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This paper considers the duration of seek times for a skip-serially processed file on a moveable head
disc pack. It is shown that under certain assumptions about the generation of requests for records,
the distributions of both the number of records to be processed and the number of distinct cylinders
to be accessed per run are binomial. Probabilistic arguments from the theory of order statistics
are used to derive the distribution of the number of cylinders separating consecutive cylinders
accessed. A general functional form is introduced for the relation between inter-cylinder distance and
duration of seek time, and used to derive a general expression for the expectation of total seek time
for a scan of the file. Results are computed for a numerical example. These show, first, the advantage
of software which ensures that successive scans operate in opposite directions; and second, the
danger of serious inaccuracy (especially at low hit-ratios) if simple approximations are used based
on the value of the seek time function at the mean inter-cylinder distance.
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1. Introduction

In many data processing systems, files are stored on disc as
secondary memory and blocks of data are called into main
memory when particular records require processing. Once a
request for a record is activated, there follows first, a seek time
while the single read/write head is moved to the appropriate
cylinder; second, a rotational delay while the disc revolves
until the desired block reaches the head; and finally a transfer
time, while the block is actually transferred to main memory
(and perhaps updated and written back onto disc). Seek times
can constitute a major, and sometimes a dominant, component
of total computer runtime. When computer runtime is not
dominated by other factors, mis-estimates of the seek time
contribution may have serious economic implications, either
at the system design stage or through operational inadequacies
(Waters, 1975). In this paper we conduct a probabilistic analysis
to estimate the average seek time for skip-serially processing
requests for a particular file, which may be of use in estimating
the total running time of programs, or in devising more efficient
software. It will be demonstrated that simple approximations
to seek time based on the average number of cylinders traversed
by. the head in a single movement can be quite inaccurate.

For definiteness, and in the interests of mathematical tract-
ability, we have made a number of simplifying assumptions.
We consider a situation where requests are for access to a single
file, which is organised sequentially on a single disc pack,
and there is no multiprogramming interference. Requests are
batched and sorted for skip-serial processing, and the batch
cannot be added to during a scan of the file. We neglect effects
due to overflow or chaining. These assumptions correspond
well with those made in other analyses of seek time (see, for
example, Coffman et al., 1972). While they limit the situations
to which the results can be applied directly, the results should
at least be suggestive for a wider range of problems. For
simplicity we also assume that there is exactly one record per
block of data, though the approach of this paper can easily be
extended to the case of several records per block. Other
assumptions, concerning the mode of generation of requests,
are specified in Section 2.

Some elementary theory of seek times for disc systems is
provided by Martin (1967, Chapter 28), while several papers in
recent years (e.g. Nielsen, 1971; Hess, 1963; Lowe, 1968) have
analysed other aspects of these or similar systems. Denning
(1967) has addressed himself to the problem of seek times when
the requested records are, effectively, sequentially ordered: he
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considers the effect of various strategies on the length of time a5

- request spends in the file system—of which the mechamcal(I>

positioning delay of the movable arm of the disc unit is a majors
component. He concludes that (for the somewhat 1mprec1sely3
specnﬁed way in which incoming requests enter the queue)"
scanning the arm forward and back across the disc provxdes
the ‘best’ overall service. These ideas are further developedm
by Coffman et al (1972) and Gotlieb and MacEwen (1973).2 3
The aims of these papers are not quite ours, and the approach3
is very different to the one to be presented here. Waters (1975) 0
examines the validity of some common approximations toU
average seek time under a variety of circumstances. He%
incorporates very few of the probabilistic aspects discussed in g
this paper, but describes skip-serial file processing and its3
applications in greater detail. Waters’ paper provides thei
practical background to many of the assumptions made in the
present paper.

