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The benefits of a programming approach to the theory of computation are illustrated by considering
a traditional proof, namely the equivalence of Turing’s formalism and general recursive functions
(GRF). In these terms, we are led to criticise the GRF and to give a programmer’s view of the

Kleene normal form theorem.
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1. Introduction

In this paper, we want to illustrate the benefits of a program-
ming approach to the theory of computation. There are, we
contend, two main such benefits:

1. As a pedagogical vehicle. Programming provides a natural
framework in which to present concepts and results from the
theory of computation to the general computing community.
A similar assumption seems to underlie the recent papers by
Hoare and Allison (1972) on incomputability, and Brinch-
Hansen (1972) on operating systems.

2. As a research tool. Viewing the proof of a theorem as a
program to solve an appropriate problem (for example) can
illuminate the main trends in the proof, as well as suggesting
a way to devise better proofs by better programs and perhaps
better languages or systems. This is illustrated in Section 4.

Our central argument derives from the fact that the theory of
computation is the attempt to build a theory or science out of
computing phenomena, which in turn largely consists of
writing programs to (try to) solve problems. Consequently,
proof methodology should reflect problem solving methodology
for problems attacked in computer science. Such a problem
solving methodology should be embodied in the linguistic
structures of the various programming languages in use by
computer scientists. We suggest that one of the major reasons
for the current shortcomings in the theory of computation,
say with regard to proving programs correct, is that the proofs
and proof structures are hardly ever related to the program
structures. An exception to this is Hoare’s work on proving the
correctness of programs (Hoare, 1969; 1971; 1972; 1973;
Hoare and Foley, 1972).

To illustrate the advantages of a programming approach, we
take one of the most fundamental notions in the theory of
computation. This arises from the realisation that to ask the
basic question ‘Is there a limit to what we can compute? we
must first decide precisely what is meant by ‘computable’. As
is well known, suggested precise notions of ‘computable’
began to appear in the 1930’s; many have since been published.
There seem to be two main approaches, which we may call the
‘abstract machine’ approach, and the ‘functional’ or ‘program-
ming’ approach. The former approach, which includes the
work of Turing (1936), Wang (1957), Shepherdson and Sturgis
(1963), Elgot and Robinson (1964) and Minsky (1967), consists
of developing mathematical models of executing mechanisms
(processors) on which computations may be run. The latter
approach, described more fully in Section 3, includes the work
of Church (1941), Herbrand-Godel-Kleene (see Hermes, 1965,
ch. 5), Hilbert-Kleene (the so-called General Recursive
functions) (see Hermes, 1965, ch. 3) and McCarthy (1963), and
consists of developing essentially mathematical systems for

‘programming’ in. More precisely, such functional approaches
define the semantics of a family of programming languages.
The earliest abstract machine approach was that devised by
Turing. His proposal that Turing machines embody a precise
notion of ‘computable’ is usually referred to as Turing’s thesis:
the things which one wants to think of as algorithmic, that is
programmable, are precisely the things which can be computed S
by some Turing machine (hereafter TM). Observe that such a3

claim is not provable—we may only become convinced of itg“

through argument. Turing’s paper contains a delightful

appeal to your intuition development of his abstract machineg

model, designed to constitute such a defence of his claim.Z
Perhaps a more compelling argument is the fact that to date all 3
suggested precise formulations of ‘computable’ have come up &

with an equivalent notion: for example, something is a general =.

recursive function (GRF) precisely when it is computable
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according to Turing. What does this mean in programming?®

terms ? On the one hand we have the linguistic approach GRF, S

on the other the machine approach TM. We have proofs (seeg
for example (Hermes, 1965, sections 16 and 18) that each GRF3
has a corresponding TM, and vice versa. Clearly this suggests a=
pair of programs: a TM simulator in GRF, and a compilerz

from GRF to TM. The main features of such a TM simulator®

in GRF are sketched and analysed in Section 4. In particular,
it is shown how such a program brings out shortcomings in a
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system (GRF) apparently intended to be part of a theory of &

computation. We should emphasis that such a simulator does &
not constitute a proof that TMs and GRFs are equally powerful, 2
because we will not attempt to prove our programs correct.
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That is not the point of the paper. Rather, it should be clears

how a pair of proofs could be developed from the programs.

