Improvement of parallelism in a finite buffer sharing

policy

R. Devillers and G. Louchard

Laboratoire d’Informatique Théorique, Faculté des Sciences, Université Libre de Bruxelles,
Avenue F.-D. Roosevelt, 50, 1050 Bruxelles, Belgium.

‘When parallel processes are linked in producer-consumer pairs and share a finite buffer where every
portion is accessible to each process, it appears that a slow consumer may considerably delay the

entire system.

Using conditional critical sections, Dijkstra has proposed to reserve for each producer-consumer pair
the adequate number of portions for a normal working and to dedicate the rest of the buffer to
absorb the production peaks of the various pairs. L. W. Cooprider ef al. then developed solutions
which avoid systematic inspection and only use the now classical synchronisation primitives P and V.

The present paper is devoted to the elaboration of solutions which improve parallelism and, when

useful, discharge processes of administrative tasks.

We have used and compared four synchronising methods to this aim: conditional critical sections,

semaphores, path expressions and monitors.
(Received June 1974)

1. Introduction

When parallel processes are linked in producer-consumer pairs
and share a finite buffer where every portion is accessible to
each process, it appears that a slow consumer may considerably
delay the entire system; in extreme cases, when a consumer is
blocked, the messages generated by the associate producer will
invade the whole buffer and will block the system. To avoid
such messy behaviour, Dijkstra proposed (1972) to reserve
for each producer-consumer pair the adequate number of
portions for a normal working and to dedicate the rest of the
buffer to absorb the production peaks of the various pairs. He
also proposed a simple algorithm which realises this policy
with the aid of the conditional critical section technique, as
developed by Hoare (1971) and Hansen (1972a; 1972b; 1973).
But, besides being difficult to implement, the use of conditional
critical sections implies a systematic examination of every
blocked process at each termination of a critical section while

(@) when a producer has generated a message, only its associate
consumer has to be activated,

(b) when a consumer has used a message, at most one process
(which will often be the associate producer) has to be
activated.

Courtois and Heymans (1973) and Cooprider et al. (1973) then
developed solutions which avoid this systematic inspection and
only use the now classical synchronisation primitives P and V.

With the use of a single semaphore for the mutual exclusions,
this solution still limits the parallelism of processes which
belong to different pairs*.

The present paper is devoted to the elaboration of solutions
which improve parallelism and, when useful, discharge proces-
ses of administrative work.

We have used and compared four synchronising methods to
this aim: conditional critical sections, semaphores, path
expressions and monitors. Starting from a simple solution,
written with critical sections, we have introduced several
refinements with the help of these three other methods.

2. Hypotheses

n groups of parallel processes are considered; each group is
composed of a family of processes producing messages and a
family of processes receiving messages; the consumers of a
group may only treat the messages created by the producers
of the same group.

For their communications, these processes dispose of a buffer
containing N frames; each frame may receive a message from
the producers.

It will be supposed that N > n
and that a number N;(>1) of frames in the
buffer are reserved for the group i’s
messages (I = 1, 2, ..., n); the identity
of these frames is not defined yet: it
will be able to vary with time.

These quantities NV; are chosen so that

1. They grant good communications in each group in periods of
normal traffic

2C=N-YXN;>0[if N= 2. N, the groups are totally

disjointed and independent: one can subdivide the buffer in n
fixed sub-buffers and use, for each, Habermann’s algorithm
(1972)]; the C remaining frames will be used to receive the
supplementary messages of the various groups (when there
is a production peak, immobilisation of consumers, . . .).

3. Solution with conditional critical sections
First, we have tried to develop a solution with adequate
characteristics ‘by using Hoare’s structured primitives of
synchronisation.

With slight generalisations of the original primitives, we can
write the following acceptable solution.

3.1. Solution
Using a mixture of Hoare (1971) and ALGOL notation, we get

" Declarations:

integer array N[1:n] (such that N[i] = N});
integer f (initially C);

integer array m[1:n] (initially 0);

{resource array m[1:n]; producers| consumers};
{resource f; producers| consumers} ;

Consumer of group i:
while true do
begin
with m[i] when m[i] > 0 do
begin pick up a full frame of type i;
collect the message from the frame; release the frame;

*This drawback may in fact be made rather slight, from a pure practical point of view, if the processes are such that they stay just a very

little moment in the various critical sections.