We commence in the next section with an explicit statement of ©
the precise assumptions underlying the model to be studied. 5
It is then shown how certain additional assumptions about the =
way in which record requests arrive lead to binomial distri-
butions for both the number of records to be processed and the
number of distinct cylinders to be accessed per run. To establish o
some of these results we make use of elements of the mathe-5
matical theory of occupancy (see Barton and David, 1962, 3
Chapter 14). Many of the probabilistic concepts we employ, forg
instance the term ‘at random’, are set out in Barton and David’s ~.
book. i~

When the number of cylinders to be accessed is given, theirS,
positions (ordinal numbers) constitute under the assumptions
of the model an ordered sample drawn randomly and without X
replacement from the integers {1, 2, ..., K}, where K is the
number of cylinders on a disc pack. The standard theory of
order statistics (see e.g. Kendall and Stuart, 1963, Chapter 14)
is easily modified to yield the probability distribution of the
distance between successive cylinders accessed. If the head does
not move between scans, we will also need the distribution of
the distance between the final position of the head at the end of
one scan and its starting position for the next. These topics are
dealt with in the third section.

The time dimension is introduced in the fourth section. The
function mapping distance travelled by the head onto time is a
characteristic of the particular disc pack in use and is not
normally linear over its entire range. The main quantity with
which we are concerned, namely the total seek time, is the sum
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of m — 1 values of this function, where m is the number of
cylinders accessed in a given scan, plus the value of the function
for the initial, positioning, head movement. Its mean and
variance are obtained by averaging, or squaring and averaging,
with respect to the distributions of number of cylinders acces-
sed and distances between them. A numerical example is given.

2. Basic assumptions; the number of requests and of cylinders
Regarding the file structure it is assumed that:

1. Each cylinder holds the same number, L, of records, and no
record extends over more than one cylinder. The number of
cylinders is K, so that the number of records is KL.

The model for request generation includes the assumptions that

2. The positions of records requested are statistically
independent.

3. The hit-ratio, p, where applicable, is the same for each record;
moreover

4. The process is memoryless in the sense that the probability
of any record being requested remains constant regardless of
when the record was last requested.

‘The number of records accumulated before a scan is initiated
may be fixed or random. If the latter, the appropriate distri-
butional form seems to us to be the binomial; this can be made
plausible by considering three apparently different mechanisms
by which batches of requests are formed; in fact a little thought
shows all three to be versions of the same process.

Firstly assume that a batch is formed more or less instantan-
eously, as for instance when a customer sends in an order
requesting a number of different products, each having its own
record. Assumptions 2, 3 and 4 imply that the number of
distinct records, say N, requested at any such epoch will be
binomially distributed, i.e.

Pr(N =n)= (’flL) p"(1 — pykE=n | @)

Secondly, let requests arrive at random, waiting until, after a
fixed time, T, the access run commences. At first sight this
would seem to lead to a Poisson distribution if the arrival rate,
A, were constant. However, this would imply an infinite file;
relying on Assumption 4 we allow records to be requested
more than once during the accumulation interval. In Appendix
1 it is shown that this gives us (2.1) again with

p=1—e KL 2.2)
As the final variant, we may allow the requests arriving at
random to be for distinct records, but the rate at which they
arrive to be proportional to the number of unrequested reeords
in the file, i.e. to drop to A(KL — j)/KL after j requests have
been received. This situation is now exactly equivalent to a
simple death process (Cox and Miller, 1968, Chapter 4) in
which each individual has, independently of the other, a
chance 1 — e *T of dying in the interval [0, T]; the number
dyingin the mterval will clearly have once more the distribution
(2.1) with parameter given by (2.2).

A reasonable modification might be to allow the scan to start
before time T if a threshold number of requests had accumu-
lated; we will assume that this value is large enough for this
event to have small probability. We will in addition not concern
ourselves with the case of fixed N—the approach used in this
paper gives results which though computationally simple are
analytically unwieldy.

When the number of distinct records requested has the
binomial distribution (2.1), the number of cylinders on which
these records lie, M, say, has itself a binomial distribution, i.e.

