The significance df the 1974 COBOL standard

J. M. Triance

Department of Computation, University of Manchester Institute of Science and Technology,

P.O. Box 88, Manchester M60 1QD

This paper studies the American National Standard on COBOL published in 1974. The many new
features are described and their significance investigated. Finally the problems of converting existing

programs to the new Standard are discussed.
(Received August 1975)

Introduction

This recent American National Standard, which will form the
basis of most new COBOL compilers in the next few years,
leaves the core of COBOL essentially the same. In fact simple
programs written in the two versions will be practically indis-
tinguishable. This is because most of the changes merely allow
greater freedom which an individual programmer may or may
not choose to use, exclude some usages which no sensible
programmer would ever have used or add facilities which are of
value to the more sophisticated programmer. Some of these
facilities, such as modular programming, indexed sequential
file organisation and the REWRITE verb will already be fam-
iliar to programmers on some computers as extensions to the
old standard. Others (such as the STRING verb and the
COMMUNICATIONS module) will be completely new to
most COBOL users. Overall the power of the language has been
considerably enhanced. The user of existing compilers however
will not welcome all the features of the new standard because
despite the aim of standardisation to ease the transition from
one version of COBOL to another this standard is not com-
pletely compatible with its predecessor. Thus some conversion
of programs will be necessary. This paper first investigates the
new facilities in COBOL 74 and then investigates the problems
of conversion. It is emphasised that many of the features
described already exist in some compilers.

Modular programming

This in-vogue term is normally used to refer to any approach
which attempts to produce one object program from more than
one relatively self-contained source code-unit (or module). This
“includes units which are combined prior to compilation
(sometimes called Sectional Subroutines) and those which are
separately compiled and combined later. The first approach has
always been possible in COBOL by use of the PERFORM verb.
The new standard also permits modules to be compiled
separately.

This facility known as Inter-Program Communication requires
that each module be a syntactically correct COBOL program.
Thus all four divisions must be present in each module and all
data items referred to in the Procedure Division must be
defined somewhere in the Data Division of the same module.
The main module initiates the execution of a submodule by
means of a CALL statement. When a CALL statement is
executed the specified module will be executed from the begin-
ning of its Procedure Division until an EXIT PROGRAM
statement is encountered whereupon control will return to the
statement following the original CALL statement in the calling
module. Thus each module has only one point of entry but any
number of exits. The called module can in turn call other
modules, and so on, provided that a module does not directly
or indirectly call itself: recursion is not allowed.

Data items which are transferred between two modules must
be listed in the USING clause (see Fig. 1 which shows parts of

Volume 19 Number 4

a main module and a module which it calls to calculate a check
digit). Thus the USING clause lists the data items which are
used in both modules. It appears in the CALL statement of the
calling module and the Procedure Division heading of the called
module. Whenever a data item in the latter is referred to it iy
processed as if the reference was to the data item which appears
in the corresponding position in the USING clause of thg
CALL statement. Thus in the example (Fig. 1) when CODE-NG
is specified in any statement in the Procedure Division of the:
called module then the data item CUST-NO in the calling
module is accessed. A module is no different from any COBOE:
program in that the name chosen for the data item only hag
significance within the module so the programmer can choos§
whether to give corresponding data items in two modules th&
same name or not. The USING parameters in the CALE
statement (CUST-NO and CHARS in the example) must bg
defined normally in the Data-Division. Those in the called

Q

Calling module
IDENTIFICATION DIVISION.
PROGRAM-ID. VALCUST.

DATA DIVISION.

WORKING-STORAGE SECTION.
77 CUST-NO PIC X(10).

77 CHARS PIC 99.
PROCEDURE DIVISION.

CALL “CHECKDIG”
USING CUST-NO CHARS.
Called module
IDENTIFICATION DIVISION.
PROGRAM-ID. CHECKDIG.

