An improvement algorithm for school timetabling

R. J. Aust

Department of Applied Mathematics, University of Adelaide, Adelaide, South Australia 5001,

Australia

This paper describes an algorithm for improving infeasible timetables. It reduces the teaching
resource, break and spread infeasibilities in three stages. The first of these involves the solution of a
series of capacitated transportation problems and is used when an initial timetable is not given.
Under the limitations imposed by actual timetables this stage may be simplified. The other two
stages each involve solving a series of small integer programming problems which will be called
interchange problems, and they determine the movement of entries within the timetable. Such an
algorithm can handle fixed and block meetings, sets, allocation of special rooms and variable teacher
availability while producing an acceptable spread of repeated meetings.
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1. Introduction

There have been many algorithms suggested for producing
secondary school timetables using a computer. They may be
divided broadly into two categories assignment algorithms
and improvement algorlthms The a1m of all of these algorithms
is to schedule a given set of meetings in a limited set of time
slots called periods so that certain logical and other imposed
constraints are satisfied.

The assignment algorithms seek to allocate meetings or groups
of meetings to periods in the timetable until all meetings are
accommodated without any of the constraints being violated.
The distinguishing feature of these algorithms is that at no
stage do they accept the violation of a constraint. Their rules
for choosing the next meeting to be assigned and its assignment
position are selected to avoid such situations. However, when
they do occur, the algorithm may either back track on previous
assignments, or modify a constraint or refuse to assign the
particular meeting. With this modus operandi established, the
important theoretical question is whether, given a set of meet-
ings which have been assigned already, the remaining meetings
can be assigned. For the case when a meeting is of only one
period’s duration and involves only one teacher and class, there
is the work of Csima and Gotlieb (1964) using the Hall con-
dition on a three-dimensional availability matrix. Application
of these ideas have been given by Lions (1967) with further
computational improvements (1971). The difficulty inherent in
the counter-examples to the sufficiency of the conditions was
identified by Dempster (1968) and resolved in his graph re-
colouring algorithms, (1971). Hemmerling (1972) more recently
has considered the case when there are sets and block meetings.
The approach is enumerative in nature. The Hall conditions

and certain look ahead features are used to reduce the number -

of possibilities considered. As with most algorithms based on
the Hall conditions, the problem must be first divided into
daily problems to reduce computation time and this too
provides the means for spreading repeated meetings.

On the other hand if one considers a schedule in which all the
meetings have been inserted but for which constraint violation
exists, then an algorithm which attempts to resolve these
conflicts can be considered an improvement algorithm. For
example, Lawrie’s integer programming model (1969) for
solving problems expressed in terms of layouts can be con-
sidered an improvement algorithm. Lawrie’s model only admits
meetings of one period’s duration but allows setting through
the use of year group layouts. There are at least three further
aspects of the practical timetabling problem not included in
Lawrie’s model. These are that some meetings must occur at
fixed times. Some meetings require a block of consecutive
periods which must not span any of the natural breaks in the
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timetable such as lunch or between days. Finally where meetings
are required to be repeated (other than in blocks) they shoul(g
be spread evenly through the timetable. =3

This paper is concerned with producing a timetable in whlc}g
these additional practical considerations are included. The
procedure is based on the observation that it is easy to construcg’
a timetable in which the correct number of lines (as defined bg
Lawrie) appear, but, in general, it will not be feasible. There ar¢;
three sources of infeasibilities in these timetables. Firstly, thé&
teaching resources may be exceeded in a period; secondly, %
block may span a break leading to a break infeasibilitys
thirdly, a particular line may appear too often in a day g1v1n§.
a spread infeasibility.

The algorithm tackles the problem in three stages.