238

The Computer Journal

20z udy 61 U0 1s9nB Aq | E9EEE/BEZ/E/6/B10MIE/ULOD/W0D"ANO"OILSPEDE//:SARY WO.) PAPEOUMOQ

m[i] :=m[i] — 1;
if m[i] > N[i] then with fdo f := f + 1
end;
receipt of the message
end;

Producer of group i:
while true do
begin
production of a message;
with m[i] and f when m[i] < N[i]orf > 0 do
begin if m[i] > N[i] thenf:=f— 1;
m[i]:=m[i] + 1;
pick up a free frame;
place the message in the frame; attach the frame
end
end;

Comments

(a) m[i] gives the total number of existing group i’s messages,
fis the total number of free frames among the C common
frames;

(b) we have no clear separation between critical sections in the
producer, which has to block f'even when it is raised by the
associated consumer (our producer is in fact identical to
the send procedure used by Hansen (1973)); the producer
can then uselessly delay other producers;

(c) it is not possible to separate collection (or extraction) of the
message from other operations;

(d) we have used a ‘parallel with’ in the producer’s code:
with m[i] and f when . . .;
this case was in fact not included in Hoare’s proposition;
it seems to us that this extension would not be much more
difficult to implement than the original primitives;

(e) the implementation of these primitives may however
strongly decrease the apparent parallelism of the solution;
note also that care must be taken to avoid deadlocks in the
implementation of the ‘parallel with’;

(f) Hansen (1973) solves the same problem with a single critical
region. We have tried to keep as much separation as possible
between groups. See however (c);

(g) picking, attaching and releasing are not precisely defined;

appropriate lists should be constructed for practical and
efficient use.

3.2. Adequacy of the solutions

We shall not develop detailed proofs to show that the proposed
solution ‘fits the considered problem’; even in the simplest
cases, complete demonstrations of the well-formed synchron-
isation of parallel processes are extremely tedious and intricate
(see for example Habermann, 1972a; 1972b). That is why we
shall only extract some invariant properties and general con-
siderations, showing that the algorithms work correctly
(note however point (e) of our comments).

1. If the various producers-consumers are blocked outside their

critical sections, it appears that:

f+ Zi(m[i] — N[i], = C*
indeed:
(a) it is true initially
(b) each time a producer passes through its critical section
(i) either m[i] < N[i] and then
m[i] « m[i] + 1 < N[i]

*We shall use the notation x+ for max{x, 0}.

Volume 19 Number 3

4. m[i] never becomes negative.

fis left unchanged

(ii) or m[i] > N[i] and f > 0 and then
m[i] « m[i] + 1 > N[i]
fef-1

(c) each time a consumer passes through its critical section

(i) either m[i] > N[i] and then
m[i] « m[i] — 1 > N[i]
fer+1

(ii) or m[i] < N[i] and then
m[i]l «m[i] — 1 < N[i]
fis left unchanged.

2. Under the same conditions, if A is the number of free frames

in the buffer
A=f+ 2N — mliD+

the proof is similar to the preceding one.

3. f never becomes negative.

Indeed fis only decreased (by 1) when m[i] = N[i] in tlg

producer critical section and, in this case, the critical sectlogx

can only be entered when f > 0. Consequently, Q

(a) relation 2 implies that 4 > 0, and thus that it will nevék
be granted more frames than are existing

(b) relation 1 implies that Z (m[i] — N[i], < G, ie. thﬁ

the overflows will never mvade the proper reserve of tl@
various groups.

Iweped

]}

Indeed, the only operation decreasing m[i] (by 1) appears i
the consumers of group i and their critical section is only

entered when m[i] > 0. 8
It follows also that consumers of group i will not all wait fog
ever if a producer of group i has created a message. g

5. Producers of group i will not all wait foreverif m[i] < N [z%
one of them will eventually enter the critical section (in faet
consumers of group i can get control of the critical sectlonca
finite number of times only and can only decrease m[i]). ©

Producers will not all wait forever if f > 0; one of thefd
will enter the critical section (meanwhile, the consumers cafi
only increase f). If a consumer of group i frees a frame, tvéﬁ
cases may occur

(a) if m[i] < N[i] (after decreasing m[i]), then, if producens
of group 7 are waiting, one of them will eventually entcr
its critical section

(b) if m[i] > N[i], then f becomes positive and, if produceBs

are waiting, one of them will eventually enter its critical
section.

0@Hdy

6. Continuous exchange between producers and consumers
group i in their reserve N; will never eternally delay exchanges
in other groups: one of them will eventually get control of
the f-critical section.

4. Solution with semaphores

To improve our first conditional critical section solution (see
our comments in Section 3), we have tried to introduce
several refinements. Our first tool to develop these refinements
will be the now classical semaphore. We shall proceed in a
structured way, starting from the solution in Section 3.

1. To improve parallelism and to separate free frames adminis-
tration, we have first introduced a ‘distributor’ process that
has to assign the C common frames to the producers of the
groups having emptied their own reserve.

This distributor is activated both by producers waiting for
a free frame and by consumers freeing common frames; it

moreover allows the consumers to discharge tasks that can
be run separately and parallel, without suspending the work
of these processes.

Distributor activation is done by producers with the help
of the semaphore distr. Indication of common frames being
released is done with the semaphore f, which still represents
the total number of free frames among the C common frames.

2. Administration of free frames among the N, frames reserved
for group i is done immediately by consumers of group i
without involving other groups or common free frames.
Transfer of critical section control to a producer of group i
is done at the same time.