Pr (M = m) = (fn )n"‘(l — 23)
where
n=1-(01-p* (2.4

can be regarded as the ‘cylinder hit-ratio’.

The proof is outlined in Appendix 2. It should be pointed out
that (2.3) can be derived by direct argument from the assump-
tions, most easily in the case of the first mechanism—
‘instantaneous’ batch generation—presented above.

3. Distance distributions
Let Y, < Y, < ... < Y, be the ordinal numbers (positions)
of the m cylinders to be accessed (counting from an arbitrary
edge of the disc). Then our assumptions ensure that the Y; are
order-statistics of a sample of m integers drawn randomly and
without replacement from the set {l,2,..., K}. Define
D,=Y,,,—Y,r=12.. ,m—l

Suppose that on the prevrous scan m’ cylinders were accessed
and that their positions, in order, were Yi,..., ¥,.. In the
procedure we are considering the head moves either (a) always
in one direction, startmg at Y, or ¥, and ending at Y,, or Y,,,
respectively, or (b) in alternate directions. At the commence-
ment of the run under consideration the head, if undisturbed
between runs, must travel in case (a) from Y, to Y,, whereas
in the situation (b) it will pass either from Y, to Y, or,g
probabilistically equivalent, from Y1 to Y,. The distribution of 2 -
both U = |¥,. — ¥,| and W = |Y,,, — Y,,| will be needed.

Relegating an outline of the very tedious derivations to2
Appendix 3, we present here only a few important results.=
Forr,s=1,2,...,m— 1,

(a) Pr (D, = d|M =m) =mK — d)m~ DK™ —

(K‘d)/(K),d=1,2,...,K—m+1 G.1),
m—1 m

where for non-negative integers,
Hn H® = H\(H — n)',n < H,
=0, n>H.

Note that the right hand side of (3.1) is independent of r.2
Moreover, if one defines Y, =0, Y,,; = K+ 1, then (seeS
Appendix 3) D, and D,, have this distribution as well. Thus onS
average the Y, divide the interval, Y,,,, — Yo = K + 1, into®
m + lequal segments, i.e. E(D,) = (K + 1)/(m + 1),r = 1, 2,_
.. — 1, as can of course also be shown by multrplymg—\
3. 1) by d and summing.

) Pr(U = ulM = m) = mm'(1 — 45, 0)

apeoju
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X{ 3 = D"DE=j+ 0" 4
Jj=u+1

z (= D™D (K — j + @)™ DYK™ K™ (3.2
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040 bemg the Kronecker delta. Unless m and m’ are both quiteS
small, the second term in (3.2), which is associated with thes
unlikely event, ¥, > Y,., will be negligible. There is an analo-U
gous formula of much the same form for the probablhty—
distribution of W. ,\,

If the second moment of overall seek time per scan is to be”
computed, one will also need various joint distributions: that
for D, and D, s # r, is

©Pr (D, =d;, Dy = d,|M =m) =
m(m — 1)K — d, — dy)™ DK™ =

(K_dl“dz)/(:),zsdl+dzsK—m+2. (3.3)

m-—2

The joint distributions of D, and U, and of D, and W, are of a
somewhat more complicated form than this; however, as
pointed out in the next section, when one takes expectations of
these expressions with respect to the distribution of m, a
considerable simplification occurs. For one thing the
summations in (3.2) become far more tractable.

Note that (3.1) has no relevant interpretation unless m > 1;
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(3.2) requires also m’ > 1, and (3.3), m > 2. It can be shown
that these requirements do not affect the calculations in the next
section: only zero terms are neglected. We have chosen not to
add complexity by making the conditions on m explicit in any
of the equations.