DATA DIVISION.
WORKING-STORAGE SECTION.
77 CURR-DIG PIC 99.

77 CALC-DIG PIC 99.

202 1udy 61 U0 }sanb Aq | 9¥9Z€/S62/1/6 | /3101E/|uliodjwo

LINKAGE SECTION.

77 CHARS PIC 99.
1 CODE-NO.
5 DIGIT PIC 9 OCCURS 10.

PROCEDURE DIVISION

USING CODE-NO CHARS.
INIT.

MOVE 1 TO CURR-DIG.

MOVE CALC-DIG TO DIGIT (CURR-DIG).
END-CD.
EXIT PROGRAM.

Fig. 1 Example of Inter-Program Communication

module however (CODE-NO and CHARS) are really only
synonyms and therefore require no additional allocation of
core. However the compiler does need to have a description of
these items so that it can determine such things as their length
and data format. To achieve this all the items listed in the
USING clause of the Procedure Division heading must be
defined in the Linkage Section of the Data Division which
allows the structure of the data items to be specified without
any core being allocated for them.

Other facilities available are the option of deciding which
module any CALL statement executes at run time and the
overlaying of modules. When a data-name rather than a
literal is specified after the word CALL then the module whose
name is currently stored in the data-name is executed. This can
of course, be altered as desired during the running of the
program.

When a CALL statement is executed it is possible to detect and
take corrective action if there is insufficient room in core for
the called module. This corrective action could consist of
logically removing from core another module by means of the
CANCEL verb. When a module which has been overlayed in
this manner is next accessed it will be in the same state as it was
initially. Any module which is only partially executed cannot be
cancelled.

This facility undoubtedly satisfies the basic requirements of
modular programming. However problems might result from
the fact that parameters in a using clause are restricted to level
77 or level 1 data items. Another problem is that it is not clear
from the standard to what extent any file can be processed in
more than one module. Finally the programmer faces the chore
of having to repeat all the Identification and Environment
Division coding in each module.

File organisation and access

The existing techniques for accessing sequential files based on
the OPEN, CLOSE, READ and WRITE verbs remain
unaltered. There are, however, many new facilities for use with
magnetic files.

‘Piggy-backing’ is now possible: in other words, records can
be added to the end of an existing sequential file by opening the
file with the EXTEND option and then simply issuing WRITE
instructions as usual.

Random access by means of the ACTUAL KEY has been
dropped and in its place there are the Indexed and Relative file
organisations. With the former the Standard makes no mention
of indexes or overflow areas but it is, as its name suggests,
compatible with the typical indexed sequential file organi-
sations supported by many operating systems. The programmer
must indicate the position of the key in the record by specifying
its data-name. The READ verb can then be used to access
records sequentially or obtain a record with a given key value.
The WRITE verb can, similarly, be used to output records
sequentially or randomly. Besides specifying the key on which
the file is sequenced (the prime key) it is also possible to specify
one or more alternate keys. When an alternate key is specified
(that is another field within each record of the file) records can
be accessed by the value of this key field. The programmer can
also read the file in sequence by the alternate key. This, pre-
sumably, would prove to be a rather inefficient way of accessing
the whole file, but will be useful for obtaining all the records
with the same key once the first one has been located: the value
of an alternate key (unlike the prime key) need not be unique in
each record on the file. Thus the Indexed I-O module offers
partially inverted files as well as indexed sequential.

The Relative file organisation corresponds to one possible
implementation of its predecessor (random access by ACTUAL
KEY) with some additional features. A relative file can simply
be regarded as a big one-dimensional table on backing store
rather than in core. Records can be written and read sequentially

but it is also possible to access individual records by specifying
their relative position in the file. If, for example, 6 is moved to
the field specified in the RELATIVE KEY clause of the
SELECT entry the next READ statement will access the sixth
record in the file.

