Analysis of speed of a binary multiplier using a variable
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Iterative binary multiplication can be speeded up by examining two or more bits of the multiplier
in each cycle. Freeman (1967) has described an exact method for calculating the resultant gain in
multiplication speed, based on the use of a discrete-time finite state system model. We have used
Freeman’s model to evaluate the gain in speed for various combinations of two design parameters—
the maximum number of shifts per cycle, and the available multiples of the multiplicand. It is shown
that a greater performance improvement is obtained by increasing the former parameter rather than

the latter.
(Received February 1975)

In a well known technique for speeding up iterative binary
multiplication, two or more bits of the multiplier are examined
simultaneously in each cycle to determine what multiple of the
multiplicand is to be added to or subtracted from the partial
product. Fig. 1 is the block diagram of the multiplier to be
discussed.

The multiplicand and partial product reside in single length
registers, whilst the multiplier is placed initially in the bottom
half of a double length shift register. A multiplication cycle
begins by the examination of the n least significant bits of the
multiplier; this determines the multiple of the multiplicand that
is entered into the adder, and later, the amount to shift that is
used. Although the addition (or subtraction) is single length, the
adder has an extra bit at the most significant end to hold any
overflow (which must not be lost).

The output of the adder is moved into the top half of the shift
register. A double length rightward shift is performed so that
the product is built up in the lower half of the buffer register.
Shifting is implemented by gated paths between the two double
length registers. The shift also results in the loss of least signi-
ficant multiplier bits (which are no longer required), at the
same time presenting a new bit pattern in the n least significant
bit positions. Flores (1963) has described this type of multipler
in greater detail.

By examining » bits of the multiplier at a time, the multi-
plication is effectively performed to the base 2". In theory, this
would require all multiples of the multiplicand from 1 to 2" — 1
to be available, but in practice the introduction of simple shift
paths only generates multiples which are integral powers of
two. When other multiples are needed, special action—such as
shifting by less than n bits—is taken. This of course is the
reason why the performance gain may be less than the ideal
factor of n. It is our purpose to show how various combi-
nations of multiples and shift size affect the performance
gain.

As soon as we examine more than one bit of the multiplier at
a time, extra hardware logic is required for data paths:

(@) to move multiples of the multiplicand into the adder
(b) to implement the variable number of shifts.

Note that the shift register is of double length, so that approxi-
mately twice the hardware is required for (b) in comparison
to (a).

Thus the sum of shift paths and paths into the adder, for a
multiplier which can shift up to # bits and has m paths into the
adder is (2n + m) paths. This expression gives an approximate
measure of the hardware cost involved in providing the variable
shift facility. (It is not exact partly because hardware cost is not
necessarily linearly proportional to circuit complexity, and
partly because it ignores additional overheads such as the extra
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adder position (see section 1.2) that may not already exist an
the decoding of the multiplier bits). e

The optimum combination of n and m is not immediately
clear, and the following analysis is designed to answer twé
questions: o

1. Keeping the number of shift paths » constant, which speciﬁ§
m multiples of the multiplicand will give the fastest

performance ? N

N
2. Keeping the sum of paths (2n + m) constant, which com=
bination of n and m will give the fastest performance ?

The analysis is divided into three parts, for two, three and four
shift paths. In each case, a selection of the possible combinations
of the multiples of the multiplicand is considered and using
Freeman’s model, the mean shift per multiplication cycle is
calculated. The chosen combinations illustrate both the
analysis of the model and the functioning of the multiplier.
The results for other combinations are presented in Table 1.

Similarly, higher numbers of shift paths are not considered
explicitly, but the results are included in Table 1.

