The syntax directed graph algorithm for the input of
equations to the Taylor series system for solving
ordinary differential equations

I. M. Willers

Cern Laboratoire 1, 1211 Genéve 23, Switzerland

A new algorithm is described for the automatic generation of code for the Taylor series method of
solving ordinary differential equations. The equations are represented by ‘syntax directed graphs’.
It is demonstrated that this is a natural development from the classical syntax tree. A compiling
algorithm is then described which, when applied to this structure, generates object code which may
be used for generating Taylor series by the use of appropriate recurrence relations. Finally this
method is compared with the algorithm in Barton, Willers and Zahar, 1971.

(Received September 1974)

In Barton, Willers and Zahar (1971) it is described how the
Taylor series method for the solution of the initial value
problem of ordinary differential equations may be implemented
as a completely automatic procedure.

In this paper an alternative description of the compiling
process and code generation stages of the implementation are
given. As well as being easier to describe and to understand,
this new description leads to a simpler implementation of the
algorithm. The numerical aspects of the Taylor series method
are covered in Barton, Willers and Zahar (1970). The basic
method is described in Moore (1966) and outlined in the two
papers by Barton, Willers and Zahar. In short, the unknown
variables of the equations are replaced by truncated Taylor
series. A recurrence relationship between the Taylor series
coefficients is established using the equations themselves.
The equations are split up into a set of simple equations which
involve one arithmetic' operation and at least one unknown
variable which may have been introduced at this stage. Each
new variable has a Taylor series associated with it. Each one of
these simple equations corresponds to a relationship between
the respective Taylor coefficients. This relationship depends
upon the arithmetic operation, and may be simply stated.
These simple relationships, when ordered, produce the recur-
rence relationship. The recurrence relationships and the
equation’s initial conditions may be used to obtain a normal
truncated power series solution to the problem. Using suitable
numerical control, the dependent variables may then be
evaluated at another point, hence giving new initial conditions,
and the process can be repeated to give a complete step-by-step
procedure.

This paper introduces the concept of a ‘syntax directed graph’
(SDG for short), which is a generalisation of the syntax tree
normally used when compiling arithmetic expressions (see
Graham, 1964).

The SDG structure is used both to establish that a problem
may be well posed, and for the generation of the recurrence
relationships in the form of object code.

1. Construction of the syntax directed graph

Let us consider a directed graph. We let the vertices represent
arithmetic operators and a null operator, ¢, (e.g. +, —, *, /, ¢,
...), and let the arcs represent variables. Then, the expression
(1 + 2) * 3 may be mapped onto a directed graph as follows:

344

&

This structure is directly analogous to a syntax tree, the
construction of which is well understood (see Graham, 1964).
However, in the Taylor series system the objective is to input
sets of equations. Let the equals sign, =, be added to the set of
operators and consider the equation
x=1
mapping this onto an SDG gives

We can add another equation to the set and obtain
x=1
y=x

which maps onto

Thus two equations have mapped onto a single SDG and the

relationship between the two equations is clearly indicated. The

process of adding an equation to a set may be seen to be a

simple process which may involve the deletion of null vertices.
Consider the differential equation:

Y=y
where ’ on the left hand side implies integration of the right hand
side.

The Computer Journal

20 udy 61 U0 189n6 AQ | Z99ZE/PYE/7/6 1 /81014e/|ufL00/W0d"dNO"oILLSPEDE//:SARY WO PAPEOUMOQ

This maps on to the SDG

yl

y

This introduces the interesting occurrence of a loop in the
SDG. The structure of a syntax tree is completely lost and the
relationship expressed in the equation cannot be expressed in a
syntax tree. In this way a problem statement for the Taylor
series system may be mapped onto two sets of SDG’s, one set
representing the differential system and the other set the initial
values.
Consider the example:

Integrate

y'=2*r+sin(y+1)+1+y

r=(1+y)**2

with initial conditions

y=y

y =1
The initial conditions map onto

The two equations form one connected SDG which indicates
how one of the equations must be used before solving the other.
The differential equation and the identity map onto

The SDG’s can be optimised by a straightforward comparison
of vertices and this process is made easier, as far as implemen-
tation is concerned, if the variables, or arcs, pointing into the
vertices are ordered. The removal of common subexpressions
is clearly demonstrated in the example.

Each prime that appears on the left hand side of the equation
leads to an integration of the right hand side. The looping
properties of the SDG are clearly shown.

2. The compiling algorithm

One task of this algorithm is to determine whether a problem

statement may be well defined for the Taylor series algorithm.
A typical problem statement has the form:

Integrate
Y = [t Y1, V25 o Ym) 1 <SPS m
with initial conditions
YD =hilt,y, ¥z, Ym) 1 ST <
t = to
where (j) and (n;) represent a nonnegative number of differen-
tiations and ¢ is the independent variable.

mand 0 <j <

Volume 19 Number 4

We express the two sets of equations as two sets of SDG’s
and define a labelling of the SDG which enables the algorithm
to be applied. Each variable is represented as a truncated
Taylor series and each operation is a relationship acting on
these series, producing a single result which is a coefficient of a
series. Consider such an operation on j Taylor series where the
ith Taylor series is known up to and including the coefficient
of order m;. Let this operation produce a coefficient of order n.
Then there exists a general relationship of the form:

¢ <n<min(mg,my,...,m)+c, (1y
where ¢ is a function of the operation such that ¢ = 1 for [,
¢ = —1for’and ¢ = 0 otherwise. For example, if one wanted

to add two series together and one series is known up to order 3
whilst the other is known to order 5, then the sum of these two
series can be calculated up to order 3. Clearly, for addition,
c=0.

