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Clenshaw and Curtis (1960) have given a scheme for the numerical integration of a well-behaved
function f(x), with the interval of integration normalised to [ —1, 1], which is based on the approxi-
mation of f(x) in a series of Chebyshev polynomials, 7x(x). In this context, the function is said to be
well-behaved if the coefficients in the Chebyshev expansion fall off rapidly. This method is extended

to integrals of the form

b
J f) g;;j px dx
a

A new algorithm is presented which evaluates the resulting basic integrals directly by a method which
is analogous to the automatic generation of quadrature formulae of the Newton-Cotes type, as
presented by Alaylioglu, Evans and Hyslop (1975). The stability of the method is discussed and
critical comparisons, including numerical tests on several practical examples, are carried out with
the related earlier work of Bakhvalov and Vasil’eva (1968) and Piessens and Poleunis (1971).

(Received July 1974)

1. Introduction
Normalisation of the range of integration leads to consideration
of integrals of the form

1 cos
_lf(x) sin oxdx . ¢))

The usual methods of evaluating (1) rely on approximating
f(x) by a series

J(x) =__20 a;4(x) 2
so that the integrals
! cos
J_ ) A(x) sin wx dx 3)
are obtainable analytically. For instance, the choice
Afx) = x* @

yields the existing quadrature formulae of Clendenin (1966),
Filon (1928) and Flinn (1960) corresponding ton = 1,2 and 5
respectively. The automatic generation of the quadrature
formula for general order n has been described by Alaylioglu,
Evans and Hyslop (1975).

The theory of approximation (Davis, 1963) suggests that a
better form for A4,(x) would be the Chebyshev polynomial
Ty(x). This process has been widely used for non-oscillatory
integrands and gives the well-known formulae of Clenshaw
and Curtis (1960). However, the evaluation of the integrals
(3) in the oscillatory case seems to present a problem when
Chebyshev polynomials are employed.

Bakhvalov and Vasil’eva (1968) have briefly considered this
problem (although their main theme was the use of Legendre
polynomials P(x)). They suggest that, if the zeros of the
Chebyshev polynoniials are used as the interpolatory points in
a Lagrange interpolation formula, then orthogonality relations
can be used to evaluate the required coefficients. They state
that the resulting quadrature formulae are somewhat more
complicated than the results they quote for the Legendre
polynomial procedure and imply that the effect of round-off in
the calculation may therefore be more serious.

Piessens and Poleunis (1971) also consider the use of
Chebyshev polynomials for A (x) but deviate from the
Bakhvalov and Vasil’eva approach in that they effectively
evaluate the basic integral (3) by a somewhat indirect method
involving a truncated infinite series of Bessel functions, instead
of utilising the orthogonality properties of summation over the

1} papeojumoq

zeros of the Chebyshev polynomials.
In the present work the Bakhvalov and Vasil’eva approach tos
the derivation of the Chebyshev based quadrature formula isZ
adopted and comparisons with the earlier papers are noted as»
the method is developed. Ny
Thus, following Bakhvalov and Vasil’eva, the integral

1
I= f(x) e** dx
-1

~
%)

dno~sfwepeoe

is treated by introducing the Lagrangian interpolatiom
polynomial of degree n 3

f) = 3 aTi) 68

which collocates with f(x) at the (n + 1) points x _%;)
(J=0,1,2,...,n), the prime denoting that the first term i
the summation is to be multiplied by }. If the points x; arec

0,

chosen to be the zeros of T,, ((x), yielding D
2+ 1 =, &
s = — = = 0 “ e
xJ COS [n T 1 2] J ) 1’ 2a »n (7§
then the coefficients @; may be found by using orthogonality>

relations. The required relations are

f_,(‘) Tix;) Ti(x;) = 0 i#*k
! —3n+1) i=k#0 (8
=n+1) i=k=0
and result in the well-known expression

20z IUdy §1°uo 1senb A

2 n
a; = P Jz;.of(xj) Ty(x;)
2 n Qi+ =
T h+l jgof(xj cos [ m+ D’ i] ©)

It is interesting to note the equivalent way of considering
equation (6) which utilises the integral orthogonality result

f T T(x)(A —-x)"¥dx=0 i#k
- —3n i=k#0 (10)
=7 i=k=0

which produces the formula

a=2 [ T 00~ tax an
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If f(x) is to be represented by a polynomial of degree n given
by (6) then this integral is obtained exactly from the Gauss—
Chebyshev equal weight quadrature formula of order (n + 1)
for the weight function w(x) = (1 — x?)"*on the interval
[—1, 1]. The required result is

1
Fx)(1 — x) " tdx = F(x;) + €44 (12
[ rwa - a2y % pe + e 0
where x; is given by (7) and the error term by

Epe1 = 2NFC"DO)[22"*22n + )1 (-1 <0 < 1) (13)

(Abramowitz and Stegun, 1965, p. 889). Equation (9) then
follows immediately.

The expansion (6) with a; given by (9) is now utilised in the
integral I and produces

I~ i’ a;N(w) (14)
where '_0
Nj(w) = Jl Ty(x) e dx . (15)
This may be written in Bal-(-livalov and Vasil’eva form as
I~ 2 D; f(x)) (16)
where
D, = (n+ 5 2 V@) Tx) a7

the order of summation having been changed. These results are
entirely analogous to the Legendre based prescription of the
Bakhvalov and Vasil’eva paper.

The main difficulty associated with this approach is the
evaluation of the basic integral Ny(w) and it is worthwhile
describing, at this stage, the related work of Piessens and
Poleunis (1971). These authors attempt to avoid the direct
evaluation of Ny(w) by using the alternative infinite expansion

(1 =) = ¥ 6 Ti) - a8

The resulting integrals

I ' T ()(1 — x2)~% % wox dx (19)
sin

-1
may be evaluated analytically and yield the results

j " 40 cos wx dx = EO =D i@ (20)
-1 k=
and

1 ©

[ fsmords = 5 cws(- 1t as@) @0

involving infinite series of Bessel functions.
The integral orthogonality result (10) is then used in (18) and
gives

2 1
= - j JS() Ti(x) dx . 7))
T J-1

Piessens and Poleunis then suggest that this integral should be
evaluated by using the finite expansion (6) and this leads to the
result

2

™M=

1
Cp " a; J‘ T,(x) T(x) dx . (23)
0 -1
The integrals in (23) are easily evaluated analytically and the
results for even and odd k as required by (20) and (21) are
quoted by Piessens and Poleunis.
It should be pointed out that their final results are also

obtainable from the direct Bakhvalov and Vasil’eva procedure
embodied in equations (14) and (15). In fact, it is easily seen
that their approach is merely equivalent to the evaluation of
N (w) by using the expansion of exp (iwx) with x = cos 0 as
an infinite series of Bessel functions (Abramowitz and Stegun,
1965, p. 361).