Simple iterative multiplication is usually found in small and
medium sized computers. In large machines with a long word
length, e.g. the CDC 6600 (1969) simple iteration is often
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Table 1 Summary of results

Sum of Max. Multiples of Limiting
paths shift multiplicand mean shift
per cycle
3 1 {+1} 10
5 2 {+1}{-1} 1-5
6 2 {+1,+2}* 1-667
6 2 {+1,—1} 1-8
7 2 {+1,-1,+2}{+1,—-1,-2} 20
8 2 {+1,—-1,4+2,-2} 2:0
8 3 {+1,+2}* 1-857
8 3 {+1,—1} 2:333
9 3 {+1,+2,+4} 1:917
9 3 {+1,—-1,+2}{+1,—-1,—-2} 250
10 3 {+1,-1,+2,-2} 2-571
10 3 {+1,—-1,+2,+4}t 2-:571
10 4 {+1,—1} 2:647
11 4 {+1,—1,+2}{+1,—-1,—-2} 275
12 4 {+1,+2,+4,+8}* 1-981
12 3 {+1,—-1,+2,—1,+4,—4} 2:667
12 4 {+1,—1,42,-2} 28
12 4 {+1,-1,+2,+4}% 2-8
12 5 {+1,—-1} 2-818
13 5 {+1,—1,4+2}{+1,-1,—2} 2875
14 6 {+1,—1} 2910
Notes:

*denotes all further combinations of sign.
tdenotes all further combinations of sign of 2 and 4 only.

unacceptably slow. This drawback, together with possible
requirements for parallelism in the arithmetic unit usually
results in the adoption of other multiplication techniques.

1. Two bits at a time

1.1. ({+1} x multiplicand) available

This case is the simplest realisation of a variable shift multiplier.
Consider the successor to a cycle in which a two bit shift has
been made; the bit combination at the least significant end of
the multiplier will be one of 00, 01, 10, 11, all with equal prob-
ability. In the first two cases, a two bit shift is always made
(after addition for 01). In the last two cases, only a one bit
shift is made because only the multiplicand itself and not any
multiples of it is available to the adder; on the next iteration the
current first (more significant) bit becomes the second bit of the
pair. This bit must necessarily be one, so the only valid
combinations are 01, 11, with equal probability. The following
table summarises the shift sizes and actions of the adder:

Valid bit Action of No. of shifts

combination adder performed in this
cycle (bits)

00 NULL 2

01 ADD 2

10 NULL 1

11 ADD 1

When the adder performs a NULL action, the partial product
is transferred without change to the shift register.
If a one bit shift is made in the current cycle, then only the 01
and 11 rows of the table are relevant in the next cycle.
Consideration of the above table leads to the following
probabilities:

Current shift Following shift Probability of
(bits) (bits) transition

2 2 0-5

1 2 0-5

2 1 0-5

1 1 05
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In Freeman’s model, the multiplication is regarded as a Markov
process. with two states, transition between the states being
governed by the above probabilities. The system is considered
to be in state j if the shift in the current multiplication cycle was
J bits. Let n(k) be the state probability row-vector at time k,
so that an element 7 (k) of n(k) represents the probability of
being in state s at time k. Also let P be the state transition
probability matrix, i.e. an element P;; of P represents the
probability of a transition to state j at time k + 1, given that
we are in state i at time k. Then at time k + 1,

nk+1)=Park), k>0 m
where
05 05
P= [0-5 0-5]’ @
Also
n(0) = [0-5 0-5] . 3)

All bit combinations are equally probable during the first
multiplication cycle.

By definition, the sum of the elements of # must be 1, as must
the sum of the elements of each row of P.

Equation 1 is solved by the Z (or geometric) transform
technique, since this gives the rate of convergence to the limiting
state probabilities (When appropriate). In the present case,

n(k) = [0:5 0-5].
The mean shift is defined as:

)

n

2 Jjxm &)

i=1
where 7; is the probability of a j bit shift. The sum is over all
possible shifts. For the current case, we find that the mean shift
is 1-5 bits per cycle.

Howard (1971) has written a very palatable description of

Markov processes and transform analysis.

