2

The place of own variables in programming language

theory

B. Higman

Department of Computer Studies, University of Lancaster, Bailrigg, Lancaster

An exact definition of the scope of an own variable has not yet evolved. In the past this has given rise
to troubles. This paper shows that an assumption that the scope of an own variable does not extend
beyond the scope of the name of the owning procedure solves many of the problems and leads to a
clearer understanding of their true nature. They are equivalent to additional parameters which

have been ‘frozen’ to local generators.
(Received April 1975)

Own variables are variables created by the declaration of a
(block or) procedure whose scopes are wider than the body of
the said procedure, but which are protected from outside inter-
ference by their anonymity other than within it. This definition
is unlikely to be disputed except that it leaves open the question
as to what the scope of these variables actually is. A specific
instance of the use of a published agorithm using own variables
gave rise to troubles, elucidation of which led to the con-
clusions reported here. Contrary to popular ALGOL 60
philosophy, the continued existence of an own variable need not
extend beyond the scope of the name of the owning procedure.
The assumption that it does not solves many of the problems
associated with these variables, and, it is suggested, leads to a
clearer understanding of their true nature.

The specific instance referred to occurred in an attempt to
solve a puzzle from a Sunday paper by the bull-at-a-gate
method of writing

begin [1:n] amode activities, boys, girls; (A)

for all permutations of boys do
for all permutations of girls do
if conditions met then print all arrays fi od od end
and expanding this in the manner approved by the structured
programming approach. Neither ALGOL 68, in which this
pretends to be, nor any other language of which the author is
aware, implements ‘all permutations’ as an option in a for-
statement.

Two methods of dealing with this suggested themselves. In the
first, while versions of the for-statements are used

while newperm of boys do (B)

while newperm of girls do etc.
In the second, by means of a procedure developed from
proc permact = (int n, ref [] amode A, proc act) void:
(for all permutations of A[1] to A[n] do act)
the program is reduced to

permact(n, boys, permact(n, girls, S)) ©
where S is the statement in the fourth line of A.

Permutation generating algorithms have been reviewed by
Ord-Smith (1971) and Page (1971). All the algorithms quoted
by the former accept the array to be permuted as a parameter,
but refer also to a boolean and to an integer array, the former
of which is treated as global and the latter declared own. In
ALGOL 68 the first line of B could be written

while (nextperm(boys); first) do
(the outer brackets being strictly unnecessary, and first being
the global boolean) but the second line demands a different
boolean and a different own array if the method is to work.
Thus the common format in which Ord-Smith presents the
algorithms he reviews is unsuited to the present problem.

Linguistic considerations
It is unaesthetic, to say the least, and mildly uneconomic as
well, for a program to contain two copies of the same pro-

Volume 19 Number 3

cedure (under different names, of course). The prospect that
this may be necessary actually arises in two distinct ways. In the
first place, as things stand, if the arrays boys and girls are of
different modes, then nothing can save us from compiling and o
storing two completely separate procedures identical in all z
respects save one, that nextperma (or permacta) refers to amode 5
and nextpermb (or permactb) refers to bmode. This is because Q
current languages do not permit a mode to be supplied as alQ
parameter—as would be seen at its simplest in

proc transpose = (mode amode; ref amode p, ¢) void:

(amode r; r :=p;p:=¢q;q9:=7r)

—though this is nastier than it looks; at compile-of-call time, 5
the first parameter must be known before the second and third & 8
can be checked. Nor do united modes in ALGOL 68 seem able 3
to help. The matter is, however, already under conmderatlono
by Lindsey (1974) and here we can evade the issue by pomtmgc
out that in many cases (where amode involves several words of Q
storage) little will be lost in efficiency by keeping the array mtact S
and permuting the subscripts. That is, we actually permute ang
auxiliary array [1:#n] int aux, and call the members of the main>
array by A[aux[i]]. (Incidentally, this also makes permutation? o
of specified subsets no problem).