1. Constructs a break feasible timetable.

2. Reduces teacher infeasibilities while remaining brea
feasible.

3. Improves spread characteristics while remaining brea

feasible and not increasing the resource infeasibility.
The first stage constructs the initial timetable and it is successfud
whenever there is at least one break feasible timetable. Thes
second and third stages are performed by a heuristic 1mprove°\°
ment algorithm which reduces infeasibilities by mterchangmgg
entries within the timetable. Given an infeasible part of th&
timetable, the improvement algorithm determines the inters
change to be made by generating and then solving a smaﬁ
integer programme which will be called an interchange problerqg
The process of selecting, generatmg and solving an mterchange
problem will be called a minor iteration. Looping in the ex-.
change of entries in the timetable is avoided by insisting thai
each interchange used to alter the timetable must not only be.
an optimal solution to an interchange problem but it must als@
make a positive contribution to the reduction of the infeasis
bilities. Those interchange problems which result in changes to
the timetable are called major iterations and a count of these
indicates the extent to which the initial timetable has had to be
altered.

| /8[oAFe/|uluf®o/woo dno"

2. Model description

Let n be the number of year groups in the school, p be the
number of periods in the timetable and s the number of subjects
in the layouts.

The layout for year group i has a matrix structure in which the
rows represent subjects and the columns represent the different
subject class collections taught at the same time. The elements
of the matrix are the number of teachers required by subject in
each subject class collection. The columns of this matrix will
be called layout vectors.
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To extend Lawrie’s description of layouts a set of requirements
R is defined. It states how many times each layout vector should
be used, any periods which require a specific layout vector, and
the block structure for layout vectors. Blocks may be composed
of different layout vectors thus enabling the repetition of a
subject class in consecutive periods without needing to repeat
the same collection of subject classes.

The layout vectors from all of the year groups are used to
form a three dimensional matrix of sizen x p x swhich will be
called a timetable matrix. The number and manner in which the
layout vectors appear in the timetable matrix, is described by R.

By considering planes parallel to the faces of the timetable
matrix (Fig. 1) it may be viewed as:

1.s n x p matrices which will be called the subject matrices.
They contain all the requirements for a specific subject.

2.p s x n matrices which will be called the period matrices
because they each represent one period.

3.n s x p matrices which will be called the year group matrices.

All the layout vectors from a given year group must lie in
the same year group matrix and, including repetitions defined
by R, must exactly fill it. The only permissible transformation
on the timetable matrix is the interchange of layout vectors
within a year group matrix.

For an arbitrary period j, let P; = (a;) be its period matrix.

The row sum Z a,; represents the number of reachers required

for subject k in perlod J. If for each k this sum is less than or
equal to the number of teachers available, 7, then P; is said to

be feasible in teaching resources.
Define

n
&(j) = igfl ay — 4

p;j is feasible if g,(j) < 0. A period matrix feasible in teaching
resources corresponds to an arrangement in Lawrie’s
terminology. '

To introduce a break structure into the timetable, an extra
component is added to each layout vector. The requirement
a,,q; in this component is

(a) O for a single period
(b) O for the first period of a double, 1 for the second
(¢) O for the first period of a triple, 1 for the last two.

The availability in this component u(j) is defined to be 0 if
period j follows a break and is » otherwise.
. Define

W) = 2 ayrri = u()

If for each j, A(j) is less than or equal to zero, then the time-
table is said to be break feasible.

To characterise the spread of the layout vectors, the allowable
number of repetitions per day is calculated for every layout
vector.

Number of repetitions allowed =
maximum of {number of largest block/number of days}

x block size and
{number of periods used/number of days}

where {} indicate the smallest integer greater than.

If for each day the actual number of repetitions of the layout
vectors is less than or equal to the allowable number then the
timetable is said to be spread feasible.

A timetable matrix is said to be feasible if it is feasible with
respect to teaching resources, break and spread. The problem
of producing Lawrie’s outline timetable becomes one of finding
a feasible timetable matrix given an initial timetable matrix
satisfying R.
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3. Break feasible timetable

A block of size /is an ordered set of / layout vectors which must
be placed in / consecutive periods. Consider one year group and
let ¢(!) be the number of blocks of size / and m be the size of the
largest block. Because every period has to contain a layout
vector, we require

S lel)=p.
=1

The constraint on allocating blocks to periods is that some of
the blocks of size 1 are assigned already to periods from which
they cannot be moved. The problem is to assign the remaining
blocks to periods so that no block has to be split because of the
assignments already made. The condition that blocks should
not span breaks is incorporated into this model by replacing
breaks by generated fixed single blocks.