4. The time dimension

We can now introduce a function, 7(d), representing the time
taken for the head to traverse d tracks; 7(0) = 0 and ©(d) > 0
for d > 0. If m cylinders are to be accessed on a given scan, and
m’ were accessed on the previous run, the overall seek time
for that run is a random variable

SuD, V) =S «(D,) + (V) =

“4.1)
where V is the initial distance travelled by the head, i.e. either
U or W. The average overall seek time may be written
E{S,(D, V)} = E,[(m — DEp{t(D)Im}] +
Em,m’[EV{t(V)lms m,}]
= > ©(d) E,{(m — 1) Pr (D = d|m)} +
d

2 ()

Subscripts to the expectation symbol denote that the function
is being averaged only with respect to the designated variable(s).
The expression for E S2(D, V) will involve also the expec-
tations with respect to the distribution of m and m’ (assumed
independent and of the form (2.3)) of the joint distributions
mentioned in the previous section.

As shown in Appendix IV,

E{(m — 1) Pr (D = d\m)} = (K — dyp*(1 — n)*"1,

T,(D) + ©(V), say,

Epm{Pr (V = vim, m')} . 4.2)

d=12,..,K—-1. 4.3)
where 7 is as defined in (2.4).
Similarly
E{Pr (U = ulm, m)} = (1 ..o)(K— {1 — m* 7t +
A=mfY u=01..,K-1. 4
while
E{Pr (W = wim,m)} = (2 = d,,0) n(l — n)*
x{l = (1 =n** Y2 —-n),
w=01...,K—-1. 4.5)

These three formulae are enough to evaluate (4.2) for any
function 7(.). Second moments involve far lengthier expressions
but introduce no new concepts.

5. Numerical example

To illustrate the application of the formulae, and to compare
its results with a simpler approach, we will take K = 200 and
use the continuous, piecewise-linear time function given by
Abate et al (1968) as an approximation to that for the IBM2314
disc pack sketched in Martin (1967, p. 442), viz.

T(x) = 0, x=0
=25+ 2x 0<x <20,
= (370 + x)/6 20 < x < 80, (5.1)
=354+ 05x, 80 < x <199.

(Times in milliseconds.)

A further parameter needed is , defined in (2.2). On average,
Kn cylinders are accessed per run, and from (2.2), the mean
number of records in a batch, KLp, will lie between Kn and
—KIn (1 — 7). In this example, we take n = 0-05; 0-1; 0-2;
0-4; whence E(m) = m, say, =10, 20, 40, 80, respectively.

In the case of a piecewise linear function, 7, it is possible after
much tedious algebra to exhibit the expectations occurring in
(4.2) in a reduced but still rather cumbersome form. This is
hardly practicable in the case of the second moments, so that
all sums were evaluated directly by computer: the results are
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tabulated below.

A common practical procedure in such situations (see Waters,
1975) is to calculate the value of a required function at the
mean(s) of the variable(s) entering into it, rather than to
compute the expected value of the function with respect to
these variables. Thus for given m let d = E(D|M = m),
ii = E(U|/M = m), etc. Plausible approximations in the
present case might then be
E{T,(D)} = (m — 1)t(d), E{x(U)} = (@), E{«(W)} =

(w) . (5.2
These formulae are compared with the exact computations in
Table 1. (Values for E{S,(D, U)} and E{S,(D, W)} can
readily be obtained from the tabulated quantities.) Standard
errors are presented in Table 2.

In most of the remainder of this section, where no confusion
can occur, m will for reasons of typographic convenience be
written as m, which is to be taken to be a fixed integer quantity.
We have already pointed out that d = (K + 1)/(m + 1);
using (3.2), and the analogous expression for Pr (W = w),
one can readily show that

i =(m— 1)K+ D/(m + 1) + 027",
w=2K+ 1/im+1) — K;z: (K — m)P|KD,

(useful for moderate m/K)
=2K+ D/m+ D[ + K+ D/m+1)

Sl e )

(for m/K small).