But this duplication of code reappears in B if two copies of the
permutation algorithm are required, no longer because of & 2
separate modes but because of the need for separate own arrays. E
The investigation began when the question was raised, whetheru

e//:sdny wouy

61/9101

B can be written in the following form w
while newperm(boys) do (B’)%
while newperm(girls) do etc. g

in order to avoid this duplication. That the immediate answet‘“
was ‘no—because separate own arrays are required’ led to ad
new look at the nature of own arrays (and other variables).andS
to an interpretation which, if accepted, leads to clear (andc
adaptable) answers to all the difficult questions such as ’(heU
bounds of dynamic own arrays, and the single or multlple—
existence of own variables in recursive situations. O

The matter was considered in the context of a number ofb
others, one of which was the independent compilation of
procedures. Global variables present a barrier to independent
compilation; so also does any system which assumes that a
procedure knows its own block level. Block level is convention-
ally available so that it can be used, in conjunction with ‘display’,
for accessing globals, whence a procedure without globals
probably has no need to know its own block level, and if all
procedures are without globals we can probably dispense with
‘display’ as well. Globals can be eliminated from any procedure
by making them into parameters, at the cost of quoting them
explicitly at each call; this cost can be eliminated if means are
available to freeze parameters. One is therefore led to consider
that globals should be treated as additional parameters which
are immediately frozen (i.e. at declaration time).

This concept permits the assumption that the machine code

225



representing a procedure need deal only with a structure
situated on top of the stack and accessed through two pointers,
CHAIN and STACK. (Both pointers are necessary since the
distance between them depends on the current size of dynamic
arrays and is unknown at compile time). The structure is made
up as follows—since the time sequence is down the page, the
‘top’ of the stack is at the bottom of the printed layout:

(part of the stack in Initially, STACK points immediately

prior use) above this.

PARAMETERS Evaluated from left to right in the
main program, making free use of the
space above STACK but leaving each
one in position when its evaluation is
complete and commencing the next
from a new position of STACK
immediately above it.

GLOBALS Copied unchanged from a list pre-

ADDRESS OF CODE pared at the time the routine was
declared. (The address is retained for
use by error diagnostics and, if the
heap is in use, the garbage collector).

CHAIN: Placed on the stack by a system

LINK INFORMATION routine which chains CHAIN at the
current position of STACK, stacks
the return address, etc. and jumps
into the code.

FIXED LOCALS Either as the first action in the
routine, or prior to the jump using a
parameter from the routine, STACK
is raised to allow a fixed space for
each identifier declared locally. In the
case of procedure identifiers this is
two words, and in the case of arrays,
space for a dope vector.

VARIABLE LOCALS Array bounds are computed, the dope
vectors filled in and STACK is
raised. In the case of procedures,
globals are evaluated on the stack, the
address of the code added, and the
‘procedure dope vector’ filled in with
a pointer and a length showing what
has to be copied at call time.

STACK: (free space)

Thus a procedure which never had any globals will be repre-
sented by two words in FIXED (the pointer into VARIABLE,
and length = 1), and one word in VARIABLE (the pointer to
the code). The conversion of globals into parameters and their
subsequent freezing is something that can be organised by a
compiler in the case of procedures written explicitly into a
program, but in the case of independently compiled pro-
cedures we shall want the language to provide for the freezing
of such parameters as are intended to be globals, and if it
provides for this then it should provide for freezing of para-
meters as generously as possible. In terms of the stack layout
protrayed above, this means a notation for pushing the line
between GLOBALS and PARAMETERS up the page (down
the stack); in language terms it means a new declaration
syntax in which, say,

proc newname = oldname freezing ({parameters from the

right))

has the effect of adding a new pair in FIXED for the new name
pointing to a new area in VARIABLE which is a copy of that
belonging to the old name with its list extended. This feature
is well known to users of POP2 (Burstall and Popplestone,
1968); in view of the extra facilities it provides, we regard it as
preferable to external declarations which use the linking loader
to achieve freezing by lexicographic matching. It is not in
ALGOL 68, although there are proposals in Lindsey (1974).