It is the evaluation of this infinite summation which suggests a
defect in the Piessens and Poleunis version of the Bakhvalov
and Vasil’eva—Chebyshev approach. Piessens and Poleunis
demonstrate that the terms in the series (20) and (21) decrease
rapidly for k > w/2 and suggest that truncation may be
effected after M terms where M is ‘only a little larger than w/2’.
Clearly, for large w the method is unsatisfactory especially
since the evaluation of the Bessel functions is required in the
terms of the series. An alternative procedure which avoids this
infinite series is therefore investigated.

The original Bakhvalov and Vasil’eva-Legendre work in-
volved the evaluation of the integral

Miw) = r Pi(x) ¢ dx @_

-1
which is replaced by (15) in the present investigation, by a threeé
term recurrence relation. This relation proved to be unstableO
in the forwards direction, particularly for small w, and it was®

necessary to use Miller’s algorithm (Abramowitz and Stegun,g
1965, p. 452). Similarly, in the present case, by writing 3
(@) = i"*Ny) @)%

and integrating the appropnate recurrence relations for the:
Chebyshev polynomials, it is possible to establish the result

ol () = 2k + 4) Ly (@) + 2k — 4) [ _ (o)
— 20 I(w) — ol _,(0) . (26)

This relation is again unstable in the forwards direction and theO
use of Miller’s algorithm is once more necessitated, a com-g
plication here being that (26) is a five term relation. It is alsoS
possible to derive three term recurrence relations for the separates.
integrals in (3), but these are again unstable and have the:,
additional disadvantage of being ‘inhomogeneous’.

Indeed, the question of the recurrence relation approach to—\
the Bakhvalov and Vasil’eva—Chebyshev procedure is bemg\
currently investigated by Patterson and his co—workersm
(Patterson, 1974)*. Consequently, in the present paper, aw
simple alternative approach is proposed forthe direct evaluationﬁ
of N(w) in (15) by a method which is analogous to the tech-3
niques described by the authors in their work on the<
corresponding Newton-Cotes based formulae.

NG OILSPEOET:S

| uo 1senb

2. The quadrature formula
The basis of the method is the evaluation of N () by picking

6

out the coefficients, D; , of x" in T(x) and then making use of%?
the results 3
1 r x)' -1 1 §
xcoswxdx = ¥ I |"| T sin (wx + i) (27)
-1 1=0 /]l o -
1 . r r] x~!
x"sinwxdx = — Y I![] ,+lcos(wx+‘}hz) (28)
-1 1=0 llw -

(Gradshteyn and Ryzhik, 1965).
The Chebyshev polynomials are of the form (Abramowitz and
Stegun, 1965)

To(x) =1
T,(x) =x
Ty(x) = 2x2 — 1 (29

Ts(x) = 4x> — 3x

*Since the preparation of this paper the work of Littlewood and Zakian (to be published), which also follows the recurrence relation approach,

has been brought to the attention of the authors.
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and the coefficients, D, ,, of x" in T(x) can be easily calculated
by means of the recurrence relation

D;,,=2D;_ 4,y —Dyz,iZ22,r<i (30)

yielding a ‘Pascal’ triangle, which facilitates computation. The
basic integrals Ny{w) of (15) are then easily obtained. In
practice these are usually separated into their real and imagin-
ary parts for the separate calculation of the integrals involving
cos w or sin w using, either (27) or (28) for even or odd r
respectively. '

The formula (14) is then used directly here and embodies the
Chebyshev fit (6) at the Gaussian based abscissae (7). In their
original work on non-oscillatory integrals Clenshaw and
Curtis utilised the alternative approximation

f6) = X () (1)

with collocation at the points x; (j = 0,1, 2, . . ., n) where x;
is now given by

xj=cos7-;-l],(j=0,1,2,...,n) (32)

the double primes denoting that the first and the last terms in
the summations are to be multiplied by 3. The alternative
orthogonality relation

YT () Tix) =0 i#k
j=0

i=k#0orn (33)

[NSTN

=ni=k=0o0rn

(¢f. Equation (8)) produces the result

SN N

a; Z;’ Sflx j) Ty(x ,)

J

=2 Y f(x;) cos ¥ (34)
j=0 n

which is then used in the quadrature formula (14) as an alter-
native to the Gauss-based prescription (9). It will be noticed
that equation (31) is a closed formula in that it involves the
end points x = —1 and x = 1, whereas (6) is open. Elliott
(1965) has pointed out that, in the evaluation of the non-
oscillatory integral, the truncation error involved in the use of
the classical or open formula (6) is of the order of 1/n2.
However, when the practical or closed series (31) is utilised the
truncation error is of order 1/n°.

In the present work, the use of the Clenshaw and Curtis
formula (31) is proposed, although (6) could be adopted if an
open formula is specifically required, such as in the case where
the integrand has singularities at its end points. Ellio.tt’s
analysis gives intuitive backing to our method, that collocation
at the practical abscissae is better than collocation at the
classical Chebyshev zeros, if we are more interested in the
integral of f(x) than in approximating f(x) itself.

Piessens and Poleunis demonstrate, that as for Clenshaw—
Curtis quadrature in the non-oscillatory case, the integral of
the finite Chebyshev expansion converges more quickly than
the expansion itself. It is hoped therefore to retain the advant-
ages of the Clenshaw and Curtis formulation in the oscillatory
case. In particular, by choosing the order of the formulae as
n=2 i=1,2,... the adaptive nature of the procedure
could be retained.

The errors involved in the Clenshaw and Curtis formulae
have been discussed by many authors such as O’Hara and
Smith (1968), Gentleman (1972) and Elliott (1965). The errors
are, in fact, less than might be expected. O’Hara and Smith
show that the error terms are such that the accuracy may even
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approach that of the corresponding n-point Gauss formula in
certain instances. In general however, more functions evalu-
ations are normally required for the Clenshaw—-Curtis case
than for the corresponding Gaussian quadrature. Nonetheless,
it is considered that the present prescription is worth
investigating as a practical alternative in the oscillatory case.

It is important to note that, as pointed out by Bakhvalov and
Vasil’eva it may be better not to sub-divide the range of
integration but to increase the order of the formula used when
Chebyshev (or Legendre) fitting is used for f(x). This is in
contrast with the methods of the previous work by the present
authors where equally spaced abscissae were used and gave
rise to formulae of the Newton—Cotes type. Due to instabilities
in the higher order coefficients, it was not possible to proceed
to large n there and the recommendation in practice was to
limit the order to n = 5 or 6 and sub-divide the interval of
integration uniformly. This method was also adopted by
Bakhvalov and Vasil’eva for comparison purposes in one of
their numerical applications, where they used a formula of
order n = 4 with a large number of sub-divisions, to consider
an integral involving f(x) = cos nux* with large u. The use of o
this technique is not entirely satisfactory in general, and great%
care must be exercised in the highly oscillatory cases when w9
is large. Indeed preliminary calculations based on the present
method have indicated that uniform sub-division may produceZ:
similar instabilities to those mentioned above and that the orderS
of the formulae would have to be similarly curtailed. Hence,=
uniform sub-division is not adopted here. However it is worth®
noting that it may be possible to avoid the cancellation effectss
produced by uniform sub-division by using special techniques§
appropriate to the particular function considered. As an$
example good results are obtained for f(x) = cos mux? by®
integrating between the ‘peaks’ (which occur at the zeros ofS
sin = mux?) or between the zeros of cos mux? using either3
Newton—Cotes or the present methods. This example is dis-2
cussed in detail in a later section.