On some computers random access is currently achieved by
specifying the hardware address, such as cylinder and track
numbers, in the ACTUAL KEY and in some cases synonyms
are handled by software. Compared with such implementations
Relative I-O is simpler and it is device independent. On the
other hand if the programmer wishes to use a randomising
algorithm to locate his records it is no longer possible for the
software to handle synonyms automatically. Furthermore
because the programmer has no knowledge of where the cylin-
der boundaries lie any method he devises for handling overflows
could prove inefficient. These problems are unlikely to incon-
venience most users, however, since when records must be
located by key.values the Indexed organisation will normally
be an adequate (or desirable) substitute for randomising algor-
ithms. It is however likely that some compilers will support
Relative but not Indexed I-O.

It has already been indicated that Indexed and Relative files
can be accessed either sequentially or randomly. In addition
they can be accessed dynamically which means that records can
be accessed by key value (i.e. position in the case of relative
files) and sequentially in the same run. The NEXT option of the
READ verb is specified to indicate that the next record in
sequence is to be obtained regardless of the type of access that
preceded or will follow it.

There are also two new verbs which can be used with Indexed
and Relative files. They are START and DELETE. Sequential
access can begin with the record having any specified key value
simply by preceding the READ statements by an appropriate
START statement. In the case of an alternate key the access
begins at the first record with the given key value. With other
variations of this verb it is possible to begin access at the record
whose key is ‘greater than’ or ‘greater than or equal to’ a given
value. The DELETE verb, as its name suggests, can be used to
prevent any record from being accessed in the future—the data
is logically destroyed.

There are two new facilities, REWRITE and FILE STATUS
which can be used with any of the file organisations. The
REWRITE verb is used to update records in place. With
sequential access the record most recently read is replaced in its
amended form. With random access the record in core replaces
the record already on the file which has the specified key value.
In either case the new record and the replaced one must be of
the same length.

The FILE STATUS facility in the new Standard is designed to
supplement, or if the programmer desires, replace thetraditional
exception handling for files. To use this facility with a file a two
character data item must be specified in the FILE STATUS
clause in the SELECT entry. After each operation on the file
this data item is automatically set to indicate the outcome of the
operation (such as ‘success’, ‘end of file’ or ‘sequence error’ in
an Indexed file). The programmer can specify a declarative
section which will be executed when the operation is unsuccess-
ful. This section can check the File Status data item to discover
which type of exception has occurred and then take the appro-
priate action. This facility does not prevent the programmer
from continuing to use the AT END & INVALID KEY
clauses except that the latter can no longer be used with
sequential files.

Finally the Standard presents many operating systems with a
sizeable problem. None of the file organisations are restricted
to fixed length records only. So in theory the programmer will
be able to have variable length record Relative and Indexed
files in any full standard compiler. The user should check
carefully to see if the manufacturer solves this problem by

The Computer Journal

202 udy 61 U0 188n6 AQ | 99ZE/S62/7/6 1 /91014E/|UfL00/W0d"dNO"oILLEPEDE//:SARY W) PAPEOUMOQ

padding out all records to the maximum length with the
resulting waste of space in the files.

Sequencing data

As file sorting has been supported by COBOL for some time
the addition of the simpler task of merging comes as no surprise.
The MERGE statement is similar in format to the SORT
statement (see Fig. 2).

It specifies the name of the work file (SALES-MERGE in
the example), the keys (REGION and SALES-VALUE) in
decreasing significance with an indication of whether the data in
each key field is descending or ascending. Finally it lists the
names of the input files (CUMULATIVE-SALES and
TODAYS-SALES) and the output file (NEW-CUM-SALES).
For consistency with SORT the work file is defined in an SD the
associated record of which includes the definition of the keys.
Furthermore the work file name must appear in a SELECT
statement. However since the same file cannot be used for input
and output from the merge there appears to be no need for any
actual working space on backing store. So unlike SORT the
work file appears to be a purely imaginary file which nonetheless
must satisfy the rules of COBOL.