In any solution the fixed blocks must be in the periods desig-
nated, therefore only the gaps formed after they have been
assigned, need be considered. Let ¢ be the number of gaps
formed and d(r) be the number of periods in the rth gap. It is
convenient to redefine ¢(1) to be the number of blocks of size 1
which are not fixed. Then

q
121 le(l) = Z’x d(r) .
Define y(/, r) to be the number of blocks of size / assigned to the
rth gap. The problem is to find an integer solution to the follow-
ing set of constraints.

Z (,ry=dr) r=12,...,q9

1=

e -

yihry=cl 1=1,2,.

]

r=1

y(l, r) = 0 and integer .

By multiplying the last m constraints by the appropriate / the
quantity Iy(/, r) may be replaced by z(/, r). The problem so
formed is the classical balanced transporation problem which
has a solution in integers. A solution to the original problem
requires that z(/, r) be divisible by /. This may be achieved by a
branch and bound style enumeration in which if a particular
z(l, r) is not divisible by /, then two new problems are created.
In one an upper bound of the largest integer multiple of / less
than z(/, r) is added and in the other a lower bound of the
smallest integer multiple of / greater than z(/, r) is added. The
lower bound may be reduced to zero by translation without
affecting the process because the amount by which it is trans-
lated is divisible by /.

In general the above process would require the solution of a
series of capacitated transportation problems. In practical
problems the introduction of the generated break fixed periods
enables one to assume that d(r) < 5. With this conditionand by

* restricting the maximum block size to three one can use the

following algorithm to generate break feasible timetables. Each
step represents an assignment pass in which every gap is
scanned.

1. Blocks of size three are inserted in gaps of size three or five.
In the latter case a gap of size two is left.

2. Any remaining blocks of size three are inserted into gaps of
size four. If any blocks of size three remain unplaced after
this step then no break feasible timetable exists.

3. Blocks of size two are inserted so that not more than one gap
of size one is created in any existing gap. If any blocks of size
two remain unplaced then no break feasible timetable exists.

4. The remaining gaps are filled with the remaining blocks of
size 1.

To prove that this algorithm will construct a break feasible
timetable when one exists, one notes that all of the new gaps of
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length one introduced in steps 2 and 3 are forced. Therefore if
there are not sufficient single blocks at step 4, no feasible
timetable exists.

4. Interchange problems

In stages two and three of the algorithm, teaching resource
and period spread infeasibilities are reduced while maintaining
break feasibility. This is achieved by interchanging layout
vectors within year groups. The blocks of size three are fixed
after stage one and therefore only the movement of blocks of
size two and one will be considered.

Consider an interchange between period matrices in periods
J(1) and j(2). Because of the presence of blocks of size two,
this could also affect periods j(1) + 1 and j(2) &+ 1. The allow-
able interchanges will be restricted to those which influence
periods j(1), j(1) — 1, j(2), j(2) — 1. If either j(1) or j(2) is
period one then j(1) + 1 or j(2) + 1 is used. There are five
possible configurations which could be found in the year
groups of each of these pairs of periods (Fig. 2(a)). This leads

Year groups
1 n
1 1

' Periods

Fig. 1 Timetable matrix

a) Single year group  (b) Unique interchanges

1 jm j j@

<00
00

X
X
(2}

]
]

X  Fixed or part of double or triple block

Fig. 2 Layout vector configurations

Volume 19 Number 4

to 25 possible combinations of which seven define a unique
interchange (Fig. 2(b)), seven enable a choice of movements
and 11 do not give an allowable interchange. Where more than
one movement is possible; any one may be chosen.

If all the layout vectors in period j(1) are blocks of size 1 then
the interchange movements allowed are restricted to be between
only blocks of size 1 in j(1) and j(2). In this case the interchange
between period matrix P;, = (a;) and Pj,, = (k;;) may be
defined as a transformation:

Piy = Pjays Piay = Pz

where
P_;(l) = (a;") Wlth a;‘i = aki(l - x,-) + bkixi k = 1, S
Py = (bi) by = aiX; +bu(l —x) k=1,
x;=00rl1 i=1n.

