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A representation of algebraic curves not widely known is shewn to be highly appropriate for
calculating views of curves such as the intersections of general second order surfaces (quadrics),
a problem approached by Luh and Krolak (1965), by Weiss (1966), and by Woon and Freeman (1971).
By allowing the repetitive calculation to be performed in the picture plane it reduces the number of
degrees of freedom involved from three to two. This representation gives an algorithm with rather
different characteristics from the usual methods of drawing such curves, and these differences are

discussed.
(Received November 1973)

1. Notation
Lower case letters denote scalar variables or functions

e.g. a,b,t, f(a)

Upper case letters denote tensors if postscripted
e.g. A, PP

and vector variables or functions if not.

e.g. P, F(a, b)

2. Background
Several methods of calculating intersections of surfaces are
known. If available, the best method is to express the curve as
a vector valued rational polynomial in a parameter. (The
rational polynomial is the most general function computable
without iteration or ambiguity by normally available floating
point hardware.) Closely spaced points along the curve can
then be generated very cheaply by evaluating the polynomial
for successive values of the parameter (Fig. 1). It is not difficult
to choose the parameter values to minimise the number of
segments drawn subject to giving the appearance of a smooth
curve (Sabin, 1972). This method is not always available,
however, except as an approximation: in particular the inter-
section of two general quadrics is a quartic curve which can
easily take the form of two closed loops (Fig. 2), and cannot be
represented as a rational polynomial (Sommerville, 1934).

If one of the two surfaces can be represented in the form

P = F(u,v)
and the other in the form

f(P)=0

the problem can be reduced to the solution of

f(F(ua U)) = g(u’ U) =0
in the two degrees of freedom u and v.

This can be implemented by a lattice method (Payne, 1971) or
by stepping along the intersection, iterating in « and v, to each
point in turn from a first approximation based on the differ-
ential geometry near the previous point (South and Kelly,
1965).

If both surfaces are of the form

f(P)=0
it is possible to step along the intersection in three dimensions
by estimating iteratively the changes in the three components
of P to solve simultaneously

filP) =0

Vi 2(P )=0
and a step length equation. If both are of the form

£(.5)

HE)

Fig. 1 Drawing generated by chords of a parametric curve

A

Fig. 2 A curve with two loops

P = F(u, v)
it is possible to step along the intersection in the four dimen-
sions uy, vy, U,, v, by solving simultaneously the three com-
ponent equations of
Fi(uy, v1) = Fy(uz, v3)
and the step length equation. Generally speaking, the fewer

degrees of freedom involved the faster and more reliable the
process will be.

3. The Cayley form of a curve

A little known geometric technique of some antiquity, which
is readily implemented numerically, is also available for this
problem of intersecting algebraic surfaces of the form f(P) = 0.
This uses the Cayley representation of the intersection curve
(Cayley, 1860; Semple and Kneebone, 1959), whereby the
curve is represented by the function of two points

S(Py, Py) =0 .
The function is zero if and only if the straight line PP, cuts
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the curve.

At first sight this appears an abstruse, indirect way of charac-
terising a curve, but in fact it is exactly what is required for
displaying views of it, because if we substitute the position of
the eye for P, the equation

f(P, P) =0
becomes an equation for points of the picture plane lying on the
projection of the curve. With this equation we can do all our
calculations in the two dimensional picture plane instead of the
three dimensional space in which the curve itself lies.

This idea, of performing the repetitive and time consuming
calculations in the 2D picture plane instead of the 3D problem
space, is a fundamental one. The reader is referred to Warnock
(1969) and Newell, Newell and Sancha (1972) to see it applied
in a different way in other contexts, those of hidden line
removal and half-tone picture representations.

The next question, of course, is how to derive the form and
coefficients of the Cayley equation from those of the two
surfaces, the eye point, and the picture plane. This we shall
describe first for the intersection of a plane and a quadric, then
for that of two quadrics.