226

The nature of own variables

One more feature is necessary to satisfy in full the desire for a
solution to our original problem that is free of the loose ends
of the sort that lead to programming errors. Consider the
following:

proc perms = (ref [] int al, a2; ref bool first) bool: {body);
[1:5] int boys, girls,

bx, gx; bool by, gy;
proc newboys = perms freezing (boys, bx, by);
proc newgirls = perms freezing (girls, gx, gy);
for i to 5 do bx[i] := gx[i] := 0 od; by := gy := true;
while newboys do etc.

In this formulation all is clear for the implementation of B
without duplication of code. What we have lost is the automatic
and anonymous declaration of the own array as seen from the
main program. What we have gained is the separate ‘own’
arrays for the two procedures we use in the while-statements
without duplicating the rest of the code. We can secure our
gains without incurring our losses if we can cause the freezing
process to create an anonymous array for the second parameter.
This is what ALGOL 68 does by its concept of a local generator
—or would do if it entertained the symbol freezing—allowing
us to omit the third and sixth lines above and replace the
fourth and fifth by

proc newboys = perm freezing (boys, loc [1:5] int:=
0, 0, 0, 0, 0), loc bool := true);

proc newgirls = perm freezing (girls, loc [1:5] int:= :
0, 0,0, 0, 0), loc bool : = true)

This has a simple realisation in our stack model—whereas
‘boys’ appears among the parameters-becoming-globals as a
copy of the original dope vector of boys, the second parameter
appears as a dope vector which is filled to point a short distance
ahead, where new space is created for the elements as at any
ordinary array declaration. The section of VARIABLE
LOCALS which results from this declaration has three
subsections

TWO DOPE VECTORS AND BOOL
ADDRESS OF CODE
SPACE FOR ‘OWN’ ELEMENTS

only the first two of which are included in the area pointed to
by the two-word object in FIXED LOCALS, and therefore
only the first two of which are copied to the top of the stack as
the first stage of a call.

It has long seemed to the author (Higman, 1967) that the
crudity of the interpretation of ALGOL 60 own variables as
global (even cosmic?) was the source of the trouble they have §
given, and slightly absurd that own variables should outliveand -
outlast not merely the activity (call), but even the existence »
(scope) of the procedures that owned them. Hitherto he has E
advocated that own variables should be considered as declared S
concurrently with the procedures that own them, except that to R
avoid clashes of identifiers they are not recognised outside the
procedures. Though less flexible than the current proposals—it
does not solve the code-duplication problem—this already has
the same clarifying effect on interpretation. There are no prob-
lems about changing bounds or multiple versions since these
are redetermined only when control passes through the block-
head in which the procedure is declared. The existence of
multiple versions is under the control of the programmer; if the
recursive. call envelops the declaration then new versions are
created, otherwise only one version is kept. But perhaps the
most important reason for desiring some such interpretation
is that it admits the well known technique

sonb Aq 06GEEE/GZZ/E/61/a101E/UlWOD/W0d" dNo"dlWspeoe)/:Sdjy WoIj PaPEOJUMOQ

begin integer n; n := read,
begin{true program including arrays andownarrays[1:n]) end
end

The Computer Journal



in which the bounds, though formally dynamic, are in fact
merely a ‘program constant’. Admittedly few implementations
(if any) currently allow this, and the own arrays in Ord-Smith
(1971) are declared [2:10] on the assumption that n will never
exceed ten, but to standardise on an interpretation that
excludes this technique, as advocated by de Morgan et al.
(1974), would be deplorable.

Further remarks

It may be remarked that on the principle that one should try
to write any program so that nothing is needlessly repeated
(lest in changing it we fail to change all occurrences), we might
wish to write something like

proc P = (ref [] int A4) proc bool: (perm freezing (4, loc
[1:upb 4] int .

proc bool newboys = P(boys), newgirls = P(girls)
but this leads us into new troubles. One is how to perform the
array initialisation; this is a wider problem than is covered by
the questions discussed here; an immediate solution is to trans-
fer the initialisation inside perm under the control of first—
there being no problem about initialisation of simple variables.
Another trouble is how to ensure an interpretation of P that
does not lose the generated space when the call of P is com-
pleted, and this we shall not discuss.