3. The following semaphores will be used.

mutex[i]: to protect group i’s critical sections

cons[i]: to inform a consumer that a type i message has been
created

prod[j]: to inform producer j that a free frame has been
reserved for it.

4. A waiting queue for producers must be introduced, the
detailed treatment of which will be given later.
A first sketch of the solution is now developed, starting
from the first solution in Section 3.

Declarations:
integer array m[1:n] (initially 0),
N[1:n] (such that N[i] = N));
semaphore f(initially C), distr(initially 0);
semaphore array mutex[1:n] (initially 1),
cons[1:n], prod[1:np] (initially O; np is the

total number of
producers);

Consumer of group i:
while true do
begin
P(cons[i]);
P(mutex[i]);
pick up a full frame of type i;
collect the message from the frame; release the frame;
m[i] :=m[i] — 1;
if m[i] > N[i] then begin V(f); V(mutex[i]) end
else if m[i] = N[i] — 1 Aproducer j of
group i waiting
then begin remove j from the waiting
queue;
V(prod[j])
end

else V(mutex[i]);
consumption of the message
end;

Producer j, of group i:

while true do

begin

production of a message;

P(mutex[i]);

if m[i] > N[i] then begin insert j in the waiting queue;
V(mutex[i]; V(distr);
P(prod[j])
v end;

m[i] := m[i] + 1;

pick up a free frame;

place the message in the frame; attach the frame;

V(mutex[i]); V(cons[i])

end;

(head of) list W

ERIEGE ===
[
prcdlsucl pred,-lsucil other information l I I ! l I | | l]]...
SKI= 1] - CRIIX-
(head of) sub-list W; (head of) sub-list w;

(containing producers of group /)

Fig. 1

Distributor:
integer i, j;
while true do
begin
P(distr); P(f);
J = first producer of the waiting queue;
if j # O then begin i : = group of producer j,
P(mutex[i]);
if j still is in the waiting queue*
then begin remove j; V(prod[j]) end
else begin V(mutex[i]); V(f) end
end
else V(f)
end;

e//:sd)1y WOJ) PapEOjUMO(]

Picking, attaching and releasing may now be precisely andg
efficiently defined. We have associated to each group i a list$
P[i] of the frames used by this group (i.e. produced but not %
yet received messages); the free frames are gathered in another @
list: L (protected by semaphore mutexL). Producers waiting for?
a free frame will enter a list W (protected by semaphoreS
mutexW).

Consumers waiting for a message will automatically be placed 3
in queues controlled by private semaphores.

We don’t define how the lists are handled (picking out may be 5
FIFO, LIFO, random, . . .); we suppose only that the following &

09/

Je/u

procedures are present: g
insert(j): that inserts producer j in the W queue (at the end if 3
a FIFO policy is wanted) §
remove(j): that removes producer j out of W §
first: function that identifies the first (following the_
adopted policy) producer in W N
its value will be 0 if W is void &

Jirstg(i): function that identifies the first producer of group o
iin Wit will be 0 if W does not contain producers _
of this group

and that we can ‘pick up’ (or ‘attach’) a frame from (or to) the
L and P[i] queues.

To make the protection of W easier and to speed up its
consultation, we will moreover suppose that procedures first
and firstg may work by straight examination, without having to
follow the whole queue; such a purpose may be obtained for
instance with the use of a nested list structure as shown in
Fig. 1.

So, examination of sub-list W, can be done without bothering
other W sub-lists. The next step in solution then appears as:

VZOZIUdV

Declarations:
integer array m[1:n] (initially 0),
N[1:n] (such that N[i] = N));
semaphore mutexL, mutexW (initially 1), f(initially C),
distr(initially 0);

*This test is necessary because a consumer may have freed producer j between j computation and mutex[i] blocking.

240

The Computer Journal

semaphore array mutex[1:n] (initially 1),

cons[1:n], prod[1:np] (initially 0);
queue L(initially: the whole buffer), W (initially void);
queue array P[1:n] (initially void);

Consumer of group i:
while true do
begin
P(cons[i]);
P(mutex[i]);
pick up a full frame from P[i];
collect the message from the frame;
P(mutexL); attach the frame to L; V(mutexL);
m[i] := m[i] — 1;)
if m[i] > N[i] then
begin V' (f); V(mutex[i]) end
else if m[i] = N|i| — 1 Afirstg(i) # 0
then begin integer j; j : = firstg(i);
P(mutexWY); remove(j); V(mutexW);
V(prod[j1)
end
else V(mutex[i]);
consumption of the message
end;

Producer j, of group i:
while true do
begin
production of a message;
P(mutex[i]);
if m[i] > N[i] then
begin P (mutexW); insert(j);
V(mutexW);
V(mutex[i]; V(distr);
P(prod[j])
end;
m[i] := m[i] + 1; 2)
P(mutexL); pick up a free frame from L; V(mutexL);
place the message in the frame;
attach the frame to P[i];
V(mutex[i]); V(cons[i])
end;

Distributor:
integer i, j;
while true do
begin
P(distr); P(f);
P(mutexW); j := first; V(mutexW);
if j # O then
begin i := group of producer j;
P(mutex[i]);
if j = firstg(i)
then begin P (mutexW); remove(j); V(mutexW);

V(prod[j])
end
else begin V (mutex[i]); V(f) end
end
else V(f)
end;

If picking up or attaching a frame, placing or collecting the
message are slow operations, we can improve speed and paral-
lelism with the aid of another semaphore array, mutexP[1:n],
by extracting some manipulations out of the mutex[i]-critical
sections.

