Toward the understandability of an operating system*

R. C. Varney

Bell Laboratories 1C-406A Holmdel, N. J. 07733, USAt

Design considerations are presented for the construction of an operating system. (This approach
emphasises the need to understand the interrelationships among all operating system components
to facilitate the inevitable growth and development of a useful system). The concept of a process
and a resource are defined in such a way that a resource-to-process concept is developed, which is
later used to provide an ‘individualised’ virtual environment for a process. Terminology is introduced
to distinguish between so-called type S and type M resources, which must be treated differently for
resource sharing. The levels of abstraction are described for the tree structured operating system that
evolved from the design considerations. Within the tree, resource sharing is allowed and controlled
by a communication language and so-called resource tables. Since the system was designed for use
on a PDP-11/45, the basic components of its tree are given. It is then suggested that the tree
presented here is, in fact, a basic framework upon which different specific operating systems may

be built.
(Received March 1974)

1. Introduction

Most of the operating system design efforts have been directed
toward the efficient design of a specific portion of proposed
operating systems. This kind of effort has led to very valuable
advances such as those for paging, file organisation, scheduling,
memory hierarchies, programming languages, etc. However, the
design strategies for the interrelationships among these system
components have received much less attention. Dijkstra
attacked this problem in THE (Dijkstra, 1968) and others (e.g.
Liskov, 1972; Atwood, 1972; and Varney, 1973a) have more
or less utilised his approach. More recently a workshop was
held in Texas (Workshop, 1973) which at least in part, was
concerned with the question of operating system design.
However, a well-specified and widely accepted design strategy
has not yet emerged.

This paper presents one approach to the problem of operating
system design, which is believed to increase the understand-
ability of the system in such a way that it substantially improves
the ease of implementation, debugging, maintenance, and
development. The basic design is a tree of processes where the
tree structure provides information (using so-called resource
tables) indicating the interrelationships among these processes.
The knowledge of process interrelationships is particularly
important for the processes within the operating system itself,
and is, in addition, useful for the design of subsystems.

2. Design considerations

A number of important points must be considered in the design
of an operating system. These points have been divided into
two groups: primary and secondary. In general, the primary
considerations aim to provide for the ease of growth and
development which are inevitable. The secondary consider-
ations are to be taken as less important to the global aspect of a
growing system, although they most certainly cannot be
disregarded.

The primary considerations are as follows.

1. Provide for system understandability

(a) reduce and/or control complexity due to process interaction.
Even though each process within an operating system may
be (easily) understood, there are so many processes within a
given system that their interaction is a significant factor in
overall system complexity. It is assumed that reduced
complexity implies increased understandability.

peojumog

(b) keep the appearance of local complexity at a minimum.g
Since man often prefers to view a problem through local—n
components, if even the appearance of these componentSB
can be simplified, then the resultant system may be more~
easily embraced.

speoe//:sdy

2. Provide for reliability
It is difficult to provide system reliability a priori, althoughB
Dijkstra claimed system correctness for THE (Dijkstra, 1968);
due to its structure. We expect that reliability is a function ofs
understandability, so that improving the latter will improve theo
former.

8
o
3
3. Provide for measurement tools %
t

needed S
The secondary considerations are as follows.)

- w

/ w

1. Provide sufficient power to perform the usual operating systemcn\")
functions @

This system must either provide or allow such facilities a§
multiprogramming, time sharing, and/or real time; vanoug
scheduling disciplines; resource sharing; interprocess com<"
munication; debugging and/or monitoring of arbitrary’
processes; etc.

0z Iudv 6

2. Provide local operating efficiency
The system must not prohibit efficient process execution so thatg
throughput is noticeably degraded. Hence, system overhead
must be kept at a reasonable level.

3. Operating system components

There are two basic types of components in any operating
system: processes and resources. Let us define these not as
absolute concepts, but as concepts which change with the frame
of reference.

resource—a source of supply

process —an autonomous entity which, upon request, will
provide a specific service

Although the definition of resource may seem to connote a
static quantity, such a connotation is strictly due to tradition

*Portions of the work done at The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
$The author is now with Systems Control Inc, 1911 North Ft. Myer Drive, Arlington, Virginia 22209, USA.

Volume 19 Number3

213

and convenience in discussion. For example, a read instruction
is often envisioned as the active element which extracts a piece
of information from a static resource—namely, storage. How-
ever, a read is actually a request to the storage controller to
fetch work from one location and place it into another location.
Extending the argument one level further, we see that the
controller places a signal on lines in such a way that a message
is sent to a given core, which in turn responds by inducing (or
not inducing) a signal on another line.