The problem posed initially has given rise to several matters
connected with the general question of the facilities a language
should provide if it is to encourage good programming
techniques. (Among these we include, on grounds of efficiency,
avoidance of heap techniques as far as possible. Clearly, use of
the heap would provide alternative solutions to some of the
problems discussed here.) It seems possible that the full effects
described here are not provided by any currently available
language, although the author admits to ignorance of some that
might provide them, and to inadequate acquaintance with
either POP2 or ALGOL 68, the former of which seems to allow
freezing of parameters but not local generators, and the latter
to admit local generators, but not freezing in the manner
required here.

ALGOL 68 seems to have got itself into this position through
its almost hysterical determination to avoid ascribing any order
to the parameters of a call. (Why else should the final report
(1974) draw attention to the abolition of the ‘gomma’ of
previous drafts in Section 0.3.11 as well as crow about the
interpretation of collaterals in Section 0.2.4?) A simpler
example than the permutation one will show what is involved
in. trying to freeze parameters anonymously in ALGOL 68,
namely the provision of pseudo-random number generators.
The procedure

proc random = (ref int i) real: (i := (i * a + b) mod c; i/c)
where a, b and c are suitably chosen integers, will provide all
the code needed for the generation of pseudo-random numbers
in the range 0-1. Independent sources are obtained from
different parameters differently initialised. Thus we might write

0);
1

proc eurekal = random freezing (loc int :
proc eureka2 = random freezing (loc int :
But since it is not the same thing to write
proc eurekal = real: (random (loc int := 0))

(because the parameter would be reinitialised on each call), we
are forced in ALGOL 68 to program explicitly and separately,
both the frozen structure and its use for calling, thus

mode closure = struct (ref int param, proc (ref int) real
routine);
closure S1 = (loc int := 0, random), S2 = (loc int := 1,
random);
proc eurekal = real: ((routme of S1)(param of S1)),
eureka2 = real: ((routine of S2)(param of S2));

Nor do we achieve the security we aim at, for although this

Volume 19 Number3

secures the immediate anonymity of the ‘own’ integers, they can
still be accessed in the main program by the circumlocution
‘param of S’.

When it is considered that a stack is based on the philosophy
that time sequence translates into space sequence and vice
versa, it is not surprising that deliberate rejection of this
philosophy exacts such a price.

Addendum on permutation algorithms
Apart from its linguistic interest, the investigation revealed a
few points of interest in connection with permutation algorithms
that seem to have escaped mention in previous published work.
Structured programming calls for the elimination of gotos as far
as possible, and the writing of programs in such a way that
their correctness is as nearly self-evident as possible. Among
the many trade-offs in programming there seems at times to be
one between self-evident correctness and efficiency. It is not
easy to put all the permutations of » objects in any order that
ensures both an efficient transformation rule from one to the
next and a simple proof that each permutation is generated
once and once only. The following development of permacts
sacrifices efficiency for clarity.

proc permact = (int n, ref [] amode A, proc act) void:
(for i to n do cyclic permutation of A[1] to A[n];
if n = 2 then act else permact (n — 1, A, act) fi od)

0.} POPEOJUMO

(Proof: each cyclic permutation leaves a different element in thei
last place and is accompanied by all permutations of the otheta’
elements; the initial order is restored at the end of a call, ready\
for the next cyclic permutation in the case of recursive calls)m
It was submitted to, and rejected by, the Editor of the Algor-m
ithms supplement, quite rightly at a time when interest was m0
efﬁclency and neither program proving ner structured program-
ming had acquired the interest they command today. It does notS
contain any explicit own array, but this is misleading; exami=
nation of the use made by Ord-Smith’s programs of this arrays
shows that it contains information exactly equivalent to thé
nested set of values of i (one for each level of recursion) in thiss
procedure at the moment when act is called.

