
the IBM 360/370 FORTRAN extensions plus a few references to
language fragments from other systems, particularly CDC 6000. The
earlier chapters are concerned mainly with IBM facilities but later
there is more acknowledgement of other systems. The reader, in-
evitably, must look elsewhere to decide if a particular statement
is acceptable to a particular language processor. Similarly the PL/I
is unequivocally stated to be IBM version 5 level F with additional
features of the IBM checkout and optimising compilers but by
Chapter 7 there is an exception indicating a difference between IBM
360/370 and the rest. The book therefore attempts to reference a
phantasm.

Further, one must demand accuracy of a reference work and it is
not acceptable for example in FORTRAN to use a variable name
for both a real and a logical variable in the same statement (p. 48)
or to describe the skip/format code as Xw with examples X6 and
X10 (p. 127). These are possibly due to printing errors; the general
standard of presentation is high, especially given the split-page
format, though there are occasional lapses such as using the wrong

212

dny wouy pspeojumoq

type face for a word and there is the common error of sometimes =
continuing a program statement across lines as if it were a natural 2
language sentence.
These minor infelicities will not trouble the experienced programmer
who will probably not even notice that page 1 contains an element-§
ary error, a near-illegible example and a spelling mistake. In its5
basic function of setting out the two languages side by side and line2
by line with abundant examples the book is excellent and one cans
imagine it being of great utility to the programmer who is familiar%
with one of the languages and is rusty at the other and who isg
prepared to crosscheck with the manual of the processor he is using.3.
A fortiori, for comparative language study the book can be used%
very easily to give an overview of the facilities offered by the two =
languages. 2
Those who have read thus far will have gathered that the third of
the five aims of the book, to teach the languages in sequence, is not o
really fulfilled as there are better ways for those who must learn™
FORTRAN and PL/I from scratch. The author uses the analogy of g
an English-French dictionary: to give this book to an inexperienced &3
programmer would be to invite translations of the level of ‘]ettre‘%’%
Frangaise’. o
D. T. MuxworTHY (Edinburgh),
C

oe/

]

~
fiy
©

uo jse

Elementary Algol by A. Brundritt, 1976; 80 pages. (Macdonald &
Evans, £1-25).

This book may be ideally suited to students on Alan Brundritt’s=
ALGOL courses. I would not recommend it to anyone else. Theg
order in which the language is taught is completely at variance with =
modern ideas of programming: goto is taught early and used heavily
throughout the book; and although the safer control statements are
introduced, they are badly illustrated (for j: = 1,7 + 1 while j > 0
do...... with a goto to leave the loop, in one example!). Comment
is included as an afterthought in the last chapter—it might have
helped to explain examples like the one above.

Both input/output and Job Control Language are described with-
out mention of their ICL 1900 dependencies, an omission which is
made more grave by the promise in the Introduction that such de-
pendencies would be ‘made clear’.

The style is uncomfortably chatty—acceptable in a lecture, but
irritating and obtrusive in print.
‘There may not be many cheaper books than this, but there are
better ones’. Day (1976).
A. C. Day, reviewing Computer Programming/FORTRAN in
Computer Bulletin, series 2 no. 7 March 1976, page 40.

ANNE ROGERS (Bath)

Z ludy 61

The Computer Journal