Consequently to return to the derivation of the quadrature
formula, when the integral

I, = fbf(x) cos px dx (35)

is considered, a linear transformation enables the result to be

0,

/Ulwo:

e

ge/eleL/eP

written in the form 3
1 w
I. =1(b — a)cos K f F(t) cos wt dt g
1 =
-3 - a)sin K f F(t) sin wt dt (36)2
-1 g
where %
K = 1p(b + a) @GNz
® = 3p(b - a) G8)y
and R
Fit)= f3G + a) + b — a)x] . 39)
Approximating F(¢) by the polynomial of degree n
F(t) ~ 3" a,T(1) (40)
i=0
collocating at the (n + 1) points ¢;
tj=cos7;r1'-’ j=0()n (1)
yields
n i 1
I.~3(b—-acosK¥'"a; ¥ D;, J t" cos wt dt
i=0 r=0 -1

n i 1
— 306 -a)sinkY" a; Y D;, f fsinotd  (42)
. r=0

i=0 -1
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where

4=23"F (t) cos &' 43)
: nj=o n
Similarly
b
I, = f f(x) sin px dx 44
yields
n i 1
L~3b—-asinKY"a; 3 D;, J. t" cos wt dt
i=0 r=0 -1

n i 1
+ 3 —a)cosKY'" a; X D,-’,j t"sinwtdt (45)
i=0 r=0 -1

The basic integrals required in (42) and (45) are supplied by (27)
and (28).

3. Stability of the algorithm and practical recommendations

It will be noticed that the finite series occurring in equations
(27) and (28) converge rapidly when w is large. This will be
emphasised when the function f(x) is sufficiently smooth for
accurate fitting to be possible with a formula whose order, n,
is reasonably small. On the other hand, if f(x) requires a
formula of high order with a large value of n to achieve an
accurate fit the coefficients

n! 1
mn =D o't

which appear in (27) and (28) may become very large. (Note
that the largest value of r, namely r = n, has been taken here to
accentuate the effect.) This will be particularly noticeable when
 is small and serious instabilities may arise in this case of
small @ and large n. This is clearly due to the generation of
very large numbers, with the resulting cancellation when the
terms in the alternating series are summed.

An alternative procedure which avoids this instability is to use
series expansions for the trigonometric functions in (27) and
(28). The expressions

I=0()n (46)

v dx =2 3 (D™ 47
-1x Cos wx ax = ,§0(21+—r+_1)—(2-1_)_! (
when r is even and
. 1,.21+1
. ® (-D'o
) o 48
Lx sinoxdy =2 % o raasn Y

when r is odd, are readily obtained and are obviously most
useful in precisely those circumstances (small w, large r) under
which the finite series (27) and (28) are least stable. In practice,
it is easily demonstrated that the maximum value of / required
to yield double precision accuracy (about 22 figures) for the
basic integrals is given roughly by

ly =20 + 10, 49
round-off to integral values being implied. This estimate for
the truncation point of the infinite series is reliable for v < 10.
For larger values of w, it tends to be a gross over-estimate.
For instance, at ® = 100, /, = 210 whereas the actual maxi-
mum value of / required is only about 158. However, for such
large values of w, it is likely that the finite series (27) and (28)
would be used instead and, hence, it is suggested that (49)
provides a reasonable estimate of the number of terms required
in all practical cases.

Indeed, it is clear that formulae (47) and (48) exhibit
instabilities for large @ which are ‘complementary’ to those
shown by the finite series (27) and (28). It is possible to discuss
this effect qualitatively by considering the behaviour of the
related series for cos @ whose general term is of the form

(= D'o?/21)! I=012.... (50)
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Thus, the factors such as (2/ + r + 1)~* in (27) and (28) which
assist convergence in any case have been omitted. In the case
of the w™? series in (27) and (28) the coefficients of +sin @
and +cos w are given by equation (46) and range from 1/w
when / = 0 ton!/w"*! when / = n. A measure of the instability
of the series is provided by the ratio of these quantities,
namely

nljo" (51)
which are the reciprocals of the terms in (50) or the corres-
ponding terms in the series for sin w, thus demonstrating the
‘reciprocal’ nature of the instabilities.

An examination of the magnitude of the terms in (50) with
0 < I < [, demonstrates that, for a given w, the maximum

value is attained when 2/ = [w] and the required maximum is
therefore

L = o“Y[w]! . (52)

Consequently, when the alternating series for cos w is summed,
this initial build up in size of the terms before the final con-
vergence, results in severe cancellation if L is large ando
produces a loss of roughly s significant figures, where s is the
exponent of L. For example if o = 10, L is equal to 0.27557 . . g
x 10* and cos 10 is obtained to be —0.8390715112 using 1E
figure arithmetic. This is correct to only (11 — 4) = 7.
significant figures when compared with the accurate valu&
—0.8390715291. The value w = 10 is, of course, rather largez
to use in a power series approach and more realistic values
produce smaller cancellation effects. Thus, for @ = 5 only twa
significant figures are lost and for values less than four there i§
scarcely any diminution in accuracy. g
The complementary effect is observed for the original ™
series (27) and (28) when the inverse ratio (51) is consideredS
Ultimately this ratio will become very large for a given w if 7
is allowed to increase indefinitely and total instability woulE
then arise. However, in practice, the value of n will be restricteds
by the user and examination of the ratio (51) shows that, for &
given > 1, no serious build up in magnitude occurs until 7.
reaches values well beyond [2w]. (It will be recalled from thé
discussion leading to equation (52) that, as n increases, the ratio:
(51) actually decreases to a minimum atn = [w] before startin@
to increase). The situation is clearly best for large w when it i}
possible to tolerate large values of n before instability arises. &
It appears, therefore, that the main ™! finite series in (27) and?
(28) will be stable if 7 is restricted to values less than a critica

w

(o]

value, n,, which is given by g
«Q

n, = [2w0] . (53p

In practice, this is found to be much too stringent and it is
possible to replace it by a relation of the form ©
>

n,=[R2w] + (54%

where values of 7 as large as ¢ = 10 are tolerable, particularlﬁ

. for large w. Note that similar practical limits have been

proposed by Bakhvalov and Vasil’eva in their implementation
of Miller’s algorithm.