As with the SORT verb an output procedure can be specified
instead of an output file but an input procedure cannot be
specified presumably because the type of input procedure used
in SORT would not be suitable. Consistency in the USING
option has been maintained by permitting more than one file
to be input to the SORT verb. Both verbs can only be used
for sequentially organised files.

One of the problems previously posed when files and COBOL
programs are transferred from one computer to another has
been the different character sets and collating sequences. To
alleviate this problem each COBOL compiler is now required to
support the American National Standard Code for Information
Interchange and may, if desired, support any other character
sets. The programmer can then use the CODE-SET clause in an
FD entry to indicate which of these character sets should be
used for that file. This will often be of value when a magnetic
tape is used to transfer data between the computer and some
other equipment. :

Besides this external use the programmer can specify which
collating sequence should be used for all comparisons in the
program. He can specify one of the sets supported by the
compiler or define his own in the Special-Names paragraph.
‘The collating sequence chosen would be used in all relation
conditions and any SORT or MERGE statements in which an
alternate collating sequence had not been specified.

Producing reports

The Report Writer facility has not been altered in principle.
‘There are however many changes of detail most of which are
aimed at removing ambiguities or imposing rules which the
sensible programmer will already be adhering to. The one
completely new feature is the SUPPRESS verb which can be
used to prevent a specific report group from being output
whenever required. Thus if for example a control heading was
only required when no higher level control break had occurred
- this situation could be detected and a SUPPRESS statement
executed to prevent the heading from appearing.

MERGE SALES-MERGE
ASCENDING KEY REGION
DESCENDING KEY SALES-VALUE
USING CUMULATIVE-SALES TODAYS-SALES
GIVING NEW-CUM-SALES.

Fig. 2 A Merge Statement

Volume 19 Number 4

Some of the most useful facilities in the Report Writer have
also been made available for report production by means of the
WRITE verb. These facilities are concerned with the end of
page situation. In the FD entry of a print file the programmer
can indicate by means of the LINAGE clause the number of
lines on the page required (a) for printing, (b) as a top margin
and (¢) as a bottom margin. Furthermore he can, if he wishes,
specify where within the section used for printing a page
‘footing’ (the opposite to heading for those who are not familiar
with Report Writer terminology) is to appear. Fig. 3 shows an.
example of the LINAGE clause showing the page format
which results.

FD PRINT-FILE
LABEL RECORDS OMITTED
LINAGE 60 LINES
FOOTING AT 58
LINES AT TOP 3
LINES AT BOTTOM 3.

Fig. 3 Use of the LINAGE clause

w]

line a g
1 2
2 no printing (TOP margin) li?xes 8
3 g
4 Y5

. _ 3

. page headings and =

. ordinary printlines g

. 58 g)T

. lines 2

. ’ [¢]

. 60%-

. lines

. C
60 2
61 3
62 page footings (FOOTING area) S
63 vs
64 3 =
65 no printing (BOTTOM margin) lines = 2
66 + S
o

©

N

)

(<)

2l

)

Users of the Report Writer facility should note that unlike the?
PAGE LIMIT clause this clause does not use absolute line?
numbers (the reason for this inconsistency is not obvious)Z
However an advantage that this clause offers over the corres%
ponding Report Writer facility is that it is dynamic: data names»,
can be specified instead of integers and by altering their valuesS .
each new page can, if required, have a different format. >

The advantage of describing the page format is that the page>
end will be detected automatically and, if required, handled”
automatically. Thus in this latter case an attempt to print inJ
the bottom margin will cause an automatic advance to the new™
page and past its top margin. Alternatively the programmer
can take his own action whenever an attempt is made to print
in the footing area or beyond by using the END-OF-PAGE
clause in the WRITE statement. When such an attempt is made
the statement in this clause is executed allowing the program-
mer to print any page footings and then headings he requires.
Another clause in the WRITE verb allows the stationery to be
advanced to a new page, whether or not the previous page is full.
This is achieved by WRITE... AFTER ADVANCING
PAGE.