For the parameters here employed, d = 1827, 9-57, 4-90, 248
# = 164-5, 1819, 191-0, 196:0; w = 16-91, 8-82, 4-29, 184O

dno-olwepeoe;/:sdiy Wolj pepeojumog

respectively. g

3

Table 1 Expected value of seek times, and approximations gz,

n m T,d) E{T(D)} @) E{«(U)} () E{T(W)}:

0-05 10 5539 454-8 1172 1156 58-8 50-6 §

01 20 838-7 801-1 1259 1255 42-6 405 S

02 40 13572 13534 1305 1305 336 31-0 N

04 80 2366-8 2367-0 133-0 133-0 28-7 22-5 g

g

«Q

Table 2 Standard deviations of seek times §

Standard deviations of §

n T,D) w(U)  SJD,U)wW)  SuD, W);;:‘

0-05 126-8 13-42 131-2 17-47 1252 %

01 1332 671 134-9 16-01 132:1 §
02 147-4 3-16 147-9 13-56 146-8
04 1742 1-37 174-3 13-42 174-0

A consideration of Table 1 reveals that the advantage,
E{t(U) — ©(W)}, of a back-and-forth head movement over
the procedure in which scanning is in one direction only is
positive in this example. The advantage increases absolutf.:ly
as the cylinder hit-rate, , becomes larger, but decreases relative
to the average total seek time per run. For # = 0-05 the saving
is about 11 per cent, dropping to 4-4 per cent when n = 0-4.

Secondly, it is clear that when 7 is not too small, the approxi-
mations to the mean values are, with the apparent exception of
E {z(W)}, adequate, particularly as n increases. On the other
hand, T,(d) overestimates E{T,(D)} by 22 per cent when
n = 0-05.
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It is instructive to examine the reasons for this. One factor is
that the mean of a linear function of a random variable is that
linear function of the mean of the variable. Another is that the
variances of the random variables, D, U and W decrease with
increasing n or m, as the case may be, and their distributions
tend to concentrate around their means. For the function
given by (5.1), most head movements would then occur in the
first linear segment in the case of D and W, and in the last
segment in the case of U, provided the means of these variables
are not near a point at which the slope changes.

The function 7(.) has a discontinuity at zero, which is an
attainable value of W but not of D. Thus, writing a, § for the
intercept and slope, respectively, of (.} in its first segment,
E{T,(D)} is nearly
E,{(m — )E(x + BD|m)}

=a(m — 1) + BE, {(K + D)(m — 1)/(m + 1)}
=a(m — 1) + B(K + 1)(m — 1)/(m + 1)

= T,(d)

since when m is binomial,
E{(m — D|(m + 1)} = (m — 1)/(m + 1) + 0(m~?) .

However,
Ex(W)} = « + BE, {E(W|m)} — 1(0*) Pr (W = 0)

, =o+ W —an/2 —1n) .
With this correction, the approximations to E {t(W)} are now
58-2, 41-3, 30-8, 22-4 for n=0-05, 0-1, 0-2, 0-4, respectively, the
latter three being appreciably closer to the exact mean value
than the entries on Table 1.

There is no discontinuity in 7(.) at K, near which the distri-
bution of U tends to concentrate; moreover the final segment
is a long one. It follows from the previous arguments, that,
even when the cylinder hit ratio is fairly small,

E{z(U)} = () .
Of course, when the head movements tend to fall into more
than one segment, linear approximations will break down.
More generally, if the time function is not even roughly linear
over the relevant portion of the range, the sort of approxi-
mations we have teen discussing cannot be relied on.

Finally, the variability of these head movement times is
difficult to assess by asymptotic methods. The usual asymp-
totic formula for the variance of a function of a random
variable (Kendall and Stuart, 1963, p. 232) when applied to
7(U) gives in our example
Var {t(U)/m} ~ 3)*{2m(K — m)(K + D}/{m + 1)*(m + 2)},
from the first term in (3.2) and the formula for #. This works
tolerably well for m > 40, less adequately for smaller m and
for the other variables of interest.