For values of w which are less than 1, the ratio (51) increases
monotonically with n and the resulting series are completely
unstable. However, the alternative series (47) and (48) are then
available and are stable for all n.

In practice, it is therefore recommended that for large w, say
@ > 4, the basic ™! series (27) and (28) should be utilised,
bearing in mind the restrictions implied by (54). When  is
smaller, a switch should then be made to the alternative w
series (47) and (48). This point is elaborated in the discussion
of the numerical examples presented in the next section.

A further effect arises in observing that in the limit as w — 0,
the value 2/(r + 1) is obtained from series (47) and that the
corresponding summation in equation (42) becomes
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—io 2D, ,/(r + 1) (55)

where the summation extends over even values of  and 7 is also
even in this, the symmetrical cosine case. The exact value of this
summation is given by integrating 7(x) (i even) and the result is

Zi‘, 2D, /(r + 1) = =2/(i* — 1) (i even) (55a)
r=0

When this expression is used in quadrature formula (14), the
result is, of course, the Clenshaw—Curtis prescription for the
integral

' S(x)dx-.
-1

This is compared with the Bakhvalov and Vasil’eva approach
which in the limit as w — 0 reproduces the Gauss-Legendre
formula for this integral.

However, if the numerical evaluation of summation (55) or,
indeed, the more general series

COoS
. r 6
B@ = % D, fx 0 o dx (6)

is attempted directly by the integration routine described here,
serious cancellation effects are observed when i is large. The
cancellation is due to the alternating signs and varying magni-
tudes of the Chebyshev coefficients (e.g. D;o = *1;
11 = 2'71). Since the magmtudes of the integrals fall off w1th
mcreasmg o, the instability effect is therefore most pronounced
for small w. A rough measure of this instability is given as
o — 0 by
2.2 57

and the number of figures lost by cancellation in the r series
(56) is of the order of the exponent of this quantity. Thus, at
1 = 12, about five figures are lost in evaluating B;(0) whilst at

= 20 about eight figures are lost. A rough guide to the
number of figures lost is provided by the expression

0.3i + 2. (58)
For large values of w, this accuracy loss will be reduced

roughly by the exponent of w.

At first sight, it appears that this is a very serious defect in
the method, but it should be recalled that the actual values of
the B,(w) are to be used in a quadrature formula of the form

in conjunction with the coefficients, a;, of the Chebyshev series
for f(x). Consequently, if f(x) is reasonably smooth, so that
accurate fitting is possible for fairly small values of # and the a;
coefficients (i = 0, 1, 2, ... n) fall off rapidly with increasing i,
then very accurate values of the integral (59) are obtained.
Convergence is aided by the fall off of B;(w) with increasing i.
This is particularly true in the case of small w where cancellation
in series (56) is at its worst, since, in this instance, B, falls off
most rapidly (approximately as 1/i?).

In practice, because of this effect, it has been found possible to
proceed to values of n in formula (59) which are much larger
than might be suspected from the restriction (58). This will be
illustrated by the examples described in the next section. Even
in the case of a badly-behaved function, where it was necessary
to use n values around 50 to achieve a modest fit, the contri-
butions from the smaller values of i were substantial. These
could be calculated accurately and resulted in reasonable
values for the integral in this extreme case.

However, if the function f(x) is such that a large ‘tail’ exists
in its Chebyshev expansion so that the contribution from the a,
end of the series is still large compared with the a, end, then 8
errors could occur. An even worse situation would arise for the 3

class of functions which are expressible only in the form g
=" aT) (60) g

where N is large. In fact, the integral =
Jl ) Ty(x) cos wx dx (61)%

i 2

itself, corresponding toay = 1 and @; = 0 (i # N) provides an &
extreme example. The accuracy loss, according to (58), would & o
be roughly (0.3N + 2) figures, less a large w contribution of =
about log (1 + w) figures. It would be necessary, in such & 8
examples to use double precision (or even, in extreme cases, 3
N ~50in (61), multiple precision) arithmetic to carry out the 8
r summation in (56).

In practice, as mentioned above, the functions f(x), arising in &
most applications are sufﬁmently smooth for the g; terms for & O
small i to dominate the series and the errors resultmg from the = =
large i instability are, therefore, insignificant, in these cases.
It is necessary, of course, to take certain practical precautions &
in using the algorithms and these were adopted in the treatment ¢ @
of the examples in the next section. Thus, in conducting &

w

/|U.fLu

/8G Z/€/

=S q.B. 59 convergence tests on a given integral with increasing n, it is S
j S (x) cox dx ,z:’, aB(@) (59) suggested that the stability at large n should be checked by
«Q
3
Table 1 Absolute errors in the numerical evaluation of §
1 =
fﬁ e* cos px dx ;;
Order N
n 1 10 100 1,000 10,000
1 12(-1 58 (—4) 1-6 (—4) 1-3(-6) 2:3(-9)
2 6:1(—4) 17 (-3) 19 (—-6) 3-5(-9) 2:7(-9)
3 144 (—4) 10 (—4) 2:4 (—6) 2:0(-98) 2:0(—11)
4 69 (=7 19 (-5) 1-2 (—8) 2:8 (—10) 2:0 (—11)
5 2:6 (—8) 22(=7) 88 (-9 70 (—11) 1-0 (—11)
6 1-5 (—10) 2:1(-98) 40 (—11) 1-:0 (—11) 1-:0 (—11)
7 5:0 (—11) 1-1 (—10) 1-0 (—11) 10 (—11) exact
8 exact 1-0 (—11) 1-0 (—11) 1-0 (—11) exact
9 exact 20 (—11) 1-:0 (—11) 1-0 (—11) exact
10 exact 1:0 (—11) 10 (—11) 1-0 (—=11) exact
11 exact 1-0 (—11) 1-0 (—11) 1-0 (—11) exact
12 exact 1-:0 (—11) 1-0 (—11) exact exact
exact 1-37802461355 —0-17889960288 —0-01362867977 0-00224821809 —0-00008311049
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proceeding beyond the point at which convergence of the
successive values of the integral has been established. Again,
for the reasonably well behaved functions treated, good results
were obtained for values of 7 less than 20 using single precision
arithmetic. However, the computations were then repeated in
double precision in order to check the results. This procedure is
recommended in practice in selected instances. Double
precision arithmetic was utilised in series (56) when values of n
in excess of 20 were employed.

4. Computational procedure and numerical applications

The quadrature rules (42) and (45) are generated for any order.
It is noted that some of the basic integrals of the form (27) and
(28) are not required, as the ith order Chebyshev polynomial
involves only [(i + 2)/2] non-zero coefficients. Efficiency is
achieved by using the following representations for the sums,
where the non-zero Chebyshev coefficients are declared by the
array [1:(i + 2) <+ 2] real d.