If x; equals one then the layout vectors of year group i are
interchanged in period j(1) and j(2). Under the transfo'rmation
&U(D) - gi(j(1)) and g(j(2)) — gi(j(2)). They satisfy the
equation

&) + glj(2) = g(UM) + i) (4,1)8

This implies Z g.(j) is fixed for each k and therefore a neces-m
=1

sary condmon for fea31b1hty is that this sum be non- posmve,_h
In a similar way one can give expressnons using one zero-ones
variable for each of the interchanges in Fig. 2(b). These can bez
used to derive expresswns for g,(j) in each of the four perlods.m
The improvement in a subject made by an interchange is then
amount by which the infeasibilities in that subject are reduced 2. 8
A method of choosing the interchange would be to find the ong
which maximises the sum of the 1mprovements over all subjects.>
A formulation of this problem is given in Aust (1973). Based or'_%
experlmental results in the same source, an alternative objectived
is used which approximates this objective. It has the advantage%
that only as many variables as there are year groups ar@
required in the formulation. This gives a shorter solution time=
per interchange and it was found that the number of 1nter-:,
changes required was not increased significantly.
For each k define

Ji = J(), ]k = Jj() if &(i(1) = &(ji(2)
Je = 7@, ji = J(D) if &) > &l(i(D)
From equation (4.1) it can be seen that if g;(j) is to be less thar%

9CE/6EE/Y/61/31!

reduction in g;(ji) the following constraint is imposed.
&) < 0if g < (4.25

g1 = gi( ji) otherwise .
Because there is a trade off between subjects a greater overalE
improvement may be made if the g;(ji) in certain subjects ares
allowed to increase. To achieve this without loosing feasibility~
in an already feasible period matrix the constraint

g <0if g (i) <0 4.3)

is introduced.
Subject to constraints (4.2) and (4.3) the interchange selected

is that which maximises Z (gji) — £.Gi))d, where d = 0 if

k=1
g() <0 and is 1 otherwise. The quantity g,(ji) — &:(i)
measures the amount by which the larger g,(j) before the
interchange is reduced. This does not always give the improve-
ment in the subject but it does have a positive value whenever
there is a positive improvement. The coefficient d; is used to
remove the effect of g,(j) movements in feasible subjects of the
period matrices and constraints (4.2) and (4.3) ensure they
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remain feasible. Where there are four periods involved one
defines similar constraints for the pair j(1) — 1 and j(2) — 1.

Constraints (4.2) and (4.3) relate to teaching resources. One
can define analogues of these in terms of A(j) to maintain break
feasibility.

The remaining constraints on interchanges relate to period
spread and are introduced in stage 3 of the algorithm. The year
groups are independent with respect to this factor and may be
considered separately. Interchanges involve only two layout
vectors except for those of type 1 which may involve four.
Constraints are constructed analogously to those for teaching
resources, except now they relate to changes in the number of
layout vectors of a particular type in a day. Quantities similar
to the g,(j) may be defined for each day as the actual number of
layout vectors minus the allowable number.

In two cases of type 1 the immediate analogues of the pair
wise generation of constraints will give incorrect coefficients.
This is because the movements between periods j(1), j(2) and
Jj(A) — 1, j(2) — 1 are not independent. These situations are
readily identified and the coefficients changed accordingly.

5. Interchange problem solution

The interchange problems are solved by a modified complete
enumeration procedure. Because of the large number of prob-
lems to be solved consideration must be given both to the
method of generation and the method of solution.

The period spread constraints are generated first. Those year
groups which do not satisfy their respective constraints may be
eliminated. Also if the layout vectors to be interchanged are
identical then the year group may be eliminated.

Initially all possible solutions are potentially feasible and a list
of the numbers 1 to 2" — 1 is made where n is number of year
groups not eliminated. The binary representation of these
numbers will give the appropriate x values. The zero or ‘do
nothing’ interchange is always feasible and therefore is not
considered. The teaching resource constraints are generated
subject by subject and those solutions which are no longer
feasible are removed from the list. A similar procedure is used
for the break constraints. If at any point the list is exhausted
then this implies that the only feasible solution is the zero
interchange and another problem is tried.