Our main concern in this paper has been to demonstrate the
feasibility of an analytic approach to some probabilistic aspects
of skip-serial file processing which are commonly ignored.
However certain conclusions may be drawn from the analysis
in this section. Thus for the particular form of the time function
given in (5.1) the relative advantage of back and forth (rather
than uni-directional) scanning has been demonstrated. We have
also shown that commonly used approximations to the average
seek time (based on the mean distance between successive
cylinders) can be seriously inaccurate, at least for low cylinder
hit-ratios. The nature of the analysis in this section is however
quite general. Any function of time can be inserted into the
formulae; for some of these it may well be found that the
approximate methods are at least as unsatisfactory as in the
above example.
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Appendix 1

Assume that requests for records arrive at random at constant
rate A, and that any given record has a constant probability of
being requested, irrespective of past events. Suppose that in
[0, T] h requests are received; the distribution of the number »
of distinct records among these is, from a standard result in
occupancy theory (v. Barton and David, 1962, p. 242)

KL\ 5 (m) iy ke Al
(”),Zo(f)( 1y~ GIKL) (ALY

The overall number of requests is clearly a Poisson variable
with mean AT; averaging (A1.1) with respect to this distribution
gives the binomial result (2.1) and (2.2).

Appendix 2

Suppose n distinct records are to be found; to obtain the
distribution of the number of distinct cylinders on which the
records lie, one may again use an occupancy theory formulation. 5
Thus consider an array of K rows (cylinders) each with L cellss
(records); at most one ball can be placed in any cell; » balls areo
thrown at random into the array. If M is the number of rowsc
with at least one full cell, standard techniques yield

= (X m=j n n)
Pr(M_m)_(’”)mZn/L<f>( = iGLKD® (A21)2

If the number of records is itself a binomial random variableg
with parameters p and KL, averaging (A2.1) with respect too
this distribution is easily shown to give the binomial result(2.3).5

Ny wouy pepe
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Appendix 3

The direct probabilistic arguments used to derive the (Jomt)
distributions of order statistics of a sample of independent,=
1dent1cally distributed random variables can easily be modlﬁed:,
to give for the {¥,} of Section 3, with m, m’ fixed and less than(D

£

Pr(Y, =j) = m//{r — Di(m — n'}
x(j = DK = H™TIK™,
j=rnr+1,..,K—m+r (A3l
Pr(Y,=40 Y, =j)=m/{(r— DI (s —r—1D!(@m—s)!}
x(j _ 1)(r—1)(l~ -—j- 1)(S-r-1)(k — i)("'_‘)/K("'),

i=ss+1,...5+K—-—m;j=rr+1,..,r+i—s
Now D, = Y,,;, — Y,, and Pr(D, =d) = Z‘,Pr(Yr+l =
Y, = j), the sum being taken over the set {i,j; i — j = d},
ie.Pr(D,=d)=m!/(r — D!(m —r —1)!

Wioo/Wwo9

t?jze/Los/we

20z Iudy 61 U0 130n6 Aq 02

K-m+r—d-—1
X Y (-DCPEK-—d=j)mTrTY K
j=r
= m(K — d)(m—l)/K(m) ,
after repeated summation by parts. 5
Consider next the distribution of U = |¥,,. — Y;|, ¥,,-and Y,
being independent. It will be necessary to sum Pr (Y =i,
Y, = j)over the set {i, j; i = j}, for Pr (U = 0), and otherwise
over the sets {i,j;i =j + u} and {i,j;j = i + u}; e.g.

) K , ,
Pr(U=0)=mm' ¥ (j— D™ V(K — j)mVK™K™ -
ji=1

Note that in fact m’ <j < K — m, but that the additional
terms in the sum are all identically zero, being retained for
later convenience and to indicate the similarity to (3.2).

To derive the distribution of W = |Y,,, — Y,,|, and the various
joint distributions, one would proceed on similar lines.
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Appendix 4

The results, (4.3), (4.4), etc., are all direct or indirect conse-
quences of the following simple lemma:

Let m have the distribution (2.3), i.e. be binomial with para-
meters 7 and K, and let s, ¢ and j be non-negative integers; then

E{m (K — )™~ K™} = n*(1 — ny~ (K —j)!
x(K—j+t—s)!