R-1 1
Sl =Y d; 4y j 13" cos wt dt (i even) (62)
r=0 -

1

R 1
S2 =3 d,’,j. t >~ tsinwtdt (iodd) (63)
r=1 -1

where R = [(i + 2)/2], the non-zero coefficients of the {D}
being denoted by d. Also, the values of the basic integrals are
stored for all the i’s considered and then used in the procedure
which evaluates I, or I,, thus resulting in computational
economy.

Furthermore, the number of cosines required in formula (43)
has been minimised by taking symmetry into account.

Again, it will be noticed that equations (27) and (28) involve
only two independent trigonometric functions, namely cos @
and sin .

An ALGOL 68 version of the algorithm is presented in the
Appendix and incorporates the switch from the w to the o!
series at @ = 4. Double precision arithmetic is recommended
for values of n much beyond n = 20.

The algorithm is applied first of all to the integral considered
in the earlier work, namely,

1
f ¢* cos px dx = [e(cos p + psinp) — 11(»* + 1)™* (64)
0

The absolute errors (defined by |exact value — computed value|)
in the numerical evaluation of the above integral are presented
in Table 1 for p = 10°, i = 0 (1) 4. The notation a(—m) is
used to denote @ x 10~™. The calculations were carried out in
single precision arithmetic (about 11 figures) to start with and
it is seen that machine accuracy is rapidly approached as the
order, n, of the formula is increased, particularly for the larger
values of p. The function f(x) = exp (x) is so smooth on [0, 1]
that accurate fitting is possible for relatively small values of n
(say 8 or 9) and excellent results are obtained as a consequence

of the good behaviour of equations (27) and (28). The stability
of the w ™1 series was tested by extending the order well beyond
the limits where the successive values of the integral had
converged. Stability was observed for p > 10 for values of n
up to at least 25, thus providing a test of the robustness of the
algorithm.

In the case p = 1, corresponding to w = %, the basic ™
series (27) and (28) exhibited instability for values of n beyond
n = 12. Thus, although convergence to the exact result was
observed at about n = 8, the calculated values of the integral
began to diverge from the exact at about n = 12. Clearly, this
was a case for a switch to be made to the alternative w series
(47) and (48) and it was confirmed that stable results were then
obtained for values up to at least 27.

The results presented show considerable improvement over:
the Filon-type quadrature prescriptions of the earlier work. It
is noticed that in the lowest order cases n = 1 and n = 2, the
two algorithms become, in fact, identical. The reason is that
the Clenshaw and Curtis abscissae

—cos™  j=
1 = cos j=01)n (6?

which were used in equation (40) degenerate into th
Newton—Cotes equally spaced abscissae 2

1

J

t-==2!'—l
n

x
&y u) pap

in the cases n = 1 and n = 2. This degeneracy does not,
course, occur for n > 3 and considerable improvement in
accuracy is obtained in these cases over the earlier calculations,

The present calculations were repeated using double precision
arithmetic for checking purposes, one of the main objecf
being the removal of the inaccuracies associated with the
evaluation of cos p and sin p when p is very large. For instancg,
subtraction of large multiples of = from the argument may
result in the loss of about four figures in accuracy whenp = 10%,
when the standard subroutines are employed. The dou
precision calculations yielded greater accuracy and confirmegd
the validity of the single precision results. 5

It is also of interest to use quadrature formula (45) for the teSt
integrals of Piessens and Poleunis. For the purpose
illustration the integral

= . —2mp(p? = 17! (p=2,3,4,..
X cos x sin px dx = 2T
,[ o ? {—n/z =1 63

is considered. Numerical results are depicted in Table 2 fai;
p=1,2,4,16,64 and 256. To facilitate direct comparison,
double precision calculations were carried out. The order of tlig
formula used was increased until the errors were less than thoéé
obtained by Piessens and Poleunis for 30 function evaluationg,
This accuracy was achieved for all values of p from about 19 or
20 function evaluations, thus representing an improvemeﬁjt
over the earlier calculations. This is due, presumably, to §

~

S

05857/¢%

Table 2 Comparison of the absolute errors in the numerical evaluation of

0

27
j. x cos x sin px dx .

Piessens and Poleunis

Present method

Absolute

)4 Exact error
1 —1-5707963267948966 5(—15)
2 —4-1887902047863910 9 (—15)
4 —1:6755160819145564 3(-15)
16 —0-3942390780975427 1(—14)
64 —0-0981987447275930 3(-15)
256 —0-0245440671189132 1(—15)

No. of function  Absolute No. of function
evaluations error evaluations

30 4 (—16) 19

30 6 (—16) 19

30 1(=195) 20

30 5(—15) 20

30 2(-16) 20

30 2 (—16) 19
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Table 3 Comparison of the absolute errors in the numerical evaluation of

2w
J X cos x sin px dx
0
 using formulae (6) (open) and (31) (closed)
n (order)
4 Sformula 2 10 15 17 22
1 closed >1 61 (=7 24 (—13) 1-0 (—15) 22 (—18)
open >1 61 (-7 33 (-13) 1-7 (—15) 22 (—18)
2 closed 1-0 3:0 (-9 4-4 (—13) 2-4 (—15) 2:0(—19
open 13 43 (-5 7-1 (—13) 3-4 (—15) 2:0(—19)
16 closed 1-5(-3) 2:8 (=7 19 (—11) 29 (—13) 1-4 (—17)
open 36 (-2) 35(-7) 1-2 (—10) 65 (—13) 2:7 (—17)
64 closed 24 (=5) 1-22(=7) 2:3(-12) 2:5(—14) 80(—19)
open 86 (-3) 1-6 (—6) 53 (—-12) 1-7 (—14) 1-4 (—18)
256 closed 37(=7) 19 (-9) 3-8(—14) 40 (—16) 19 (—20)
open 2:1(=3) 46 (-7 27 (—12) 1-1 (—14) 3-5(—19)
Table 4 Absolute errors in the numerical evaluation of
1
J cos mux? cos ngx dx
-1
n
u q exact ‘ 9 15 22
% —0-25816237030406 2:3(-298) 1-5 (—13) exact*
.‘IT %-1 0-02966470953267 144 (=7 57(—12) exact
‘% 0-00283575769375 11 (=9) 89 (—14) exact
n
u q exact 34 40 47
-z- 0-38215576878521 1-7 (—8) 45(—12) 9-1 (—13)
23 41
T T 0-09736925629823 16 (—5) 2:0 (—8) 60 (—12)
4‘51—1 0-00256072719178 84 (-39 1-6 (—10) 29 (—12)
' n
u q exact 34 40 47
g- 0-24111868127101 43 (-5) 8:0 (—6) 10 (=7
47 41
7 T 0-26746038313496 2:5(-2) 62 (—4) 1-4 (—98)
-‘%1 0-00233286903630 2-8(—4) 14 (-4 16 (—5)

*indicates accuracy in excess of 16 digits.

decrease in round-off errors generated by the present algorithm
compared with the earlier Bessel-function series prescription
for the evaluation of the basic integrals. It will also be noticed
that the values of w are w = pr here and that these are large
enough for the stability criterion (54) to be applicable for the
values of n used to fit f(x) = x cos x on [0, 2n]. The stability
of the algorithms was again tested by proceeding to larger
values of n and it was possible to go to n = 25 even for p = 1
and still use the ™! series.