1.2. ({+1, —1} x multiplicand) available
The addition of a (—1 x multiplicand) path permits special
action when the least significant two bits of the multiplier are
11. The multiplicand is subtracted from the partial product
and a two bit shift carried out; the subtraction will always
result in the generation of a carry and this is recorded in a
flip-flop. The carry is added into the least significant bit of the
multiplier in the next cycle. The transition probabilities are not
affected, since if the four combinations of the two bits are
equally probable just before the addition of the carry, they will
still be equally probable afterwards.

The above technique effectively treats (3 x multiplicand) as
(—multiplicand + 4 x multiplicand).

The action of the multiplier is summarised in the table below.
Apart from the last row, it is identical to the table in Section
1.1.

Valid bit Action of No. of shifts

combination adder performed in next
cycle (bits)

00 NULL 2

01 ADD 2

10 NULL 1

11 SUBTRACT 2

Only the 01 and 11 rows are relevant following a one bit shift.
We can now deduce the transition probabilities and state them
as the transition probability matrix (as for equation 1 and

matrix 2).
P = [O 1'00].

025 075 ©)
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Also
n(0) = [0-25 0-75] . @
From equations 1, 6 and 7, transform analysis leads to the
result:
n(k) = [0-2 + 0-05 (—0-25)* 0-8 + 0-05 (—=0-25%1 (8)
for k > 0.

From equations 5 and 8, the mean shift is:
1-8 — 0-05 (—0-25) bits per cycle . Q)

This expression rapidly converges to its limiting value of 1-8
bits per cycle.

L.3. ({+1, +2} x multiplicand) available
This is precisely the case that has been analysed by Freeman
(1967). The mean shift is 1-667 bits per cycle.

14. ({+1, =1, +2} x multiplicand) available

The three paths supply the three required multiples of the
multiplicand (3 x multiplicand is treated as described in
Section 1.2). Hence the mean shift attains its maximum value
(for n = 2) of 2-0 bits per cycle.

2. Three bits at a time

2.1. ({+1, —1} x multiplicand) available

When three bits of the multiplier are examined at once, there
are eight possible valid bit combinations, and three possible
shift sizes; the multiplier is regarded as a three state Markov
process. The possible actions are summarised below.

Valid bit Action of No. of shifts
combination adder performed in next
cycle (bits)

000 NULL 3

001 ADD 3

010 NULL 1

011 SUBTRACT 2

100 NULL 2

101 ADD 2

110 NULL 1

111 SUBTRACT 3

Subtraction is performed as described in Section 1.2; the carry
is added into the least significant bit of the multiplier on the
next iteration. However, in contrast to Section 1.2 the carry
does affect the transition probabilities because subtraction can
lead to a shift of two bits, rather than three bits. If the current
combination is 011, then in the next cycle, before the carry is
added, the possible bit combinations are 000, 010, 100, 110.
The addition of 001 clearly changes the combinations.

All eight bit combinations are equally probable after a three
bit shift.

After a one bit shift, there are four possible combinations,
001, 101, O11, 111.

After a two bit shift, considerations of the above argument
lead to the four possible combinations 001, 101, 011, 111
(which are the same for a one bit shift).

The transition probabilities are:
0 0-5 0-5
P = [0 0-5 0-5 ] . (10)
0-25 0-375 0-375
The initial state probability vector n(0) is
n(0) = [0-25 0-375 0-375] . (11)

Using Equation 1 and the Z transform technique, the state
probability vector at time & is found to be:

n(k) =
[0-111 + 0-139 (—0-125)* 0-444 — 0-69 (—0-125)*
0444 — 069 (— 0-125)] . (12)
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The mean shift (equation 5) is:
2:333 — 0-208 (—0-125)% . (13)

This converges rapidly to a limiting value of 2:333 bits per
cycle.

2.2. ({+1, +2, +4} x multiplicand) available

Freeman has analysed this configuration in (1967). He found

the limiting value of the mean shift to be 1:917 bits per cycle.
The following combinations of three paths into the adder

also produce the same mean shift:

{—1, 42, +4} {-1, +2, —4}
{+1’ _2, +4} {+1, _23 _4}
{+1, +2, -4} {-1, -2, —4}
{—1, =2, +4} .