The point to be made is the following: a process becomes a
resource when viewed at the next higher level. The higher the
level of the process (i.e. the greater its sophistication), the more
choice it may have in the kind of response it makes to a given
request for service. Since operating system complexity is a
problem, it seems reasonable to suggest that this complexity
could be reduced by viewing the entire system in terms of this
resouce-to-process concept, i.e. the method by which a process
requests service from another process (a resource) should be
uniform over all levels. A useful construct for the representation
of this hierarchy is a tree, an instance of which is discussed in
the next section.

To satisfactorily complete this section on the resource-to-
process concept, let us introduce some terminology. A single
operation instruction can be defined as an instruction which
corresponds to a single operation on a resource, i.e. the
instruction is indivisible relative to the users of that resource.
To complement that, a multiple operation instruction is defined
as an instruction which corresponds to a set of operations on a
resource. From this, two types of resources can be defined.

Type S resource—a resource used by a set of processes, where
each process in that set issues only single
operation instructions.

Type M resource—a resource used by a set of processes where
at least one process in that set issues multiple
operation instructions.

It can be seen that a type S resource requires no co-operation
among its users, whereas a type M resource, to insure the
integrity of the resource, requires mutually co-operating users.
(Brinch Hansen, 1972 and Courtois, 1971).

4. A tree structured system

4.1. The process selector tree

In developing this model, let each level of abstraction (Dijkstra,
1968) be viewed as a resource relative to the processes at the
next higher level. However, instead of building new levels which
abstract from the entire level below, let us distinguish and
identify the processes within a given level and build new
(partial) levels which abstract from a given process in the
lower level. Since a process becomes a resource at the next
higher level, and since individual processes are identifiable,
these levels of abstraction can be called local levels of abstrac-
tion. Such a construction is a tree. And these local levels of
abstraction within the tree represent small, comprehendable
units which facilitate basic understanding.

The specific tree structure is called the Process Selector Tree
or PST (Varney, 1971 and Varney, 1973a). The levels of
abstraction for the PST are shown in Fig. 1. Level O is the
hardware. At level 1, the Message Co-ordinator (MC) provides
a communication language which will allow processes to
create, destroy, and monitor child processes; to send messages
to other processes; to synchronise with other processes; to
respond to events; etc. The tree structure and resource tables
(to be discussed) are maintained by the MC. At level 2, the
Selection Algorithm (SA) provides the abstraction that each
process has a processor on which to execute, so that the actual
number of processes is hidden. Thus far, each level has not
been divided into separate processes. At level 3, however, a
number of distinct processes are implemented; the abstraction

214

Level
Hardware 0
Communications language 1
Virtual processors 2
Basic level of virtual resources 3
Local levels of abstraction 4

Fig. 1 Levels of abstraction

Fig. 2 Process selector tree

MAG
TAPE
' —J
— DISK —8
PDP 14/45
WITH
124K CORE m.

| MULTIPLEXER l

Fig. 3 Configuration

| U0 }senB Aq £/GEEE/E LZ/E/61/010IME/UIWOO /WO dNO"0ILISPEDE//:SARY WO PAPEOUMOQ

is called the basic level of virtual resources. At this level, one®
process is assigned to each physical I/O device to abstract aS
common message format which is capable of being transmittedg
to other processes in the system, i.e. these processes provide the®
first level of abstraction needed for I/O device independence.
In addition, other processes appear at level 3, which also .
provide basic resources, such as a file system or a subsystem
monitor. All processes at this level may communicate via the
communication language with one another so that one process
at level 3 may take advantage of the abstraction provided by
another process at the same level. Above level 3, the tree can
grow to provide the desired local levels of abstraction, e.g. two
or more logical discs from one physical disc, a spooling process
for the line printer, two distinct file subsystems for sequential
and random files from a single basic file system, etc.

By providing any process with the ability to request service
from any other process, a given process may operate on a virtual
machine whose architecture is individually tailored to that
process. Or, with the appropriate restrictions, a given process
can be forced to accept a particular virtual machine, while

The Computer Journal

neighbouring processes operate on different virtual machines.
The specific PST system designed for a PDP 11/45 is shown in
Fig. 2. The configuration is shown in Fig. 3.