4. Plane-quadric intersection

For the purposes of algebraic manipulation we shall represent
points by four homogeneous coordinates, planes by the corres-
ponding four coefficients, and quadrics by 4 x 4 symmetric
matrices (Maxwell, 1961). Using tensor notation (see Appendix,
also Coolidge 1945 and Jeffreys, 1969) we have the equations

F,Pi =0  when the point P lies in the plane F
A;;P'P’ = 0 when the point P lies in the quadric 4

Let the eye point be E and the generic point of the picture plane
be D. The line DE contains all points of the form

Pi=tD'+ (1 — t)E! m
and its intersection with F is given by
tF.D' + (1 — t)F;,E' =0 @)
or
td+e=0 A3)
where
d = F,D' — F;E'
and
e = FiE'

Similarly, the intersections with A are given by the roots of
?4,;D'D’ + 2(1 — NA;D'E’ + (1 — ?A,E'E'=0 "4
or

tYa+th+c=0 5)
where
a= AijD"D_f - 24;;D'E’ + A, E'E’
b = 2(4;;D'E’ — A;;E'E’)
and
¢ = A,E'E
Eliminating ¢ between equations 3 and 5 gives
ae* — bed + cd* =0 6)
which can be re-expressed in terms of D as
B,;D'D’ = @)
where
B;; = (e?4;; — 2eA E'F; + cF;F)) . ®)

The values of ¢, e and B (another 4 x 4 matrix, actually
representing a cone with vertex at E), can be computed once
and then used repeatedly in generating the whole profile.
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Fig. 3 Intersections and coincidences of roots

5. Quadric-quadric intersection

The procedure for setting up the Cayley function here is similar
in principle to the above, but with a few new features which_
make it worth describing, because they apply equally to theS
intersections of higher order surfaces. Let the two quadrics bez
A, and 4, and let D and E be the points as before. The pointsS
of intersection of each quadric with DE are given by the roots%

of the two quadratics g
t’a, + thy + ¢, =0 9=

©

and £
tzal + tbz + CZ = 0 (10)§

(cf. equation 5) . Z

Let the roots of equation (9) be u, v, and of equation 10 be_%

uz, Uz.
Now the function
(uy — up)(u; — v)(vy — Ux)(vy — V2)
is zero whenever one of u,, v, is equal to one of u,, v, and it can_g_
therefore act as our Cayley function, because this will only%
happen when DE cuts the intersection curve (e.g. for points D1z
and D3 in Fig. 3). o
This can now be expressed in terms of the sum and producto
of u, and v, and those of u, and v, and thence in terms of the5
coefficients of the quadratic equations (9) and (10) thus

o _ e\ (e _bia(b b))
al az al az a2 a, a, 112

We can multiply throughout by a2aZ and simplify to give
(aye1 — a16;)* + (bycy — bye)(azhy — ayby) (13

E] 2/Wo09°dno

=
[\®)
s38n6 Aq 5099z¢/9¢

which for computation can be replaced by S
CijleiDjDle = 0 (14¥

©

where £
N

Cijin = C3AqijA 1y — 20162413540 + 3425400 + §

AcrAyim — ClAzim)(AzjkAun - A1jkA21n)EmE" (15)

Now ¢;, ¢, and C(a4 x 4 x 4 x 4 block matrix) can be
computed once and for all. If we take advantage of the sym-
metry of equation (14), C can be stored as 15 numbers, the
coefficients of the fourth order polynomial in the two picture
plane components of D. The evaluation of the Cayley function
for any point D then takes 14 multiplications. To achieve this,
all transformations and scaling have to be performed on the
quadrics before starting (Forrest, 1969) so that the values of D
tried are actual plotter co-ordinates.

6. Higher order surfaces

The same procedure can be applied to surfaces of higher order.
The intersection of cubics, for example, leads to a 9th order
tensor, reducible to 44 multiplications per trial point.
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7. Silhouettes

A related technique, using the condition for equality of two
roots of the equation for the intersection of the line DE with
one surface gives the projection of the silhouette of the surface.
This is hinted at by Luh and Krolak (1965).