The process of generating constraints also generates the
coefficients for the objective function which is their weighted
sum. The final step is to find which of the remaining solutions
has the highest value. If this is positive then that interchange is
made.

The value of this procedure is that it is possible to show that
there is only one feasible solution without generating the com-
plete problem or even the objective function. This is important
since at least 90 per cent of the interchange problems are of

this type. It is also practicable because the value of # is small
(<7).

6. Period matrix selection

Two different strategies are used to pick the period matrices
for stages two and three. In stage two, two lists of the period
matrices are formed, one in which they are put in descending
order according to the sum of their positive g,(j) and in the
other in descending order according to the sum of their
negative g,(j).

One period matrix is selected from the top of the first list and
the other from the bottom of the second. If they do not produce
a positive valued interchange the next to bottom period on the
second list is chosen. This process continues until either a
positive valued interchange is produced or all of the period
matrices in the second list have been tried with the first on the
other list. In the former case, the interchange is made and the
lists updated; in the latter, the second period matrix of the
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first list is chosen and the first period matrix is said to require
modified selection.

If when a positive valued interchange occurs, there is at least
one period matrix which requires modified selection then the
next interchanges tried are those between the modified selection
period matrix and the two/four new period matrices. This
eliminates the repetition of a large number of zero interchanges -
that would otherwise be tried. If further positive valued inter-
changes are made during modified selection then steps are
taken to keep track of any period matrices which still require
modified selection and those which are newly created.

The process may terminate in one of two ways. Firstly if the
sum of the positive g,(j) of the period matrix at the top of the
first list is zero then the timetable matrix is feasible with respect
to teaching resources. Secondly if the sum of the positive
gi(j) of the period matrix currently being used from the first
list is non-positive, then no further positive valued interchanges
can be made. This because all further interchange problems,
which would be tried, would have objective functions identically
equal to zero from the effect of the flagging coefficients, d,.
Though the modified selection period matrices also appear ong
the second list they are never selected from that list as allg
possible interchange problems involving them have been tried.z
If the process terminates in the first way, stage two is said to%
have been successful; if it terminates in the second way, stageQ
two is said to have been completed O

In stage three only one list in which the days are orderedj
according to the sum of their infeasibilities in period spreado
is used. The day first on the list is chosen and its period matricess:
are examined in turn to find one with a layout vector COl‘ltI‘l-m
buting to the infeasibility. This perlod matrix is tried with®
every other period matrix in the remaining days until either a5
positive valued interchange is found or all have been tried.g
In the former case the interchange is made and the necessaryg
book-keeping performed and in the latter the next suitable3
period matrix found within that day. This continues untilS
either the first day on the list is feasible or the next day selected=
is feasible. In the former case, stage three is said to have beeny
successful and in the latter it is said to have been completed.

During stage three it is possible to make interchanges between_\
period matrices which are feasible with respect to teachmgh
resources. Therefore if stage two was not successful it may be%
possible to further reduce the remaining teaching resourcecs
infeasibilities by returning to stage two. This may be done w1thov
or without using period spread constraints.

o
=
Q

1senb Aq z19

7. Results
The algorithm has been programmed in FORTRAN and hasO
principally been run on a CDC 6400 computer. The program—.
has been dimensioned to take problems with up to seven yearsy,
groups, 50 periods and 20 subjects. It takes approximately=.
28 CP seconds to compile, and the compiled code requires)
65000 (octal) words of core to load. The program will either®
generate an initial matrix as described in Section 3 or will accept
a given initial matrix. The latter facility allows the reprocessing
of manual alterations to a previously constructed timetable.

The initial testing of the algorithm’s performance has been
done on the same problems as used by Lawrie (1969). He
considered four schools two of which had feasible solutions and
two of which did not. These problems only contain blocks of
size one. The results are given in Table 1. The infeasibilities are
stated in two parts—the first indicating the number and the
second the sum.