Our final solution is deduced from the preceding one as
follows.

Volume 19 Number3

4.1. Solution
Make the following alterations in the preceding solution:

In the declarations, add:
semaphore array mutexP[1:n] (initially 1);
In the consumer, before line 1, read:
P(cons[i]);
P(mutexP[i]); pick up afull frame from P[i]; V(mutexP[i]);
collect the message from the frame;
P(mutexL); attach the frame to L; V(mutexL);
P(mutex[i]);
In the producer, after line 2, read:
V(mutex[i]);
P(mutexL); pick up a free frame from L; V(mutexL);
place the message in the frame;
P(mutexP[i]); attach the frame to P[i]; V(mutexP[i]);
V(cons[i])
end;
The instructions modifying m[i] have been inserted at the
earliest possible place for the producers and at the latest
possible place for the consumers to insure correct communi-§
cations within each group. i

1] papeojum

4.2. Adequacy of the solution
As in 3.2, to show the adequacy of that solutlon we shalls
extract only some invariant properties and general consider—
ations of the solution. They are mostly the same as in 3.2 buh’-;f
the demonstrations have to be adapted, due to the P, V=
expression of the synchronisation and to the distributor3
introduction.

1. If the various producers-consumers are blocked outside their®
mutex[i]-section (going from the P(mutex[z]) to the lasig
V(mutex[i]) and the distributor is blocked outside its3
f-section (going from the P(f) to the V(f)), it appcarsi
that:

Luep

f+Xmb] - N, =C

indeed
(a) it is true initially
(b) each time a producer passes through its mutex[i]-sectio
(i) either m[i] < N[i] and then
mli] « m[i] + 1 < N[i]
fis left unchanged

Aq L€9€€€/8€%/€/6L/GIO!UE/IU.[LUO

(ii) oritis freed by an associate consumer, going througlg
its mutex[i]-section and observing that m[i] = N[i
and that there is a waiting producer of the same3
group; in this case, m[i] and f are left unchanged 3

=2

(iii) or it is freed by the distributor, going through it§_
Jf-section, and then f « f — 1
ml[i] « m[i] + 1 > N[i]
because there are no producers waiting if
m[i] < N[i]
() each time a consumer passes through its mutex[i]-section
(i) eitherm[i] > N[i]and then: m[i] « m[i] — 1and
fef+1
(ii) or m[i] = N[i] and there is an associate producer
waiting: see (b)(ii)

¥20e |

(iii) or m[i] < N[i] and there are no associate producer
waiting, then m[i] « m[i] — 1 < N[i] and f is
left unchanged

(d) each time the distributor passes through its f~section
(i) either it wakes up a waiting producer: see. (b)(iii)
(ii) or it does nothing: f and m[i] are left unchanged.

41

. Under the same conditions, if A is the number of free frames
in queue L:
A=f+ Z'(N[i] — m[i]),

the proof is similar to the preceding one.

. Asf, being a semaphore, never becomes negative, conclusions
from 3.2.3 are still valid.

.m[i]>0

Indeed, the only operation decreasing m[i] (by 1) appears in
consumers of group #, which can be raised only by cons[i].
cons[i] is itself increased in producers of group i only after
the operation m[i] := m[i] + 1. Conclusions of 3.2.4 are
still valid.

- Producers of group i will not all wait forever if m[i]< N[i]:
one of them will eventually enter the critical section mutex[i]
(in fact, consumers of group i can only use a finite number of
these critical sections) and will jump over the test (consumers
which would have worked meanwhile can only reduce
m[i]); producers will not all wait foreverif f > 0: the distri-
butor will raise the first of the queue (and meanwhile, the con-
sumers can only increase f). If a consumer of group i frees
a frame, then three cases may occur

(@) if m[i] < N[i] — 1, no producer of group i is waiting
and the frame can be returned to the proper pool

() if m[i] = N[i] — 1and producers of group i are waiting,
the first of the queue W, will be raised directly (if not, the
frame is returned to the proper pool)

() if m[i] > N[i] and producers are waiting, the first of the
queue will be raised by the distributor, which is always
alerted (with distr) by any waiting producer (if not, the
frame is returned by the distributor to the common pool).

6. Continuous exchange between producers and consumers of .

group i in their reserve N; will never delay exchanges in other
groups (this type of exchange in group i is controlled
through mutex[i]).