2. Turing machines
There are numerous highly readable (as well as varied) accounts
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of TMs in the literature, particularly (Minsky, 1967, chap. 6, 7).S

We here briefly review the main points to fix the discussion in

Section 4. A TM (notionally) has a tape marked in ‘squares’®

together with a read/write head, and is capable of moving the
head left/right one square, sensing a character in the square
under the head, and altering the sensed character. The reading
head exists in one of a finite number of states, one of which is
‘halt’. The tape is of unlimited length (or can be made so by
splicing) and is blank apart from a finite portion whose squares
each contain a character from a finite character set C. The
ability to move in either direction on the unlimited tape provides
a facility of arbitrarily long memory since a written square can
be revisited later. The execution cycle consists of altering the
sensed character, the reading position and reading head state
in a way which depends only on the sensed character and
reading head state. That is, the machine executes:*

*The following program fragment, indeed all such included in the paper, is intended to communicate an algorithm to the reader, and is
written in the language BCPL (Richards, 1970), since not only is it highly readable but we later need function-returning functions.
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until state = ‘halt’ do
$(let oldstate = state
state := statefn (oldstate, character)
scannedsquare := scannedsquare +
(directionfn(oldstate, character) = right — 1, —1)*
character := charfun(oldstate, character)

)

Since the purpose of TMs is to provide a precise and unam-
biguous definition of ‘computable’, we need to specify even the
‘housekeeping’ details in a definition, lest they be misinterpreted.

Definition

A function f: N" — N (where N is the set of natural numbers)
is Turing-computable if there is a TM m, such that if m, is
supplied with the tape

The first programming language with this as an explicit design
criterion was LISP (McCarthy et al, 1962).

The general recursive functions (GRF) originated with Hilbert
in the 1920s, and, understandably, manipulate only natural
numbers. The set FH of base functions in GRF show the
influence of Peano’s axiomatisation of arithmetic and are:

1. The constant zero function ¢,, defined by co(n) = 0,
2. The successor function succ(n) = n + 1,
3. The predecessor function pred, defined by
predn) = (n>0—->n—1,0)
4, A whole family of argument-selector functions p,;, n > 1,
1 < i < n, where

pni(xl, LR xn) = X; .
Hilbert originally proposed a set CH of two strategies (defined
below) namely composition and recursion. This system
CH(FH) is now called the primitive recursive functions

X1 + 1 X9 + 1 }cn + 1
A ———Nee
2 arbitrary I 1 I———l 1 | ) | 1 [-———I 1 [ , |———] , I 1 l———l 1 I ; I arbitrary é .
state EA
zero a
2

and m, eventually halts, it does so with the tape configured as
follows

f(xl,...,xn)+l

g arbitrary ; 1 —_ 1 arbitrary 2

‘halt’
Notice that we have specified a unary-plus-one coding for
numbers; this is to distinguish zero, coded as 1, from a blank
square.

3. The functional or programming approach; GRF

The idea underlying this approach, which probably (see
Hermes, 1965, paras. 13,4) originated with David Hilbert, is
that a computable function or program is a constructed object;
that is, has to be built.

The force of this idea is that if a computable function fis to be
regarded as built, then the components f3, . . ., f,, from which f
is built are also computable functions, combined into f
according to one of a number of what we shall call ‘strategies’.
Of course, it is reasonable to suppose that the component
functions fi, . . ., f,, have themselves to be built. If the com-
ponents of f; are fig, . . ., finp 1 < i < m, we may illustrate a
preliminary analysis of f as in Fig. 1.