The current implementation repeats stages 2 and 3. If the
initial stage 2 was not successful then the interchanges made in
stage 3 may lead to further improvements in teaching resource
infeasibilities when reconsidered by a second stage 2.

For both feasible problems the initial stage 2 was successful.
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Table 1

School B D G w
Initial teaching infeasibilities 55/144 93/320 46/129 43/113
End 1st stage 2/3

Teaching infeasibilities 0/0 16/19 0/0 10/10
Spread infeasibilities 6/6 15/17 0/0 1/1
Major iterations 58 92 44 82
Minor iterations 922 4031 243 3000
End 2nd Stage 2/3
Teaching infeasibilities 0/0 15/18 0/0 9/9
Spread infeasibilities 6/6 9/10 0/0 0/0
Major iterations 0 8 0 4
Minor iterations 384 2697 0 521
Total time (CP seconds) 12-81° 4997 444 21-84
Table 2
School B with 19 G with 16
doubles doubles
Runl Run2 Run1 Run2
Initial teaching infeasibilities 69/276 1/2 43/113 1/1
End 1st Stage 2/3
Teaching infeasibilities 3/4 0/0 1/4 1/1
Spread infeasibilities 3/3 1/1 2/2 2/2
Major iterations 81 3 37 0
Minor iterations 2827 187 1055 161
End 2nd Stage 2/3
Teaching infeasibilities 3/4 0/0 1/4 1/1
Spread infeasibilities 3/3 1/1 2/2 2/2
Major iterations 0 0 0 0
Minor iterations 362 96 161 161
Total time (CP seconds)  81-01 7-31 13-89 549

For the two infeasible problems, the program identifies which
subjects should be considered for the modification of their
layout vectors or requirements. For school W two subjects
contained all the infeasibilities. Knowing which subjects to
examine one can show that a lower bound on the number and
sum of the infeasibilities is 8/8. For school D a similar analysis
on three subjects yields a lower bound of 7/7. These analyses
assume that the other subjects will still remain feasible when
the lower bound arrangement is used. This may not be possible
and so part of the gap between the lower bound and the actual
value achieved may be attributed to this further interaction and
part to the heuristic nature of the algorithm.

With regard to the spread feasibility, stage 3 was successful
for schools G and W but not B and D. However, if one com-
pares the distributions which give rise to these infeasibilities
with Boyes’ table of acceptable distributions reproduced in
Clementson (1968), then one finds that in every case the number
of periods placed unsatisfactorily is zero..The commonest
distribution giving rise to infeasibilities is five periods spread
21110 instead of 11111.

To test the ability of the algorithm to handle problems with
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improvement 3-63 CP seconds. The final timetable was feasible
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possible to patch the given feasible period matrices without,
introducing break infeasibilities. Although it was not required
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in the same way as it reduces teaching resource infeasibilities§
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8. Extensions
In the model described in Section 2, it was assumed that for
every subject, the teacher availability in each period is constant_g'
This restriction is easily overcome by introducing teachef:
availability as a year group with negative entries in the layouf
vectors. This is equivalent to rearranging the teaching resourcg

inequality for a period °
number of teachers required < number available £

into 8
number of teachers required — number available < 0 . %
This restores a constant (zero) right hand side. In most cases,

@

all the layout vectors of this additional year group would b
fixed. )
The timetable produced by the algorithm ensures that for eacly.
period there are sufficient teachers by subject to cover the:
requirements. This is a necessary but not sufficient conditions
on the additional requirement that the same teacher be assigne%
to each meeting of a subject class. @
To assist the production of the final timetable a simpley
program is used to summarise the resource clashes and avail
abilities which result from a given set of teacher and roon
assignments to the subject classes. Teachers or other resource$
which are overutilised in a period are reallocated. In cases of>
difficulty particular teachers may be specified as additionab
components of the layout vectors. ©
As an extreme case one can imagine all the resources spcciﬁeg
as additional components of the layout vectors. In this light:
one sees the layout vectors used by the current model as &3
N . N . ~
simplification of these further components. The same inter-
change techniques could be applied to problems involving these
larger layout vectors though it would be necessary to exploit the
0,1 nature of their elements both for storage and computation.
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