7. It may finally be pointed out that deadlocks are avoided by
the hierarchy

mutex[i]

mutexW

8.1t is possible to avoid the introduction of an additional
process (the distributor) by inserting its procedures in the
critical section of each of the producers-consumers.

We can also increase the degree of parallelism for the pro-
cesses in sub-critical situations (when there are few accesses
to the common part of the buffer) by the introduction, for
each group i, of a queue listing the free frames reserved for
this group (which allows a reduction of the accesses to
mutexL-~critical sections).

Unfortunately, the resulting solutions are rather intricate;
so we shall not write them out here. Moreover, it may be
pointed out that it should not be necessary, from a practical
point of view, to search ultimate parallel solutions.

9. When f; the total number of common free frames, is nearly
always positive, some time is lost in the producer when
entering W uselessly. One can refine the solution in the
following way:

(@) introduce f as an integer, protected by semaphore mutexf

(b) when m[i] > N[i], the producer first checks if f > 0;
if it is, the producer can proceed immediately, if not, the
producer enters W and waits

() the distributor is only alerted by a consumer (when
m[i] > N[i]).

We do not give all details here, adequacy can be shown as in

the previous solution.

242

5. Solution with synchronisation paths

Our second tool to introduce refinements in the solution in
Section 3 will be the synchronisation paths of Campbell and
Habermann (1974):

1. The protection of critical sections is now done in various
paths, one protecting the queue L (1)*, another protecting
m[i] (2) and a third one protecting P[i] (3) (We have used
the same lists and notations as in Section 4). Two other paths
are necessary to introduce the adequate synchronisation:
producer-consumer (4) (after a message production) and
consumer-producer (5) (after liberation of a frame belonging
either to the N; frames of group i or to the common pool of
C frames).

2. Procedures must be introduced

(@) in the i-consumer for full frame pick-up (cpick-i), for
frame releasing (return) and m[i]-decreasing (sub1-i)

(b) in the i-producer for free frame pick-up (detach), frame
attaching (cattach-i) and m[i]-increasing (cadd1-i)

3. To introduce separation of the two types of free frames, twe,
null procedures (signal and signal-i) are used for synchronis2
ation purposes. 3

Starting from our first solution in Section 3, we can now get

first approach of the solution:

Declaration:

type frame; . . .

endtype;

type sharedpool,
queue L (initially, the whole buffer);
queue array P[1:n] (initially void);
integer array m, N[1:n]

(initially N[i] = N; and m[i] = 0);

path return, detach end;)
path subl-i, addl-i end; N
path attach-i, pick-i end; A3 |
path {cattach-i; cpick-i} end; @si=12...
path {(signal, signal-i); caddl-i}
end; 5
operations

procedure cpick-i (fullframe); pick-i (fullframe);
procedure pick-i (fullframe); fullframe := full frame
P[i];
procedure cattach-i (fullframe); attach-i (fullframe);
procedure attach-i (fullframe);
P[i] := P[i] v fullframe;
procedure return (freeframe); L := L freeframe;
procedure detach(freeframe); freeframe: = free frame of L
procedure caddl-i; addl-i;
procedure addl-i; m[i] : = m[i]+ 1;
procedure subl-i; begin m[i] : = m[i]-1;
if m[i] > N[i] then signal else signal-i end;
procedure signal; null;
procedure signal-i; null

endtype;

6 Aq 1£oseX8EZ/E/6/9101R/ulwoo/Woo dno-ojwapesey/:sdpy woly paleo]

O }san

20z Iudy 61

Initialisation:

sharedpool B; frame fram; integer j, k ;

for j := 1 step 1 until » do for k := 1 step 1 until N[j] do
B. signal-j;

for k := 1 step 1 until C do B.signal,;

Consumer of group i:
while true do

begin
B.cpick-i(fram);

*The numbers refer to path numerotation in the solution.

The Computer Journal

collect the message from fram;
B.return(fram);

B.subl-i;

consumption of the message
end;

Producer of groupi:
while true do
begin
production of a message;
B.caddl-i;
B.detach(fram);
place the message in fram;
B.cattach — i(fram)
end;

Comments:

1. In our solution, we have used restricted path expressions (with
the exception of the last family, which is considered below)
as suggested by Campbell and Habermann (1974) (a pro-
cedure name occurs only once in any path expression).
Without this restriction, we could write a shorter solution,
with less procedures. We can for instance use a single
procedure for each of the pairs cpick-i, pick-i; cattach-i,
attach-i; caddl-i, addl-i.

2. The proof of validity of this solution is now shifted: correct-
ness of consumer and producer is easy to verify but correct-
ness of path expressions is more complicated, we don’t
write it here.

3. Implementation of i-indices in procedures is left undefined:
it depends on the way the path expressions are implemented.