It seems reasonable to suppose that it takes (or took) only a
finite amount of time, thought or effort to build any function.
This means that the tree structure in Fig. 1 can only branch
finitely at any point, according to one of a finite number of
strategies, and can only be of finite depth. In particular there
must be some functions which are not decomposable; we call
these the base functions, and suppose they form a set F. If we
assume the strategies form a finite set C, we can denote the
totality of computable functions constructed by this approach
by C(F)t.

If we view a programming language in these terms, the stra-
tegies C are the statement structuring mechanisms according to
which statements are built out of their components, for
example, the FORTRAN DO loop or ALGOL block, for or if
statements. On the other hand, any functional approach defines
the semantics of a whole family of programming languages.

system, as Ackermann in 1928 built a program (see Hermes,S
1965, para. 13) which could not be defined in Hilbert’s system. =
Later Kleene added the minimisation operation. Hoare andT3
Allison (1972) have characterised a subset of ALGOL 605
which computes primitive recursive functions.

Composition provides a means of sequencing by functiong
nesting, and is the main form of sequencing used in LISP. o
If we have functions (subroutines) g, . . ., g, taking the samec
number m of arguments (formal parameters) and a functlono
(routine) f of n arguments (formal parameters), we can bulld3
a function (routine) 4 out of f; g, . . ., g, by:

h(xh AR xm) _f(gl(xl’ LR ] m)’ LI ] gn(xl’ e xm))
(To see how this provides sequencing, consider the evaluations
of an application of h: first evaluate the subexpress1onso
g1, - - -» &, and then apply f to their results) Instead of always—\
having to invent a possibly spurious name /4 for each f;
g1, .-, & We have a default or standard name Compos§
(i 815+ -0 g»)- This remark is similar to the use of A-notationc
to give a standard name which describes its effects as a function. w

The recursion strategy of GRF is unfortunately named, as ltSA
normal iterative use is more in the spirit of a FORTRAN DOZ2
or ALGOL for loop than recursion in ALGOL or LISP. The2
strategy is based on the observation that the principle of %
mathematical induction can equally well be used to constructS
functions as to prove theorems (see Manna and Waldinger,o
1971 and Boyer and Strother-Moore, 1973 for more on thisZ
point). If we have g, h appropriately defined, we can build f by‘

peoe/

/|U.fLuo

f(x,y) = test y = 0 then g(x) base of induction §
or h(x,y, f(x,y — 1)) inductive step
where x stands for x, . . ., x,. A standard name for recursion,

analogous to Compos, is Recn(g, ).

NN

fll_ _—flnl fil finl- fml fmnm
Fig. 1.

*This is BCPL notation for the conditional expression, which, in ALGOL 60, would be written if directionfn(oldstate,character) = right

then 1 else —1.
+This notation is McCarthy’s (1963).
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The number of steps required to complete the evaluation of
any primitive recursive function can be predicted from its
form and its arguments. No primitive recursive function can
generate computation such as a while command

The minimisation operator Min (called p in the literature) of
Kleene gets over this limitation. A version of it can be ‘defined’
by

Min(f, k) (x) = valof $( let y = 0

while f(x,y) #kdoy:=y + 1
resultis y
$
for example, if factimes(x, y) = x*y!, we have Min(factimes,
24) applied to 4 yields 3 since 4*3! = 24 but Min(factimes, 24)
applied to 3 is undefined since there is no number y such that
yl=8.

The primitive recursive functions together with Min define the

general recursive functions.

4. Simulating Turing machines as GRF

We aim to sketch the construction of a simulator, so that if tm
is a Turing machine, simulate(tm) is the GRF computed by tm.
We want to program simulate so that the evaluation of simulate
(tm)(x4, . . ., x,) exactly simulates the execution of fm when
placed over a tape initially containing x,, ..., x,. Now the
action of #m can readily be described as follows: after the
initial tape is set up with x,, .. ., x, on it and the state initial-
ised and reading head positioned, the execution cycle of tm is
repeated until a halt state is reached. Finally, the result of the
computation is extracted from the final tape. A consideration of
the ‘housekeeping’ details built into the definition of Turing-
computability in Section 2 shows that the process of initialising
the tape and extracting the result are essentially independent
of tm. Thus the ‘top level’ structure of our simulator is
described by