8. Comparison with other methods

Two other methods are worth considering. If we parametrise
one quadric we can find the solution of the intersection in the
parameter plane. This is another quartic (in the two parameters),

taking again 14 multiplications per trial point. However, to |

draw the view of the curve requires a further 23 multiplications

and a division for each drawn point, approximately doubling

the computation. Windowing may be needed if the curve
extends beyond the viewing area. Also the curve may pass
through infinity either in the parameter plane or in space
while still inside the viewing area. The former can be avoided by
keeping the quadric as two separate patches, but it complicates
the algorithm.

Another symptom of the same difficulty is that the optimum
spacing of the points along the curve is much less easily
achieved, and one would expect to compute at least twice as
many points as necessary, or else spend an equivalent time
getting the spacing right. In all the computation time would
typically be 4-5 times that required by the algorithm described
here.

The second possibility is to step in three degrees of freedom
along the solution of f;(P) = 0, f,(P) = 0. This requires 18
multiplications per trial point, with a further three and a
division per drawn point. Again windowing is necessary and
again the curve can go to infinity in space while remaining in
view. It is difficult to quantify the increase in trials per drawn
point due to stepping in three dimensions instead of two, but if
we take a factor of two (correct for lattice methods) this
method is likely to be 6-8 times slower than the Cayley function
method.

On the other hand, the Cayley function method has three
disadvantages compared to the other two.

If a new view of the same curve is required the calculation has
to be repeated completely, which makes this method unsuitable
if real time rotation is required.

It is difficult to draw just part of the intersection curve if it is
limited in space rather than in the picture plane.

Computational difficulties can occur when a curve appears
to cross itself. If a coarse lattice method is used the curve may
be drawn with incorrect connectivity.

These last two are in fact both symptoms of the same problem,
that information about the space configuration has been lost in
the projection on to the picture plane. To overcome this requires
that some analysis of the arcs to be drawn should be performed
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before the drawing starts, and so a practical implementation
of this algorithm would not be as simple as implied in the
description above.

None the less, this representation is of some theoretical
importance, and with care the ideas can be applied to good
effect.
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Appendix Tensor Notation

This notation is used to facilitate the otherwise bulky algebraic
manipulation. Equation (15), for example, is formally equi-
valent to 256 equations, each of 19 terms.

If a letter appears as subscript and superscript within one
term, summation of that term with the letter given all values
between one and (in this case) four is implied. A subscript or
superscript appearing on both sides of an equation implies that
the equation holds for each value of the letter between one and 9
four. The full content of equation (15) may be illustrated by theS

equivalent FORTRAN program. §_
REAL C1, C2,C(4, 4, 4, 4), A1(4, 4), A2(4,4), E@4) %
Cl =0.0 g
C2 =100 z
DO1I=1,4 §'
DO1J=1,4 S
Cl = C1 + AI(I,J) x EQD) x EQJ) Q
1 C2=0C2+ A2(I,J) x EI) x EQJ) )
DO2I=1,4 3
DO2J=1,4 o
DO 2K = 1,4 2
DO2L =1,4 §
CILJ,K,L) =C2 x C2 x Al(I,J) x AI(K, L) 8
1 —2.0 x Cl1 x C2 x AI(I,]) x A2(K,L) 2
2 +C1 x Cl1 x A2(I,J) x A2(K,L)
DO2M = 1,4
DO2N = 1,4

2 C1J,K, L) = CJJ,K,L)+ 40 x (C2 x Al(I, M)
1 —Cl x A2(I, M)) x (A2(J, K) x AI(L, N)
—A1(J, K) x A2(L, N)) x E(M) x E(N)

This is far from efficient coding, but illustrates very precisely
what the somewhat forbidding notation means.

The distinction between subscripts and superscripts is
essentially that between items of dimension length ™%, and those <
of dimension length. It provides a valuable check when manipu- =
lating large equations, such as those encountered when deriving =
equation (15) from equation (13).
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