4. In the path family, signal appears » times: this family must
be treated separately. Moreover, if an efficient use of the pool
is wanted, it is strongly advised that caddl-i ‘absorbs’
signal-i, instead of signal, if both are present, so as to
leave as many free frames as possible in the common pool.
We must in fact express the statement:
if m[i] > N[i] then with f do f:=f + 1 of our critical
section solution. This special interpretation of path expres-
sion can be translated in ‘normal’ paths, at the price of some
complication; we could for instance proceed as follows (in
practical life, an ad hoc implementation should be used):

5.1. Solution
The following refinements are introduced into the preceding
solution:

(a) introduce two arrays: w[i] giving the total number of
waiting producers of group i and fg[i] giving the total
number of free frames among the N, frames of group i

(b) reintroduce f giving the total number of common free frames

(¢) in the producer code, insert a call to B. test-i before
B. caddl-i,

(d) replace, in the declaration of the sharedpool type, the last
family of paths by the following procedures, paths and
variables:

integer array w[1:n] (initially 0), fg[1:n]
(initially fg[i] = N,);

integer f(initially C);

path addlf, distr end; 6)

path{(eaddlf, addlw); cdistr} end;

path{signal; caddlf} end;

path test-i, distr-i, test2-i end; (7)

path{signal-i; cdistr-i } end; i=1,...,n

path{(sublfg-i, sublw-i); caddl-i} end;

procedure caddlf; addlf;

procedure add1f; begin f := f + 1; eadd1f end;

procedure eaddlf; null;

Volume 19 Number3

procedure cdistr; distr;
procedure distr; if f > O then begin j := 0;
for j :=j + 1 while
f > 0do test2-j
end;
procedure fest2-i; while w[i] > 0 and f > 0 do
beginf:= f— 1;
sublw-i
end;
procedure cdistr-i; distr-i;
procedure distr-i; if w[i] = O then fg[i] := fg[i] + 1
else sublw-i;
procedure sublw-i; w[i] := wl[i] — 1;
procedure addlw(i); wi] := w[i] + 1;
procedure test-i; if fg[i] > O then sublfg-i else addlw(i);
procedure sublfg-i; fg[i] := fgli] — 1;
(e) and add the three processes:
while true do caddlf
while true do cdistr-i
while true do cdistr

Comments:

1. Path (6) protects f, path (7) protects fg[i] and w[i]. Othe
paths introduce synchronisation.

2. We have used a procedure distr which simulates (with less3
efficiency) the distributor of the semaphore-solution; i%
introduces however an a priori priority among the various?
groups, which may be unwanted. (It can be released by someZ
randomisation).

3. Deadlocks are avoided with the hierarchy
f

!
Selil, wli]
4. Again with unrestricted path expressions, less procedures are
needed to write the solution.

1} pSpeojumo(

5. Transfer of critical sections is not easy.
6. Proof of our addition is not easy; we do not give it here.

6. Solution with monitors
Our third tool to introduce refinements in the solution in2
Section 3 will be the monitors, as described by Hoare (1974).%
Notations are similar to Sections 4 and 5.
New variables will be:

£2Z/€/6 1 /oo11e/|ulWioo/Wwoo dno olwape:

9

AqLg

1. res[i] giving, when positive, the number of frames stili

reserved for group i, and, when negative, — (number of
common frames used for group i)
2. Full and free[i] are ‘conditions’ (see Hoare, 1974): the first©
one says to a consumer that a full frame is available, thes
other says to a producer that a free frame is available.

A solution can now be written as follows:

uo

¥20¢ 1MayY

monitor private monitor;
begin integer m (initially 0); queue P (initially void);
condition fu//;
procedure pick (fullframe);
begin if m = O then full . wait;
m:=m-—1;
Sfullframe := full frame of P
end;
procedure attach (fullframe);
begin P := P fullframe;
m:=m+ 1;
Sull .signal
end
end;

monitor common monitor;

begin queue L (initially the whole buffer), W (initially void);
integer f (initially C);
integer array res[1:n] (initially, res[i] = N;);
condition array free[1:n];
procedure return (freeframe, i);
begin L := L freeframe;
res[i] := res[i] + 1;
if res[i] < O then
begin integer j;
Ji=first of W,
if j # O then free [groug of j].signal

else f:=f+ 1
end
else if res[i] = 1 then free[i].signal
end;

procedure detach (freeframe, i, currentproducer);
begin if res[i] < 0 then
begin if f > O then f := f — 1
else begin insert in W (currentproducer);
free[i].wait;
remove from W (currentproducer)
end
end;
res[i] := res[i] — 1;
[freeframe := free frame of L
end
end;

private monitor array own[1:n];
common monitor B; frame fram;
Consumer of group i:
while true do
begin own[i].pick(fram);
collect the message from fram;
B.return (fram, i);
consumption of the message
end;

Producer j of group i:
while true do
begin production of a message;
B.detach (fram, i, j);
Dplace the message in fram;
ownl[i].attach (fram)
end;

Comments:

1. Each group’s full frames handling is protected by their own
monitor. Free frames handling is done under common
monitor B supervision; it seems difficult to improve paral-
lelism for free frames without risking deadlocks.