These new facilities mean that the programmer need no longer
concern himself with machine dependent conventions for
advancing to the top of a page and furthermore need no longer
keep a count of the lines printed so that he knows when the
page is full. This latter task is done automatically when the

297

LINAGE clause is used and the current line number can, if
desired, be accessed in the special register LINAGE-
COUNTER.

Debugging

The previous Standard has no facilities designed specifically for
debugging. This standard does not provide new debugging
verbs (such as EXHIBIT and TRACE) but does provide the
opportunity for the programmer to take whatever action is
required at predetermined points in the program.

When a USE FOR DEBUGGING declarative is included in
the program the progress of the program is automatically
monitored. After executing a procedure whose name appears in
such a statement the relevant declarative is executed. This gives
the programmer the opportunity to print out the procedure-
name and the values of any data items or take any other
appropriate action. The execution of a dubugging declarative
can also be initiated by reference to specified file-names or
identifiers. Thus the progress of any data-item, file or the
transfer of control within the Procedure Division can be
monitored. Each time one of these declaratives is executed a
special register (DEBUG-ITEM) is automatically provided
with details of the cause of execution such as the relevant
source-line number, the name of the relevant procedure, data
item or file and an explanatory message. This information is
provided in such a form that it can be printed (or DISPLAYED)
without further editing if required.

In addition to debugging declaratives extra lines of coding can
be included anywhere in the program after the OBJECT-
COMPUTER paragraph, specifically for debugging purposes.
These lines are identified by the ‘D’ in column 7. Such lines and
any debugging declaratives will only be compiled when the
DEBUGGING MODE clause is specified in the SOURCE-
COMPUTER paragraph, otherwise they are treated as
comments. Furthermore when such debugging coding is com-

piled its use is still optional and can be included or excluded,
as required, in each run. A run time switch is set or cleared by
the operator or operating system.

Character handling
There are three new verbs which are designed for identifying
and manipulating strings of characters (including strings of one,
i.e. individual characters) within a data item. They are
INSPECT, STRING and UNSTRING.
INSPECT which supersedes EXAMINE can count the
number of occurrences of a particular string of characters and
replace each occurrence by another string. The main advantages
compared to EXAMINE are
(a) strings of characters rather than just single characters can
be counted and replaced;

(b) the relevant characters can be specified by means of an
identifier instead of a literal if required;

(c) the counting and replacing can be confined to part of the
data item by specifying a delimiting character string;

(d) more than one character string can be counted or replacedg
in a data item by a single execution of an INSPECTZ
statement.

Some of these capabilities are shown in Fig. 4 where the state-q
ment replaces leading spaces in INPUT-VAL by zeroes andg
counts how many characters follow the decimal point stormgB
the result in DEC-PLACES.

The STRING verb is used to combine two or more strings of @
characters. The example in Fig. 5 shows how a date can be setm
up by combining three fields and two literals.

The entry immediately following DELIMITED BY mdlcateSB
how much of the preceding data items are transferred to the
destination field (in this case FULL-DATE). When SIZE isS
specified the full field is transferred (in this case both characters
of DAY-IN-MONTH and a single space are placed at the

papeojuM

Before execution INPUT-VAL I I I |4 I . I 3 l 2]

Statement INSPECT INPUT-VAL

TALLYING DEC—PLACES FOR CHARACTERS AFTER “”

REPLACING LEADING SPACES BY ZEROES.

After execution ineut-vaL [o]ofo]4] |3]2]

pEC-PLACES [0] o] 2]

Fig. 4 Action of the INSPECT verb

Before execution ~ DAY—~IN-MONTH 1

202 1udy 61 U0 }sanb Aq | 9¥9Z€/S62/1/6 | /9101HE/|ulliod/w

MONTH [M[A]R[c[u] T] [}

YEAR

FULL-DATE LTI TTTTITTITI I Il TITd

Statement STRING DAY—IN—MONTH SPACE DELIMITED BY SIZE
MONTH DELIMITED BY SPACE
“ 19”7 YEAR DELIMITED BY SIZE
INTO FULL-DATE.