- Numerical tests were also carried out for this integral using

264

the alternative ‘open’ or Gaussian based Chebyshev zeros of
expression (7) as utilised by Piessens and Poleunis. The results
are compared with those of the present algorithm which use the
Clenshaw—Curtis or ‘closed’ abscissae (32) and are shown in
Table 3 for increasing n. It will be observed that the closed
formula is converging more rapidly particularly for large w,
although for large values of n the accuracy obtained by both
methods is substantially the same. In this case, it will be noticed
that the adaptive nature of the closed formulae could be taken
into account here with advantage, to reduce the number of
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Table 5 Absolute errors in the numerical evaluation of

-1

1
j cos nux? dx -

n
u exact 34 40 47
‘1_7 0186880300 66 (~5) 12 (=5) 44 (=7T)
Table 6 Absolute errors in the numerical evaluation of
1
J- cos mux? cos ngx dx
-1
by integrating over separate cycles of cos nux>.
No. of function evaluations
u q 79 97 121 145 9
2
% 2.1 (-9) 34 (—11) 56 (—14) 18 (= 16) s
Q
Q
D
41 4 7.9 (=9) 1-1 (- 10) 59 (—14) 82 (—16) =
4 4 S
451 >
e 96 (—8) 1-3(-9) 49 (—12) 29 (—14) =
4
a
function evaluations required. This is not true for the case of  the corresponding w values bemg given by gr. g

the open formula.

Finally, a much more stringent test of the present algorithm is
carried out by considering the test integral of Bakhvalov and
Vasil’eva which involves the badly-behaved function
f(%) = cos nux?. The integral is denoted by

1
I(u,q) = J‘ cos nux? cos ngx dx (68)
-1

and has the exact value
1
I(u,q) = — {cos A[C(B;) + C(B,)]
J2u

+ sin A[S(B,) + S(B)1} (69)
where
A = nq?/(4u)

B, = (2/u)* (u + q/2)
and

B, = (2/u)* (u — q/2) (70)
and C(z) and S(z) are the Fresnel integrals. (Abramowitz and
Stegun, 1965, p. 304).

Bakhvalov and Vasil’eva have considered a set of 11 values of
g ranging from 5/4 to 451/4, coupled with a set of 14 values of u
ranging from 1/4 to 45/4 and have tabulated the relative and
absolute errors, quoting the maximum errors obtained over the
set {g}. They have also repeated the exercise using a Newton—
Cotes type formula with n = 4 with up to 90 sub-divisions for
comparison purposes. Here, attention is confined to the extreme
values of u and g together with one intermediate value in each

case to give a smaller, though representative, set of calculations.
Thus, the v and g values are taken to be

23 47

1
=373 7
and
_ 5 41 451
3’7’4 (72)
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The results obtained for various values of n are shown ifi
Table 4 in which the absolute errors are presented. It will be
seen that when u = 1/4 the function f(x) = cos nux? is ve
well-behaved and hence the order of the formula required
small, reasonable results being obtained even for n =%
Consequently, since the lowest w value is 57/4 which is nearli
4, the o~ ! series may be used confidently here.

However, in the cases u = 23/4 and u = 47/4 the function f1 (J%
possesses 12 and 24 zeros respectively on the range [—1, 1]3
Hence it will be necessary to use a hlgh order formula pa%
ticularly in the latter case. The ™! series should be stable herg
for the values ¢ = 41/4 and ¢ = 451/4 for which the corress
ponding values of [2w] as required by the stability crlterloii
(53) are 64 and 708 respectively. This is confirmed by the
entries in Table 4 where accurate results are obtainable in most
instances although values of 7 as large as n = 47 are requir
to fit f(x) In the worst case, u = 47/4 and g = 451/4, coﬂ’i
vergence is very slow, due mainly to the badly-behaved natul!e
of the function. Some improvement was observed on extendi
the calculation to order n = 55 where the absolute error was
found to be 5.5(—7). However, such values of n are extreme
both from the point of view of the stability criterion (58) an§
also economically, since it is desirable to produce an accurate
answer with a minimal number of function evaluations. This
particular case was therefore also treated by special techniques
as described below.

To return to Table 4 for g = 5/4 the value of [2w] is only
about eight and, clearly, the o™ series will be completely
unstable long before a large enough n value is attained to fit the
function accurately. It follows, therefore, that the alternative »
series (47) and (48) must be used here. This is again borne out
by the results obtained. The accuracy attained over the u and g
ranges is comparable with the results quoted by Bakhvalov and
Vasil’eva. Greater accuracy is apparently obtained by the
present algorithm in some instances, but it should be pointed
out that the present calculation has employed larger orders than
the maximum (n = 36) used in the earlier work and that double
precision arithmetic was necessary in the evaluation of the
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series (62) and (63) for n > 20. In fact it is noted that values of
n around 36 are necessary even to begin to fit the function
cos mux?, when u is large. Note also, that good results are
obtainable for various u values for both the large ¢ and the
small ¢ values.

As a further illustration of the behaviour of the present algor-
ithm for small values of w, the limiting case w — 0 is treated by
takingg = 0 in the worst behaved instance of the function f(x),
namely ¥ = 47/4. This is the case where the cancellation effects
in series(56)are at theirworst and should be a stringent practical
test of the stability of the algorithm, since very high orders are
required to fit f(x). The results are given in Table 5 and show
that, even though instabilities of this type are present, the
contribution from the smaller values of i are relatively large
and produce reasonable values of the integral.

The badly-behaved nature of the function f(x) = cos mux?
when u is large (say u = 47/4) prompted also an investigation
into the special techniques suggested in Section 2. Thus, the
range was sub-divided between the complete cycles of cos mux?,
starting at x = 0 and integrating over each cycle separately.
It was hoped to reduce the cancellation effects arising on
sub-division by this device. Thus, integration is carried out
between the points x = (2m/u)* where m = 0,1 2 ..., m,
and finally between (2mgy/u)* and x = 1. The maximum value
of m, is given by [u/2]. The results are shown in Table 6 and
demonstrate high accuracy for an economical number of
function evaluations in this, the most badly-behaved case of
f(x). The number of sub-divisions used hereis 5 + 1 = 6 and
the order of formula employed in each cycle varied fromn = 13
to n = 24. Accurate single precision results are therefore
obtainable by this method for an economical number (around
100) function evaluations using maximum order of around 20.
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Appendix

An ALGOL 68 version of the algorithm is presented. Although
this program does not use any advanced features of ALGOL 68
(and so could have been programmed in other languages such
as FORTRAN or ALGOL 60) the language chosen enables
the algorithm to be presented in a neat and efficient form.