2. Adequacy of the solution is rather easy to show but care must
be taken with wait and signal operations peculiar behaviour;
note also that consumer and producer procedures are nearly
the same as in path expression solutions.

3. Producer continuation by immediate checking is of course in
the same spirit as indicated in our remark in Section 4.2.9.

4. In return procedure, instruction: free [group of j].signal is
sure to alert producer j and no other waiting on free-
producer. Indeed ‘if more than one program is waiting on a
condition, we postulate that the signal operation will
reactivate the longest waiting program’ (note 3 on p. 550 of
(Hoare, 1974)). Similarly, we do not need firstg(i) anymore,
free[i] condition assumes the same role.

References

5. We must still use an explicit queue W for the waiting
producers because a simple condition (freeW, for instance)
could not insure proper alerting in group i when res[i] =

7. Conclusions

If we try to extract the advantages and disadvantages of each
type of synchronisation primitives, we may write the following
remarks.

1. Conditional critical regions:
(a) these primitives lead to a rather nice solution, which is easy
to verify,

(b) but, in order to obtain it, we needed some extensions of the
original proposal and the solution is in fact less efficient
than was hoped; moreover, we may mention the old
problems of the implementation and of the (controlled)
busy form of waiting which are attached to these primitives.

2.Pand V:
(a) these primitives seem the most versatile and the most
efficient ones,

(b) but they lead to rather complex solutions, which are not
easy to verify.

woJ) papeojumoq

3. Synchronisation paths:
(a) when all the specifications and initialisations are made, the =
resulting solution is usually the most easy to write and to 2
verify,

peoe//:sd

(b) clear separation of synchronising specifications and problem & @
operations is a good concept which will lead to better 2
structured programs, g

(c) but these specifications appear themselve rather complicatedg
and delicate and a need for more general paths arises in the 3

elaboration of the solution ; some of the specifications seem &
sometimes rather artificial.

4. Monitors:
(a) the synchronising specifications are easy to write and check

61 /ol0me/|ulw

(b) the resulting solution is very simple; it is nearly the same as
for synchronisation paths,

€/8€¢/€/6

(c) again, separation of synchronising specifications andm
problem operations is a good concept; wait and s:gnal 8
operations are useful,

(d) processes parallelism is clearly restricted by the fact that no<
parallelism is possible inside each monitor. See also remarks &
on p. 557 of Hoare (1974). ©]

35

Aq |

Starting from the critical section structured primitives and ©
introducing several step by step refinements with other pri-&
mitives permits us to get more efficient and better structured =
solutions.

However such introduction is not direct and proofs must be
adapted.

To be conclusive about the primitives comparison, more
examples will have to be considered. We intend to follow this
direction in another paper.

¥20c

Acknowledgements
We are indebted to P. J. Courtois for helpful comments and
discussions and for his communication before publication
(Cooprider, Courtois, Heymans and Parnas, 1973).

We are also grateful to the referee for valuable suggestions
concerning the structure of this paper.

DuksTRA, E. W. (1972). Information Streams sharing a finite Buffer, Information Processing Letters, Vol. 1, pp 179-180.
Hoarg, C. A. R. (1971). Towards a Theory of parallel Programming, in International Seminar on Operating System Techniques, Belfast,

244

The Computer Journal

Northern Ireland, 1971; and Operating Systems Technigues, pp. 61-71, edited by C. A. R. Hoare and R. H. Perrot, Academic Press,
New York, 1973.

HaNsEN, P. B. (1972a). A comparison of two synchronizing Concepts, Acta Informatica, Vol. 1, pp. 190-199.

HANsEN, P. B. (1972b). Structured Multiprogramming, CACM, July 1972, Vol. 15, No. 7, pp. 574-578.

HANSEN, P. B. (1973). Concurrent Programming Concepts, Computing Surveys, December 1973, Vol. 5, No. 4, pp. 223-245.

CourTors, P. J., and HEYMANS, F. (1973). Information Streams sharing a finite Buffer; another Implementation, MBLE, Technical Note N85,
January 1973.

COOPRIDER, L. W., CourTols, P. J., HEYMANS, F., and PARNAS, D. L. (1973).
Information Processing Letters, Vol. 3, No. 1, July 1973.

HABERMANN, A. N. (1972a). Synchronization of communicating Processes, CACM, March 1972, Vol. 15, No. 3, pp. 171-176.

HABERMANN, A. N. (1972b). On a Solution and a Generalization of the Cigarette Smokers’ problem, Carnegie-Mellon University Report,
August 1972,

CampBeLL, R. H., and HABERMANN, A. N (1974). The Specification of Processes Synchronization by Path Expressions, University of Newcastle
Upon Tyne technlcal report no 55, January 1974.

HoARE, C. A. R. (1974). Monitors: An Operating System Structuring Concept, CACM, October 1974, Vol. 17, No. 10, pp. 549-557.