After execution

FULL-DATE [l Tw[alrlcful Tolol sl [1 1]

Fig. 5 An example of the STRING verb

The Computer Journal

beginning of FULL-DATE). When anything other than SIZE
is specified it acts as a delimiter which when encountered,
prevents any more characters being transferred (thus characters
are transferred from MONTH to the next available positions
in FULL-DATE until a space is encountered in MONTH
whereupon characters are transferred from the next entry in
this case “19’°). Besides figurative constants the delimiter can

_be any non-numeric literal or the contents of an identifier,
An additional feature not shown in the example is to define as
a pointer a numeric data item. This will indicate the relative
position in the destination field where the next character is to
be inserted. Thus character strings can be copied into the middle
of data items without disturbing the surrounding characters.
In Fig. 5 the same result would have occurred if a pointer had
been defined and preset to 1. In some situations it is possible
for the destination field to become full before a STRING
statement has successfully concluded. This condition can be
detected by an OVERFLOW phrase.

The UNSTRING statement, as would be expected, performs
the opposite activity of dividing a data item up into several
separate strings of characters. An added bonus is the option of
being provided with a count of the number of characters
transferred to each substring. This verb will be of great value
when reading in records which contain several variable length
data items separated by identifiable characters.

Communications

The new communications module allows a COBOL object
program to send messages to or receive messages from any
remote devices (teletypes, visual display units, paper tape
punches, card readers, printers or even other computers). It
depends on the existence of a ‘Message Control System’ which
performs similar managerial and device dependent tasks to the
ones that an operating system performs for the local peri-
pherals such as discs and card readers. After any editing or
code conversion which is necessary the messages arriving at the
computer are placed in a queue to await processing by a
COBOL program. The user may specify several queues which
can be used according to a variety of criteria (such as one queue
for each device, or group of devices, or one queue for each
application). A COBOL program can then obtain the next
available message by specifying the relevant queue and exe-
cuting a RECEIVE statement (just as the next disc record can
be obtained by a READ statement). It is also possible to give
the Message Control System a variable amount of freedom in
selecting which queue the message is to be taken from. Con-
versely when records are to be transmitted to remote devices
the COBOL program must specify the names of the relevant
destinations and execute a SEND statement. This will cause
the message generated by the program to be placed in a queue
to await transmission by the Message Control System.

Although such action will often be taken outside the program
it is nonetheless possible to logically connect and disconnect
the remote devices by means of the ENABLE and DISABLE
verbs. A facility that is, however, essential to the nature of
telecommunications is the ability to initiate the execution of a
COBOL program in two ways. Besides causing the program to
be executed by normal means (such as by Job Control language)
the program can also, if required, be initiated by the Message
Control System when it discovers that there are messages which
await processing by the program.

This module fills a gap which has existed in COBOL for too
long. In so doing it has further eroded the concept that all
input/output in COBOL is in the form of files. In place of
SELECT and FD entries this facility has a CD (communi-
cation description) entry which works on completely different
principles. Thus to transfer data out of a COBOL program in
various situations the programmer can use WRITE, DISPLAY,
RELEASE, GENERATE and SEND (and if the proposed

Volume 19 Number 4

database extensions are approved INSERT, MODIFY and
STORE). The feeling that this approach to telecommuni-
cations could be improved upon is supported by the fact that at
least one major manufacturer is omitting the Communications
Module from an otherwise complete implementation of this
standard.

Other changes

In addition to the substantial changes already described a
number of smaller amendments have been made largely to
remove anomalies and ambiguities. Some of the more signifi-
cant ones are described in this section.