*PROC' QUADRULE={'PROC' ('REAL')'REALIF,"REAL'A/B,P,"INT'N,
'BOOL'TYPE) 'REAL':

'BEGIN'

'C' THIS PROCEDURE EVALUATES THE INTEGRAL OF F(X) SIN OR COS pwX

ON [A/B] USING N-TH ORDER QUADRATURE FORMULA OF CLENSHAW=CURTIS

TYPE, NOTATION AS IN THE TEXT, THE BOOLEAN TYPE IS TRUE IF

SIN PX IS THE WEIGHT FUNCTION AND FALSE IF COS PX

IS THE WEIGHT, °C'

[OsNI'REF'[1'REAL'D; [0:N]'REAL'CAPF,TCWT,TSWT;

"REAL'INTEGRAL,S1,52,W1,WB/,CS1,CS2,A1,CAPK/,PARTY,
PART2,0MEGA,X1,X2,SINE,COSE;

"INT'RT/L,K/UDPBIN2,JT,NIT;

X1¢(B+A)/2,0; X2«(B=A)/2,0; CAPK#pwX1; OMEGA«Pw#X2;.

SINESIN(OMEGA) i COSE«COS(OMEGA); 'BUOL'ODD:

:P:gg'lNTEG=(HINT'N:'REAL'OHEGAI'REF"REAL'S!)'REAL':
BEGIN' )
'C' THIS IS A PROCEDURE TO EVALUATE THE INTEGRAL OF
XN SIN OR COS OMEGA*X ON [=1,1) USING EQUATIONS (4,2.1) AND
(4,242)¢ THE INTEGRAL FOR COSINE WEIGHT FUNCTION IS
DELIVERED WHILE THE INTEGRAL FOR SINE WEIGHT FUNCTION IS
ASSIGNED TQ SI , 'C*
'REAL'S1,S2,P1/P2,W1,W2,T1:T2,P3;P1¢p241,0;51¢52¢0,0;P3¢1,0;
"INT'IB,NN; [O:NJ'REAL'Y;
'BOQL"'SW«'TRUE' /SV®'ODD"N:
'REAL' Epsel, 08&=60;
"IF'N=Q!THEN'S140,0; 2,0%SINE/OMEGA
'ELSE’
p3€1 ,0/0MEGA; Y[0)¢P3;
TFUR'IT'TO'N'WHILE'P3>EPS' DO
(P3"TIMES' (N~1141)/0MEGA;Y(I11¢pP3;NNeIT);
IBeNH*T=(NN"/"4) wh; WICSINE; W2«COSE; T1eP3;
C'ODD" (N=NN) I SWe! FALSE'; T2e=TT1ISWe'TRUE';T2¢T1);
'FOR'IFT'FROM'NN'BY'=1'70'0' DO’
'BEGIN’
CI1ANN|TIeYLI]);
(SW!T2¢=T17SWe'FALSE"
| T2eT1 ¢ SWe'TRUE')) !

"IF'SV'THEN!'
1CASE'IB'IN!' (P1ew2;P2¢W2;1B«4)
(Ple=W1;P2eW1;1IBe1),
(P1e=W2;P26=W2;]1B¢2),
(P1eW1;P2e=W1;1Be3)
lEsAc' .
'ELSE'
'CASE'IB'IN?
(P1eW1;P2¢=W1;1Be4),
(P1eW2;P2¢W2] IBe1),
(Ple=W1;P26W1:1Be2),
(Ple=W2;P2e=W2;1B¢3)

S11PLUS' T1#*p1;S2'PLUS ' T2%P2
"END';

S1e(SV1§2=5110,0);
(SV10.0181-82)
IF[I
TEND';

TPROC'INTEG2=('INT'N, "REAL'OMEGA, "REF' 'REAL"SI) 'REAL":
TBEGIN'
'C' THE VALUE OF THE INTEGRAL (4,2,21) IS DELIVERED AND
THAT OF (4.2.22) 1S ASSIGNED TO S . ¢’
'REAL'S,  SK,T1,T2,W2«OMEGA*OMEGA;
"INT'M*18;: *BOOL'BOOL«'ODD'N;
SIe(BOOL!TY«UMEGA/ (N+2); SeT1;
TEOR'I'TO'M'WHILE' ('ABS*'(T1/§)>1,08&=22)'D0" .
"BEGIN'
TUUTIMEG ~W2# (2% 1+N) /(2#1+N42) /(2%1)/(2+141) ;S PLUS'TT
YEND':
S'TIMES'2,010,0);
SK«(BOOL!0,01T241,0/(N+1)iS5¢T2;
YFOR'I'TO'M'WHILE' ('ABS'(T2/5)>1.08&=22)'00"'
"BEGIN' .
T2 TIMES '=W2w(2wI4N=1)/(2wleN+1)/(2«1)/(2#1=1);S'PLUS' T2
'END'?
S'TIMES'2.0)}
sK
YEND';

'PROC'CHEBCOEF=( ' INT'R)'REF'L ] 'REAL':
'BEGIN'
1C' THIS Is A PROCEDURE TO CALCULATE THE NON=ZERO COEFFICIENTS
OF THE R=TH URDER CHEBYSHEV POLYNOMIAL USING THE
RECURRENCE RELATIONSHIP (4,2,4) . 'C'
VINT'R1«(R*2)'/ "2}
[1:R11'REAL'DB/DD}
DDC11eDB(1)eti

VIFTR>1 ' THEN" .
YEOR'I'FROM'2'TO'R1 DO’
"FOR'J'FROM'I'BY'=1°TO0'1' DO’

'BEGIN'
DDLJJeCJ=l | 2%wDBLI=1T1;Jm1)=DD(1]
12+08LJ=11-0D0J0);
DRLJI«(Jal2#pDLL)12%pDLJ]=DBLID) :
TEND';
(R¥CR'/12)*21'FOR'I'TO'R1°00'DD[1)«DBLI])
YFI': DD
YEND'?