Simulate(tm)(xy, . . ., x,) =
extractresult(mainloop(tm,initialise(x, . . ., x,)))

Initialise, like all GRF functions, has to return a single number,
which clearly is a coded version of all the information needed by
mainloop: scanned square, scanned character, state and tape.
There are several obvious ways to achieve this coding (see for
example Minsky, 1967, 13.3.3 and 17.3). For the remainder
of this section we shall suppose that we have devised a coding
system which initialise can use to pass all relevant information,
coded as a single integer and called an ‘information packet’, to
mainloop. In these terms, the job of mainloop is to transform,
according to tm, the information packet initialise(x,, . . ., x,)
into an information packet representing the end of the com-
putation. We suppose that we have selector functions sel-state,
sel-scanned-char, etc. which allow us to access (decode) the
state, scanned character, and tape description from the current
information packet.

The evaluation of mainloop(tm,infpack) is to simulate the
execution of tm starting on infpack, and can be described by

mainloop(tm,infpack) = valof $( while sel-state(infpack) # halt
do
infpack := next(tm, infpack);
resultis infpack
)
in which next(tm,infpack), defined more precisely below, is the
information packet resulting from one execution cycle of tm
starting at infpack. This little program has the same basic
format, namely a while statement, as that defining the Min
strategy in Section 3, so it seems reasonable to suppose that a
simple application of that strategy will complete the program-
ming of mainloop. Unfortunately this is not the case, for closer
inspection of the while statement of the Min strategy reveals
that it takes a very restricted form, which only allows us to
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increment the control variable y at each step: in mainloop on
the other hand we want to perform a quite complex operation
infpack := next(tm,infpack), corresponding to an execution
cycle of tm. However we are going to have to involve Min
somehow in the programming of mainloop because we cannot
in general predict how many execution cycles tm will perform
before halting. So we have to use Min with a control variable,
say /, which is incremented by one for each execution cycle.
Such a control variable [ clearly counts the number of execution
cycles of tm. The solution then is to use Min to program a
subroutine timesround which returns the length / of the com-
putation of tm on x,, ..., x, and then use this computed or
a priori given | together with another subroutine transform to
program mainloop by Recn and Compos. That is,

Mainloop(tm,infpack) =
transform(tm,infpack timesround(tm,infpack))
Notice the use of function nesting, as described in Section 3,

to achieve sequencing of timesround followed by transform.
We can thus program mainloop as follows:

let timesround(tm,infpack) =
and transform(tm,infpack, =
runtime)

? programmed using Min

? programmed without using
Min

let mainloop = Compos(transform, p,,, p,.,, timesround)

where p,,, p,, are argument-selector functions, which select

the first and second arguments, tm and infpack respectively, of

mainloop.

The crucial point to note here is the-following: the linguistic
inadequacy of the Min strategy, in particular, the restricted form
of the embodied while statement, presented us with a program-
ming problem, which in turn led to an intricate programmmg
solution. Although this is fairly transparent here, it is not so in

Luepeoe//:sdnu woJ) papeojumoq
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most mathematical proofs that the GRFs are Turing-comput- 2

able, for example Hermes (1965) and Minsky (1967, chapter
10). In particular, a modified Min strategy Min’, embodying
a more general while statement, and defined by

Min'(f; k, g, yinit)(x) = valof $( let y = yinit
while f(x, y) # k do

y:i=8xy)
resultis y
$

leads to the following straightforward program (and proof).
mainloop(tm,infpack) = ml(tm,infpack)(tm)
where _
ml(tm,infpack) = min'(sel-state,halt,next,infpack)
As it is, we are left to program timesround and transform. In §
fact, timesround can be programmed as Min(getstate, halt)
where getstate(tm,infpack,l) is the state of tm after / cycles =
starting from infpack. In fact, as it is easy to see,
getstate(tm,infpack,l) = test | = 0 then sel-state(infpack)
or getstate(tm,next(tm,infpack),l— 1)
This is not directly in the form for an apphcatlon of Recn, 1
revealing yet another linguistic inadequacy; in this case,
Minsky (1967, 10.3.2) has devised the following simple
technique to program around the problem.
Suppose fis defined by
Jf(x, y,1) = test ] = O then g(x, y)
orf(x, h(X, y), I — 1)
where g and 4 are GRF. We can prove that fitself is a GRF as
follows: Observe that