The programmer will now have more freedom in the way he
writes his program. Spaces can precede punctuation (such as
full stops and commas), the use of commas and semicolons is
completely interchangeable and optional and comments can be
placed anywhere in the program. To indicate that a line con-
tains comments an asterisk is placed in column 7. The inflexible
REMARKS and NOTE entries have been dropped.

Several changes have been made in the Data Division. Level
77 entries need no longer precede all other entries in the
Working Storage Section. The character ““/” can be used in
picture string as a simple insertion character like B and OZ
The OCCURS clause with the DEPENDING ON option is3
now restricted to use at the end of a record. This appreciably%
reduces the potential of this clause (see Triance, 1974). Howevers
on the positive side the actual size of a variable lengthed®.
record will be used whenever it is processed (within core as wel%‘
as during input or output). Another enhancement to the data:
description entry is the new SIGN clause which allows theg
programmer to spemfy where and, to a certain extent, how ans
operational sign is to be stored in a numeric data item. This hag—%-
previously only been possible with numeric edited items. Thus2
if the programmer specifies SIGN IS LEADING SEPARATE?
CHARACTER numbers such as —14 or +23 can be read i m3
from such media as punched cards with the sign punched as ao
separate character. Reading negative numbers with the oldS
Standard was machine dependent and in some cases extremely\
cumbersome.

Two changes in the Procedure Division which have not been\
mentioned yet are enhancements to ACCEPT and SET.2
ACCEPT can now be used to access the system’s date and timeﬁ
and an index can be SET UP (or DOWN) by negative as well as\
positive amounts.

Finally the COPY statement has been made a lot morem
flexible. It may now be used anywhere that a COBOL word mayz
appear. Furthermore groups of words, as well as individualg
words may be replaced while text is being copied from a3
library.

dy 61 uo

The problem of conversion

Anyone changing to a pure American National Standard=.

(ANS) 74 compiler will face a conversion problem for ex1stmg§

programs because there are an appreciable number of features®

which an ANS 68 compiler will accept but an ANS 74 compiler

will not. Worse still there are a few statements which will be

equally acceptable to both compilers but will generate different

object code. The reasons for the incompatibility are:

(a) the clarification of rules,

(b) the removal of facilities which would be of little use in the
new Standard, and

(c) additions to the list of reserved words.

In general the clarification of rules has the effect of preventing

programmers from doing things which were never intended in

COBOL. For example the new standard states that SEARCH

ALL (which is normally implemented as a binary search), will

only work correctly on a table which is in the correct sequence
as indicated by the ASCENDING/DESCENDING KEY

299

option of the OCCURS clause. Thus these clarifications are
unlikely to cause serious problems when converting existing
programs. This is because the average programmer, abiding by
the spirit of COBOL as well as the rules, would not have
broken the new rules and furthermore with most compilers it
would not have been possible to do so anyway.

The facilities being dropped .because they are of little use are
those such as EXAMINE and NOTE, which are superseded
and those which were not used much under the last standard.
SEEK and user label processing fall into this category.

Each new facility in COBOL requires new reserved words.
This standard introduces more than sixty of them, many of
which (such as DATE, DESTINATION, LENGTH and
POINTER) are used widely as data and procedure names.
These will all have to be located and changed before a program
can be re-compiled using an ANS 74 compiler.

Admittedly none of these problems need be faced until a
program is re-compiled for some other reason (e.g. to remove a
bug or implement a systems change). Even then re-
compilation will cause no problems as long as the old compiler
is available. But when support on the old compiler has been
withdrawn the user could face an appreciable delay in re-
compiling a faulty program if it had not already been converted.