*PROC'CAPI=(C 1'REAL'CAPF)'REAL';
'BEGIN'
VINT'N2&N'/'2:
INTEGRAL«0.0;
'C' THE INTEGRAL DEFINED BY (4,2,16) AND (6,2.,19) 'C’
PART1#PART2¢0.0;
"FOR'I'FROM'O'TO'N'DO'
"BEGIN'
§165240,0; R1«(I142)1/'2; ODDe'0ODD'I; Al«0.0;
1€' §1 AND §2 REPRESENT THE WEIGHTED INTEGRALS OF THE
CHEBYSHEV POLYNOMIALS DEFINED BY €4,3:1) (6.?.2)
FOR USE IN FORMULAE (4,2.16) AND (4,2.19) 'C
f*FOR' R 'TO' R1 'DO!
'BEGIN'
L«CODD!2%R=112%(R=1)); WI1*D[II[R]}
ST PLYUS'WAXTCWTLI; S2'PLUS'WI»TSWTIL]
'END';
cJt1g0len,s;
"FOR'J'TO'N2'DO" CJILIIaCIm011,01COSCPIWI*I/N));

[0:NI'REAL'CYI;

'C' FOR USE OF THE OPEN FORMULA THE PRECEDING TWO
LINES ARE REPLACED BY

VEOR' J'FROM'0'TO'N2'DO!
NI?JJG-(I-OH.ozcoswhx-(z.o'.m.o)/(Z.o-Noz.onn 0

"FOR'J'FROM'0'TO'N2'DO" AL'pPLUS'CAPFLJI*CIILJI:
(I=(¢1'/'2)w21 'FOR'J'FROM'N2+1'TO'N'DO’
Al '"PLUS'CAPF[JIwCJIIN=J]
1 'FOR'J'FROM'N2+1'TO'N'DO’
AI'PLUS'CAPFLJIw(=~CJIIN=J])):
Al 'pIV'(Ia0'OR"IaN|NIN/2.0);

'C' FQR USE OF THE QPEN FORMULA (4,1.21) THE PRECEDING
LINE IS REPLACED BY

AL'DIV' (1®0|N+1§(N+1)/2,0); *'C*

PART1'PLUS'AIwS1; PART2'PLUS'AwsS2
'END';
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INTEGRAL 'PLUS' 'IF' TYPE 'THEN'
'C! THE WEIGHT FUNCTION IS SIN PX 'C!
PARTI#CS2+PART2%(CS1
'ELSE!’
'C' THE WEIGHT FUNCTION IS COS PX 'C'
PART1#(S1=PART2¢CS2
IF L}

INTEGRAL 'TINES'X2
ND*

N2eN'/'2; LO:N2)'REAL'XS}

K«h;

L2: UPB®(K+2)'/'2;

DLKI«'LOC'[1:UPBI'REAL';

DIKI[11UPBI«CHEBCOEF (K):

CC(K'PLUS'1)<=NI 'GOTO' L2);

'C' THE PRECEDING PART GENERATES A TRIANGULAR ARRAY
TO RETAIN ALL THE NON-2ERO COEFFICIENTS OF CHEBYSHEV
POLYNOMIALS OF ORDER 0+1/2s++¢,N . 'C'

References

'C' XS IS (B=A)T/2 AS IN (4.2,13), ONLY HALF OF THE
NUMBER OF XS ARE CALCULATED .'C
XS[0)«X2; 'FUR'S'TO'N2'DO' XS[S14X2%COS(PI*S/N);

'C' FOR USE Of THE OPEN FORHULA €(4,1,21) THE PRECEDING LINE
1S REPLACED BY

"FOR*S'FROM'U'TU'N2'DO"
XS[SIaXIwcoS(PI*(2,0%541,0)/(2,0%N+2,0)); *C’

(OMEGA>4,0!
YFOR'I'FROM' O'Tu'N'on'(Tcuru1ﬂnrsa(x,oueeA.ws>, TSWTL11eWwB)
I'FOR'I'FROM' Q' TO'N'DO' (TCWTLII®INTEG2(1,0OMEGA,WB); TSWT(I1)*WB) );
'C' TCWT AND TSWT STORE THE VALUES OF INTEGRAL OF T+I cOS OR

SIN OMEGAwT ON [=1,1) , FOR OMEGA>% PROCEDURE INTEG,

OMEGA<4 INTEG2 IS CALLED , 'C!

CS14COS(CAPK); CS2«SIN(CAPK):
'FOR*J'FROM'O'TO'N2'DO' CAPFLJI*F(X1+XSLJ));
'FOR'J'FROM'N2+1'TO'N'DO' CAPFLJJaF(X1=XSIN=J1):

INTEGRAL«CAPI(CAPF);
INTEGRAL
'END';
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Book review

Queueing Systems, Vol 1: Theory by Leonard Kleinrock, 1975; 417
pages. (John Wiley, £9-75).

This first volume of a two volume work is aimed at providing an

acceptable basis, neither excessively theoretical nor sloppily intui-

tive, for its successor.

Volume 1 is divided into four parts: (a) preliminaries; (b) element-
ary queueing theory; (¢) intermediate queueing theory; (d) ad-
vanced material. None the worse for a tendency towards avuncular
jocularity and an occasional idiosyncracy (Thusly (sic) on page
17) this is a competent presentation of a range of topics in queueing
theory. The bias is towards the computer applications promised for
Vol. 2, which confers a distinctive character on the book. Indeed it
contains much material and discussion which has probably not been
collected together before. A balance has indeed been achieved in the
level of treatment between the intensely pure mathematical and
the over-simplified, and this should appeal to a wide audience
of under graduates and some graduates. This reviewer would not
choose it as a teaching companion, but it is assured a place on his
reference shelf.

The second part of the book discusses the equilibrium theory of
M/M systems with one or more servers, with and without finite
storage capacity (waiting room), with and without a closed popula-
tion of customers. Use is made of simple general results for state
dependent demand and service of the ‘A» and u»’ kind. Attention is
then devoted to generalisation with Erlangian service or demand, the
familiar application to group arrival and bulk service being noted.
Finally, there is discussion of networks of Markov queues.

Volume 19 Number3

Thie third part of the book incorporates first a treatment
M/G/1. This is acceptable except for the busy period where the
author would have done better to describe immediately Prabhms
beautiful time domain analysis leading to joint probablhty and
probabxlxty density function of number served and duration in tm@
There is no mention of output. We are then led to the multiserver
G/M/m whose treatment is relatively cursory. In particular there4s
no discussion of busy period.

In the fourth part of Volume 1 we find a more extended discussign
of Lindley’s treatment of waiting time, of Kingmann’s algebrq@:
formalism, and of duality relations.

The volume is concluded with an Appendix on the Laplace trans-
form and on generating functions (here called z-transforms, which is
most irritating and rates a definite minus mark) and their use in the
solution of differential-difference equations arising in Queueing
Theory. A second appendix is an aide mémoire on probability.

The glossary of notation and summary list of ‘important results’
constitutes a definite plus mark.

Other features which merit plus marks are the following. There
is a painstaking discussion of traffic intensity and utilisation factor
very early. Little’s formula is also introduced at a much earlier stage
than is common. It is right to emphasise such widely applicable
general results.

The reviewer awards negative marks for a poor selection of refer-
ences, poorly displayed. It is more useful to collect a list at the end.

But the overall impression has a positive balance. Volume 1 and
its promised successor deserve success.
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