S(x,3,0) = g(x, )
f(X, s 1) = f(x: h(x, J’), 0) = g(X, h(x’ y))
Jx, 9, 2) = f(x, i(x, ), 1) = g(x, h(x, h(x, y)))
and, generally for / > 0,
&y 0D =gx, h(x, h(x, ..., h(x,3)...)
there being / ‘A’s. If we define
H(x,y,l) = test | = O then y
or h(x, Hx, y, | — 1))
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then H is clearly GRF, and since

H(x,y, 1) = h(x, h(X, ..., h(x, ) ...)
(with [ “h’s),

S, 3, 1) = g(x, H(x, y, 1))
so that fis GRF. An application of the same technique disposes
of transform, leaving only next.

Now next(¢m,infpack) is the information packet resulting from
one execution cycle of ¢m starting at infpack. This means that
we have to access the coded description #m to get the next state,
next character and next direction. We have not so far discussed
the coding of TMs, but it is fairly straightforward. Since the
current state and scanned character completely determine the
next state, character and direction, we can suppose we have a
lookup routine such that lookup(tm,state,char) is a coded
triple containing the next state, next character and next
direction. We can also suppose we have a routine alter such
that alter(infpack,triple) returns the updated infpack according
to triple. Then

next(tm,infpack) =

valof $(let triple = lookup(tm,sel-state(infpack),
sel-char(infpack))
resultis alter(infpack,triple)
)}
This completes the programming of mainloop, and leaves only
extractresult. Recalling the definition of Turing-computable,
we note that the infpack returned by mainloop represents the
final configuration:

result + 1

— 11

A

halt

The ‘obvious’ way to program extractresult is by a while or
Min loop, moving left until a semicolon is reached. It turns out
that this is not in fact necessary, because the coding system
used by initialise codes the entire tape contents as a single
number. Since the tape is only finitely inscribed, this number is

§ arbitrary | ; | 1 arbitrary s

References

finite and can provide an upper bound to the computation of
extractresult. Consequently we can introduce a bounded
minimum operator Bdmin, program Bdmin in terms of Recn
and Compos and program extractresult in terms of Bdmin, In
fact, it is much easier to define Bdmin in English as follows:

Bdmin(f, k)(x, 1) = the least y such that
0<y<landf(x,y) =k,
or zero if there is no such y.
than to program in BCPL:

Bdmin(f, k)(x, ) =

(l=0-0,

Bdmin(f, k)(x,] — 1) = OAf(X,0) # k
(fx, ) =k —10),

Bdmin(f, k)(x, ] — 1))

It turns out (Hermes, 1965, para. 18) that if g is primitive
recursive, so is Bdmin(g, k), so that we really do not need Min
to program extractresult, although as may be readily seen it is
clearer and probably more efficient to do so in practice. Gather-
ing together all our programming effort we find that only a,
single application of the Min strategy (to build timesround oug
of getstate) is needed to program the GRF which simulates tmz-
Since any GRF is computable by some TM, this means that
any GRF can be programmed with only a single application oiﬁh
Min. This result (that any GRF can be obtained by a sing1§
application of Min to some primitive recursive function) is
usually called the Kleene normal form theorem, and implie§
that it is theoretically possible to write any ALGOL prograng:
(for example) with only a single for . . . while statement.

5. Conclusion

Viewing the problem of proving that any GRF is Turin
computable as a programming problem, led us to criticise thg
while mechanism of the GRF, and to suggest a more genera
alternative, which made for easier programming; that is,
simpler proof.
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