3. Four bits at a time

3.1. ({+1, =1} x multiplicand) available

The actions following the sixteen possible bit combinations are
given in the table below.

|w)

Valid bit Action of No. of shifts %
combination adder performed in next 3
cycle (bits) §

0000 NULL 4 3
0001 ADD 4 3
0010 NULL 1 Z
0011 SUBTRACT 2 a2
0100 NULL 2 g
0101 ADD 2 =
0110 NULL 1 3
0111 SUBTRACT 3 5
1000 NULL 3 S
1001 ADD 3 g
1010 NULL 1 s
1011 SUBTRACT 2 3
1100 NULL 2 2
1101 ADD 2 2
1110 NULL 1 o
1111 SUBTRACT 4 g

The carry bit from a subtraction must again (see Section 2.9
be considered when determining the transition probabilities,
The possible bit combinations in the successor to a cycle with@

. . D
one, two or three bit shift are:

0001 1001
0011 1011
0101 1101
0111 1111

All valid bit combinations are equally probable.
The transition probability matrix is:

&0z yose g1 uo 1senb Aq 16

0 05 025 025
o 05 025 025
P= 0 05 025 025 @

0-25 0375 0-1875 0-1875
The initial state probability vector is:

n(0) = [0-25 0-375 0-1875 0-1875] . (15)
The standard analysis shows the mean shift to be:
2:647 — 0-334 (—0-0625)* . (16)

For large k, the mean shift is 2:647 bits per cycle.

3.2.({+1, +2, +4, +8} x multiplicand) available
This is the third case that Freeman analysed. His results show
the mean shift to be 1:9087 bits per cycle.

There are fifteen further combinations of paths into the adder
that produce this mean shift. All sixteen have the same
magnitudes of the multiples of the multiplicand (1, 2, 4, 8), but
differ in the signs, which are the set of all possible combinations.
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Conclusions

Freeman (1967) has conjectured that the approximate analysis-
of the speed of variable shift multiplication made by Flores
(1963) produces optimistic results when compared with the
exact results. This is so in the cases that he cites. For example,
when two bits are examined and ({+1, —1} x multiplicand)
are available, the exact analysis yields 1-667 bits per cycle as
the mean shift in comparison to Flores’ result of 1:75 bits per
cycle. However, our analysis has shown that the conjecture is

Although not shown explicitly in the analysis it may be verified=
that (for the cases analysed) the least probable shift is one bit, 5.
and the most probable shift is two bits (for odd values of Shlftm
path, a three bit shift is equally most probable).

We have noted that iterative multiplication techniques are<
more popular in medium and small central processors. In these &
machines the cost of logic to precalculate and hold odd mul-g
tiples of the multiplicand (e.g. 3 x multiplicand or 5 x &
multiplicand) is likely to be prohibitive whereas simple adder™

/€611

not necessarily true for all cases. and shift paths are more cost-effective. g
The optimum combination of multiplicand multiples (m) and The same hardware is suitable for the binary division process§

except for the additional sequence control gates. Variable®
numbers of shift per cycle can again be used to advantage.>
The analysis of speed for the division is more complex thanoJ
that for multiplication and will be presented for publication atm
a later date. S

If the multiplication and division hardware is not a separate >
module from that performing the other arithmetic instructions =

shift paths () for a given hardware cost (2n + m) is clear from
Table 1. Both the (+1 x multiplicand) and (—1 X
multiplicand) paths must be available to the adder;
when the sum of the paths is odd, the (+2 x multiplicand)
path must also be present. All the other paths must be shift
paths. In Fig. 2, the optimum performance curve is plotted
together with some inferior cases.

The values in Table 1 suggest that the mean shift is tending
towards a limit of three bits per cycle. This is an interesting
result that is not intuitively obvious. It would then represent
the absolute maximum performance gain when only multiples
of the multiplicand that are integral powers of two are available.
For practical purposes there is very little additional gain in
speed to be obtained by increasing the number of multiplier
bits examined in each cycle beyond four bits.
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