As Page points out, though in somewhat different termmology
the n! permutations on n objects can be put into one-to-one2
correspondence with the n! distinct (n — 1)-digit numbers in3
which the rth digit is of radix r + 1. If the rth digit is allowe(g
torun from 1 tor + 1in certain contexts instead of from 0 to rw
then these digits are precisely the contents of the auxnharyo
array p of Algorithm ACM 115A as set out by Ord-Smith. Itr
does not seem to have been pointed out that the sequenceo
generated by this algorithm presents these numbers in con<)
secutive ascending numerical order if they are mterpreted asg
being in Grey code. The main problem in Grey code is to know:
whether a digit is ascending or descendmg, generation of a>
Grey number from its predecessor is much simplified if this:
information is arbitrarily incorporated into each digit as a +©
sign (one reason for avoiding the use of zero as a member of the~
‘character-set’), and indeed this technique permits a version of
Algorithm 115A that dispenses with the array d, which must
surely be to its advantage in both storage and speed. Algorithm
115A uses knowledge of the route taken through conditional
statements in incrementing the auxiliary array to determine the
choice of transposition for stepping from one permutation to
the next, but Page shows how a permutation can be obtained
directly from the Grey representation (the first object going
into the A[n — 1]th place, the second into the 4[n — 2]th
vacant place, etc.), a technique easily adapted for random
permutations in Monte Carlo work. An efficient body for
permact along these lines is

proc permacta = (int n, ref [] amode A, proc act) void:
begin c int n could be replaced by an internal int n = upb A c
int A, k, q; bool bool; [2:n] int p; amode ¢;

Lo

227



for h from 2 to n do p[h] := 0 od;
while p[2] # —2 do h := n; k := 0; bool := true;
while bool do q := p[h] := p[h] + 1;
ifg=0thenk:=k +1;h:=h—1
elif g = A then p[h] := —q;h:=h— 1;
if g = 2 then bool := false; g := 1 fi

else bool := false fi od;
g:=absq +k; k:=q+1;

References

t 1= A[k]; A[k] := Alq]; Alq] :=

act od end
ALGOL 68 notation has been used here to obtain the benefit of
‘pure while’ statements; the equivalent ALGOL 60 is easy to
write by insertion of labels, extra statement brackets, and so on.
Efficiency in ALGOL 68 might be slightly improved by use of
ref amode ak = A[k], aqg = A[q].

ORD-SMITH, R. J. (1971). Generation of Permutation Sequences, Part 2, The Computer Journal, Vol. 14, pp. 136-140.
PAGE, E. S. (1971). Systematic Generation of Ordered Sequences using Recurrence Relations, The Computer Journal, Vol. 14, pp. 150-154.

Linpsey, C. H. (1974). Modals, ALGOL Bulletin, No. 37, pp. 26-29.

BURSTALL, R. M., and POPPLESTONE, R. J. (1968). POP2 Reference Manual, p. 16 in POP2 Papers, Oliver and Boyd.
HiGMAN, B. (1967). A Comparative Study of Programming Languages, Section 11.3, English edition, Macdonald.
DE MORGAN, R. M., HiLL, I. D., and WICHMANN, B. A. (1974). A Commentary on the Revised ALGOL 60 Report, ALGOL Bulletin No. 38,

pp. 5-39. (see also this Journal, pp. 276-288).

Revised Report on the Algorithmic Language ALGOL 68 (1974) issued by University of Alberta as Supplement to ALGOL Bulletin No. 36.
LinDseyY, C. H. (1974). Partial Parameterisation, ALGOL Bulletin, No. 37, pp. 24-26.

Book reviews

Introduction to Mathematical Control Theory by S. Barnett, 1975;
264 pages. (Clarendon Press, Oxford University Press, £5-75).

This introduction to control theory has a clearly recognisable flavour
distinguishing it from the many books in this area which have ap-
peared over the last ten years. Most of the latter have been devised
for relatively lengthy courses, permitting a degree of detailed dis-
cussion unsuitable for the shorter introductory courses typically
given in the UK. Secondly the author’s own research interests,
particularly in linear system theory, although strictly disciplined as
is proper in an introductory text, are apparent, mainly indirectly
through the nature of discussions and proofs, but occasionally
directly as in the section on ‘controllability and polynomials’. Thirdly
the origins of the book lie partly in a course given to undergraduate
mathematics students.