Information Streams sharing a finite Buffer: other Solutions,

Book reviews

Structured Computer Organisation by A. S. Tanenbaum, 1976; 443
pages. (Prentice Hall, $18.50).

eojumoqg

these omissions by no means impact on the stimulating treatment g
given of structured computer orgamsatlon and the examples andm
bibliography support the text material in a well chosen manner.

This text is to be recommended to all students of current-dayg
computing system architecture.

4} pap

This text provides an admirably mature and illuminating study of
computer architecture. The subject matter is uniformly well pre-
sented, but the feature of most significance is the overall approach
to the subject. All too frequently, texts on computer architecture
distinguish a level of architecture broadly equated to the demarca-
tion between hardware and software, and concentrate on the imple-
mentation of this level, principally by hardware components. This
text distinguishes a number of levels, each of which may be sup-
ported by, and may itself support, both hardware and software
components. The result is a logical exposition of architecture viewed
at different levels.

The particular levels on which attention is focussed are divided into
two classes, namely, those which are implemented by interpretation
and those implemented by translation. In the former category are
the microprogramming level, at which hardware interprets se-
quences of microprogram steps, the conventional machine level, at
which the microprogram interprets sequences of basic instructions,
and the operating system level, where instructions are interpreted
either by microprogram or by the operating system. Levels imple-
mented by translation are typified by the assembly language level;
the text does not extend the treatment to a consideration of trans-
lated high level source languages, but does discuss architectural
features required to implement an interpreted machine level which
would support the execution of high level source language state-
ments. A final chapter considers various methods for implementing

y

D. J. HowARTH (London)g'

Mathematical Programming second edition, by C. McMillan, 1975 ;
650 pages. (John Wiley & Sons Inc, £9-75).

dno- mLuepeoe//

When I attended an international mathematical programmmgo
symposium in London in 1964 I was surprised at the variety of useful=.
extensions of linear programming methods for nonlinear problemsg
that depend much more on intuition and experience than on mathe-=
matical analysis. Since then many good mathematicians have studieds
nonlinear programming and consequently some techniques haves
been developed that are often much more powerful than the earlier%
methods. However, due probably to the fact that the first editiong
was published in 1970, this book reminds me much more of the,\)
London symposium than of recent work. It seems to be written for@
people who are ignorant of mathematics.

Therefore the few mathematical ideas that occur are introduced in a&;
very detailed manner. For instance, even the definition of a deriva-=
tive is explained by reference to the speed of a car, and the element-2
ary properties of vectors are stated before they are used. The most‘Q
advanced method that is given for unconstrained optimisation is$
multi-level machines, including a most illuminating study of ‘self the method of steepest ascent. The terms ‘positive definite’ andO
virtualising machines’, using the IBM VM/370 system as an illustra- ‘conjugate’ are not mentioned.
tion. Instead the language of the book is that the ideas are developed;(>

The major examples used throughout the text for in-depth study through examples which are mainly drawn from highly simplifiedS
are the IBM System/360 and System/370, the CDC 6000 and Cyber business and ordinary life situations. For instance linear program-n
series, and the DEC PDP-11 series. These provide well-varied illus- ming is introduced by a scheduling problem where two machinesy
trations of the subject matter, and are supplemented by additional can each manufacture two products. It is fascinating to read how

O/W0D"

€€

examples in particular subject areas (e.g. Burroughs B1700 is also
used as an example when discussing the microprogramming level).
From the viewpoint of a reader in the United Kingdom, it is un-
fortunate that the illustrations are not extended to include, for
example, the ICL 1900 architecture, which provides a further excel-
lent illustration of the various levels. In particular, the composition
of the conventional machine level, which can be broadly equated
to the ICL 1900 Executive level, provides an excellent contrast with
the examples quoted in the text.

It is a tribute to the author’s presentation of the material that the
reader will regret that the book is not further extended to consider
additional levels. The hardware level of interpretation is only
touched upon (the reader should beware lest he assume that micro-
program interpretation of the conventional machine level is uni-
formly applied) and operating system structure is not considered in
depth; the latter could well be described by means of an interpreted
level of machine supporting operating system activities. However,

Volume 19 Number 3

well a subject can be presented through examples, but some people
will be irritated by the verbosity and occasional lack of exactitude.
The examples account for about half of the length of the book.
Most of the remainder is descriptive and there are exercises for the
reader at the end of each chapter.

The chapter headings give a fair survey of contents and they are
as follows: Fundamental concepts in linear programming, Linear
programming extensions, Assignment and distribution methods of
linear programming, Classical optimisation, Gradient methods of
optimisation, Simplex based methods, Geometric programming,
Dynamic programming, The branch and bound algorithm, Integer
linear programming, Zero-one programming, Applications of zero-
one programming, Network optimisation and Mathematical pro-
gramming with multiple objectives. I recommend this book as an
elementary introduction to all of these subjects because its style
makes it easier than usual to understand.

M. J. D. PoweLL (Cambridge)

245