Proof: First note that ( K) = K™/m!; thus
m

K
Z (K) 17"'(1 _ ﬂ)K_mm(s)(K _j)(m- N _
m

{K=)'A ="K —-j+n1

(A4.i)
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Introduction to Decision Science, by S. M. Lee and L. J. Moore;
589 pages. (Petrocelli/Charter, Input Two-Nine, £9-00)

Business applications of decision sciences, by S. Paranka; 156 pages.
(Petrocelli/Charter, Input Two-Nine, £6-00)

It is natural that those who have had experiences of teaching classes
at universities or similar institutions should find it convenient to
collect their lecture notes, to add to them and to edit them, and then
to offer them, in book form, to a wider readership. Both these books
appear to have had this origin. Such texts are certainly of use to the
author’s students. What we are interested in is if there is some more
extensive public which could profit from them.

Although the titles of these two volumes might give a different
impression, they are addressed to the same audience. The much
larger one, entitled Introduction to Decision Science, is according to
its preface ‘intended primarily for undergraduate students of business,
administration, social sciences and engineering’, while the smaller
one ‘should be useful as a text for an advanced undergraduate
course or a graduate level course in business decision making’.

Both deal, at different lengths, with modelling, Bayesian decision
making (Paranka on 14 pages, Lee and Moore in a short section
with the final remark: ‘there is no unanimous opinion among
scholars and practising managers about the Bayesian decision rule’s
superiority over other decision analysis techniques under
uncertainty’), linear programming, queueing theory, simulation,
Markov analysis, and inventory control.

Lee and Moore have also one chapter each on network models:
PERT-CPM, and on game theory (but not on bidding), Paranka has
three chapters concerned with computers (hardware as well as
software), and one on regression and correlation. In the Lee-Moore
book reference to computers appears in the appendix, which contains
programs for linear programming and for goal programming, in
FORTRAN.

Both books have, of course, references, and Lee and Moore have
also, after their chapters, ‘Questions’ and ‘Problems’ (roughly:
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theory and practice). To compare the treatment of selected topi
covered in both books, we choose linear programming, and queueing:

Paranka has a chapter ‘Linear Programming Model’ of 18 pages,
with a very brief description of the concept, describing well the
graphical approach with two variables, and somewhat clumsily thg
‘algebraic method’, about which he states: although the algebraﬁ
solution can handle more than three variables, it is not an efﬁc:extg
method. The Simplex Method is the easiest and quickest approach t&
finding the optimal solution (page 56). The latter method is presented
‘conceptually’ on a few pages. There follow applications to capltﬂ
budgeting, and to media allocation.

Lee-Moore have four chapters on the same topic: Linear progranfB
ming: Introduction and graphical solutions; Simplex method 1%
linear programming; Goal programming; Transportation an
assignment methods. These cover 212 pages. Topics not dealt w1t
by Paranka are sensitivity analysis, details of the simplex methot'l_?,
and those of the last two titles mentioned. Goal programming, 1n>
particular, attempts to minimize deviations from desired goa]:,g
and the treatment leans heavily on the publications and joint-
publications of the first mentioned author.

The chapter on Queueing Theory in Paranka’s book (16 pages)
relies mainly on simulation. That on ‘Waiting line analysis—
Queueing theory’ (42 pages) in the larger book deals more exten-
sively with basic theory. (We might mention here that we have used
the spelling ‘queu(e)ing as it is done in the two books.)

The general impression of the Introduction to Decision Science is
that of a text from which a manager can get a reasonably clear idea
of what techniques of this science are about. Paranka’s book might
serve a similar purpose for those who are less interested. But will
they want to read such a book at all ? Both books are typical products
of the trans-Atlantic climate in business education, and they are not
the worse for it. But their wide dissemination into the British market
must be doubtful.

S. VAIDA (Sussex)