Although designed to serve mathematicians, the book is concrete in
nature, making minimal demands on mathematical sophistication.
Chapters 2 and 3 review relevant theory of matrix algebra and linear
vector differential equations. Chapter 4, on linear control systems, is
the most important (and interesting) in the text. In less than 60
pages it discusses complete controllability (and the associated
minimum energy control for steering a system from one state to
another), algebraic equivalence, observability and observers, pole
assignment, and realisation theory, the presentation being clear and
consice. There are, inevitably, omitted topics. There is no discus-
sion, for example, of the recent contributions of Wonham, Morse
et al, on the algebra of invariant subspaces. Since this is itself a
major topic, its omission is not surprising. However engineers may
be disappointed at the lack of any mention of those topics, such as
inverse systems and decoupling, which motivated this work.

The next chapter defines stability, discusses stability of linear
systems (Routh, Hurwitz, Nyquist), gives an elementary exposition
of Lyapunov theory and concludes with the Popov and circle
criteria. Typically, the simpler theorems only are proven: thus the
proofs of Barbushin’s theorem and of the Popov and circle criteria
are omitted.

The treatment of optimal control, in the last chapter, is largely
formal, as the introduction of Lagrange multiplier functions is not
justified. The standard necessary condition of optimality
(Pontryagin’s minimum principle) is illustrated by means of a few
simple examples, and then used to determine the optimal (feedback)
controller for a linear system with quadratic costs. Brockett’s ap-
proach to this problem, using a sufficient condition of optimality
is preferable, being rigorous, simpler, and well within the spirit of a
book devoted largely to linear systems.

//:sdy Wouy papeojuMo(]

Despite these minor criticisms the book, unlike many others,
clearly fulfils its author’s aims of presenting a ‘concise, readablem
account of some basic mathematical aspects of control’ and as suchm
will be widely welcomed.

)
o)
2
>
]
Z
]
~
oy
[]
=]
[=9
]
=
Nt

Algol 60 and FORTRAN 1V, by R. A. Vowels, 1975; 173 pages.
(John Wiley, £5-00).

I /eorue/jultioo/woo dno-ojw

The author of this text believes that, by presenting two languagesS
simultaneously, the reader will gain a greater understanding of pro-=
gramming languages generally. One wonders if this approach mightg
not prove rather confusing to the novice, though the point is madeg
that the book is not intended to be a complete treatment, The01
idea is that it should be used as a jumping-off point for deepercdg
study of FORTRAN or ALGOL, if requ1red or even of some otherZ
language. Consequently, there are omissions: EQUIVALENCE, mC>
FORTRAN, is not described at all, and the treatment of, for in=<
stance, the ALGOL concept of call by name is quite superficial. %

A number of cases occur of the use of jargon and technical terms2.

without prior definition—‘keyword’, ‘memory location’ and ‘debug’S
were noticed, and would not be self-explanatory to the beginningg
programmer. One might, perhaps, class as jargon the crossing of the>
letter ‘oh’ in the program examples, and elsewhere. This habitf:i
which appears to be becoming more popular, is very ANNGYING™
to this reviewer, who is N@T a key-punch @PERATOR. Books'®
should be readable, and the use of coding sheet conventions by their
authors does not aid their readability.
i The exercises at the end of many sections are interesting, but no
solutions are provided. There are appendices on the comparative
hardware representations and input/output conventions of System 4,
1900 series, Cyber 70 and System/360 (and 370) computer systems.
The book has a useful bibliography.

The book is quite well produced, though a few typographical
errors and other evidence of poor proofreading were noticed and the
plastic protective laminate began to peel from the paper cover under
the stress of brief-case treatment. It is not a ‘do it yourself” text—
tutor guidance is necessary, if only with the exercises—and it does
seem rather expensive to recommend when there are books as good
or better, available more cheaply, even though they may not attempt
quite such a broad coverage as this one.

A. S. Raprorp (Leicester)

The Computer Journal