4.2. Resource tables and resource sharing

Recall that one of the most important design goals was to
reduce system complexity in order to increase its understand-
ability. The tree built on the resource-to-process concept should
provide the needed simplicity in conceptualisation; at the same
time the tree may be used to impose restrictions on process
interaction, thereby reducing much of the operating system
complexity. A natural restriction is to force all interprocess
communication along the branches of the tree. However, such
a restriction is likely to significantly reduce operational
efficiency (see Varney, 1973a). The resource table has been
designed to provide a controlled means for relaxing or enforcing
this restriction as desired.

When a parent process creates a child, the parent provides a
resource table for the child as a subset of its own resource table.
This table is basically a list of all other procerses with which the
child may communicate. Any interprocess communication
must utilise the communication language provided by the MC,
which, in turn, forces all communication through the process’s
own resource table.

A basic form of communication is the SEND MSG primitive.
The process initiating the primitive is called the requestor and
the target process is called the requestee. A given requestor, then
has a resource table which contains a list of requestee names.
The SEND MSG will be issued by the requestor for one of
its known requestees. The resource table will map the requestee
name either to the actual target process or to an intermediate
process dependent on the mapping provided in the resource
table which was prepared by the requestor’s parent. That
intermediate process can be the parent itself or any other
process in its (the parent’s) resource table. Such a mechanism
is thus capable of enforcing or relaxing, to the desired degree,

References

ATwooD, J. W. (ed.), et al. (1972). Project Sue Status Report, University of Toronto.
BRrINCH HANSEN, P. (1972). A Comparison of Two Synchronizing Concepts, Acta Informatica, Vol. 1, pp. 190-199.
Concurrent Control with ‘Readers’ and ‘Writers’, CACM, Vol. 14, No. 10, pp.

CourTols, P. J., HEYMANS, R., and ParNas, D. L. (1971).
667-668.

DUKSTRA, E. W. (1968). The Multiprogramming System, CACM, Vol. 11, No. 5, pp. 341-346.

The Humble Programmer, CACM, Vol. 15, No. 10, pp. 859-866.

The Design of the VENUS Operating System, CACM, Vol. 15, No. 3, pp. 144-149.

VARNEY, R. C. (1971). Process Selection in a Hierarchical Operating System, Proc. Third ACM Symposium on Operating System Principles

DUKSTRA, E. W. (1972).
Liskov, B. (1972).

pp. 106-108.

VARNEY, R. C. (1973a). PST—A Tree Structured Operating System (Ph.D. Thesis), The Pennsylvania State University.
VARNEY, R. C., and GOTTERER, M. H. (1973b). The Foundation for a Tree Structured Operating System, The Computer Journal, Vol. 16

No. 4, pp. 357-359.

Workshop on Operating Systems and Computer Architecture, Austin, Texas (January, 1973).

the restriction which forces all interprocess communication to
follow the branches of the tree.

5. Concluding remarks
The PST structure forces the system designer to separate system
functions into specific modules, and more importantly to
organise the interrelationships among those modules. This
structural restriction has much the same effect on an operating
system as structured programming has on a single program, i.e.
it is easier to understand, debug, and change. Restricting
arbitrary process interaction is similar to restricting the use of
the GOTO. Both force the designer to adopt different design
habits, which, although initially uncomfortable, are usually
superior to previous design habits (Dijkstra, 1972).

Another aspect of the PST concept is that it does not pre-
suppose a specific set of operating system components. Rather,
it is the structure upon which a specific operating system can be
built. Although the PST concept does not necessarily exclude a
general purpose operating system, it is designed as the structure
to be used to build a specific (possibly special purpose) oper-
ating system, where the specifications are bound by the local 9
designer. This implies that for almost every new installation 3
(which differs from previous installations) some amount of §
system programming effort will be required, as opposed to the §
selection of parameters such as used in so-called general purpose =
operating systems. This programming effort is not regarded as S
a disadvantage for three reasons: (a) a new installation usually =
requires additional programming anyway; (b) the basic operat-g
ing system structure is already provided, thereby requiring?d
only the more local solutions to the configuration problems;;‘%’
and (c) the resulting system contains only what is required. 3

The PST concept, then, represents a framework which will
accept various disciplines for handling system resources. It is a5
structure upon which a system may be built, while at the same S
time aiding the system implementor with improved systems
understandability.

20z 11dy 61 UG 1senb AG £/5E€€/E 1 2/E/61/al0Ie/|ulwoo/w

v

Volume 19 Number 3

215