Once the user has accepted the necessity of converting
programs most of the changes will cause few problems because
for them the conversion method is obvious and failure to
convert will be highlighted upon compilation with the new
compiler. Thus Remarks and Notes can be converted simply by
placing an asterisk in column 7 of the lines in which they appear
with some copying of the code necessary if any NOTE sen-
tences share a line with other coding. EXAMINE statements
can be replaced with an equivalent INSPECT statement.
Any SEEK statement can simply be removed from the program
and there are several other changes where the modification will
require little effect.

However there are a few changes which could cause appreci-
. able problems. Firstly there are existing facilities which have no
exact equivalent in the new standard. Most notably is the super-
seded random access (based on the ACTUAL KEY). Most of
these files can be replaced by either Relative or Indexed files.
But problems will arise for those users who, for example, can
place records on specific cylinders and need very fast access to
every record (including overflows). Another major problem
could be where an OCCURS DEPENDING clause has been
used within the body of the record. Achieving the same effect by
other means would be extremely cumbersome.

Another potential cause of significant problems is those
changes which effect only run time behaviour. Thus the old
coding compiles correctly but different results are produced.
These problems result from the removal of ambiguities in the
language and will not therefore affect all compilers. One
example already mentioned is the use of the actual length of a

References

ANSI.
way, New York, New York 10018 (Price $17).

ANSI.
10018.

TRIANCE, J. M. (1974).

record containing an OCCURS DEPENDING clause when
the record is moved within the computer’s core: many com-
pilers move the maximum length. Another example is contained
in the statement

PERFORM SALES-ANALYSIS .
VARYING DISTRICT FROM 1 BY 1 UNTIL DSITRICT >
D-COUNT
AFTER DAY-NO FROM FIRST-DAY BY 1 UNTIL DAY-NO
> LAST DAY.

If FIRST-DAY is altered during the execution of this statement
it can now affect the number of times the routine is performed
since the latest value will be used for re-initialising DAY-NO.

The conversion problem described in this section is from a
pure 1968 Standard compiler to apure 1974 Standard compiler.
In practice the move will be between two compilers which have
extensions and, quite possibly, deviations. This actual con-
version would be made worse if the writer of the old compiler
had incorrectly anticipated the new standard with the result
that such things as Indexed files and the Modular Program-

ming statements had to be converted as well. However in general 2
it is hoped that the compiler writer will ease the conversion =
problem. His main contribution would be to allow the defunct & 8
features to die out gracefully rather than abruptly removmga
them from the language. The accompanying manual should s
however indicate that these features are on the way out and =

should not be used in any new programs. Another service theé‘
compiler writer should offer is to issue warning disgnostics =
whenever coding is used for which the compiler will producem
different object coding from its predecessor. An alternative
approach would be for the old compiler to be supported inz
parallel for a reasonable period of time. This approach howeverc
results in extra work for the manufacturer and the user. In anyo
case the user should ensure that the manufacturer takesB

appropriate action to ease the changeover to ANS COBOL 74.8

Conclusions

The new standard undoubtedly makes COBOL a much mores

o

€/|ulwo,

(Y

powerful language. It now encompasses all the ma_]or tech-%
niques currently popular in commercial programming with the =

notable exceptions of data bases and structured programming.’3

N

Furthermore some steps have been taken to reduce the imple-3
mentor’s freedom which should, in the future, ease the transfer§
of programs between computers. On the negative side upward®
compatibility between the standards has not been maintaineds
and it is to be hoped that the compiler writers will take steps2

to ease the transition where the standard has failed to do so.

D
(2]
—

Finally COBOL has become a much bigger language withoutg
any major steps being taken to simplify it or make it moreg
consistent. On balance, however, the new standard can be:t>

regarded as a considerable step forward for COBOL.

Handling records with a variable structure in COBOL, The Computer Journal, Vol. 17, No. 1, pp. 93-94.

The Computer Journal

20z Iud

American National Standard Programming Language COBOL X3.23-1974, American National Standards Institute, 1430 Broad-

American National Standard COBOL X3.23-1968. American National Standards Institute, 1430 Broadway, New York, New York