Let the value —1 and the orders of known coefficients be
associated with each series. Each variable in a problem state-
ment, or equivalently, each arc of an SDG has associated with
it a set of integers. Using the relationship deduced above, the
action of an operation can be simulated by assigning a set ¢f
integers to the set of arcs leaving a vertex. For a given vertex,
which represents an operation, it is possible to associate the sé
[c,c + 1,..., n] (defined by the relationship (1)) with the s@
of arcs leavmg the vertex. Let us now consider only sets of the
type [—1,0, 1, ..., #], and characterise this set by the use of
the integer n. An mteger bounded by the relationship (1), cag
be assigned to each set of arcs in an SDG.

Consider the example of a differential equation y' = y.

%

[woo/wo9°dno-oiwepeoe//:sd

The value —1 is given to each arc, and will be referred to as tlf’c
value of that arc. Relationship (1) allows the association of the
value zero with y, but ¢ > 0 for integration so this operation 9@
not possible. Simulation of the operator ‘=’ produccs a
similar situation. If, however, the initial value of arc y is ma@

zero, it is possible to simulate the equals operation to give the

following picture:
/@‘\ 0
y' Yy
0 \‘@/

Now the action of the | operation can be simulated to give tk&
value 1 to arc y. This process may be continued so that with
each arc is associated an integer which is as large as is desire@.
It should be realised that giving the value zero to arcy is
equivalent to giving the differential equation an initial value,
without which it is impossible to solve.

61 uojsenb Aq 1Lz99zel,

Theorem:

If, at the beginning, it is possible to raise the value of each
finite valued arc by one, then it is possible to raise the values
of each finite valued arc to an integer which is as large as is
desired.

Proof:

Consider an arc whose finite value can be raised by one. Let
its value be raised by one to », which is bounded by the
relationship (1)

c<n<min(m,my,...,mj)+c

Now let the values of every other finite valued arc be raised by
one. Then, in particular, the value of every finite m; has changed.
Now we have

c<n+1<minm, +1,my+1,...,m+1)+c

thus it is possible to raise the value of the arc which is under
consideration. Since this is true for every finite arc, then all of
their values can be raised to an integer which is as large as is
desired.
QED

The aim of the algorithm is to raise the value of each arc by
one. The simulation of this particular sequence of operations
corresponds to a simulation of the recurrence relationship.

The algorithm

The SDG’s of the problem statement are drawn, the value
infinity is assigned to arcs which represent constants or the
independent variable when known to order zero. The value —1
is assigned to the remaining arcs.

The algorithm is applied to the initial conditions. If this is
successful the values of the arcs in the SDG of the initial
conditions are copied to similarly named arcs in the SDG of the
differential equations. Then the algorithm is repeated for the
SDG of the differential equations.

The nodal application of the algorithm is the act of raising
the value of an arc by one to the value n using the relationship

c<n<<min(my,my,...,m)+c.

A single application of the algorithm consists of a series of
nodal applications. After a nodal application the arc to which
a value is assigned is marked (by a tick, say), and subsequent
nodal applications are made to unmarked arcs until this
becomes impossible, thus finishing a single application. When
there is no unique order of nodal applications the order may be
chosen arbitrarily.

A single application is made and, if all arcs are ticked, the set
of equations may be well posed. If no previously unmarked
arc was marked by a tick the set of equations is ill posed.
Otherwise the arcs that are marked are recorded, the ticks
removed and the algorithm repeated.

The algorithm halts in a finite number of steps, since either
on each single application an arc is marked for the first time, or
else the process is halted, and there are a finite number of arcs.

Consider the application of the algorithm to the example:

Integrate

yi= Gy

r =x%x

x =y

with initial conditions
y =1

y =0

x =1

t =0

The SDG’s for the initial conditions are drawn and labelled.
"' y' -1@' 0 “’
0 (-]
“_ t 3 <>
. Y T@'\]l e
1 =
RIS

346

The nodal applications are made in any order giving:

=9

0
0
1
1

35

The initial conditions are well posed, and so the SDG for the
differential equations is drawn and labelled thus

In this example it is interesting to note that all the arcs have
finite values. Initially, nodal applications can be made at the
vertices (a), (b) or (d). Let the algorithm be applied to vertices
(a), (b), (c), (d), (e) and (f) in that order.

Since it is impossible to continue, this completes a single
application. Again, there is a choice about the order in which
nodal applications can be made. The algorithm is applied to
vertices (b), (c), (), (e), (f) and (g).

The procedure is repeated but now the order of nodal
applications is unique and their application gives:

All the arcs are marked by ticks, and so the problem may be
well posed.

The Computer Journal

20 udy 61 U0 189n6 AQ | Z99ZE/PYE/7/6 1 /51014e/|uf00/W0d"dNO"oILLEPEDE//:SARY W) PAPEO|UMOQ

The output of code

Each nodal application of the algorithm can be thought of as
a simulation of the action of the operational relationship at a
vertex. Therefore as a nodal application is made, the appro-
priate object code is generated. If the code that is being
generated is from the last single application it is surrounded by
a programmed loop. This code within the loop corresponds to a
recurrence relationship and the whole loop is known as the
recurrence loop. For most efficient object code it may be
necessary to scan ahead to ascertain that a single application is
the final one. For the above example object code is written as a
series of sentences which describe the operations. The oper-
ations act upon truncated series and produce a single result
which is the coefficient of a series with the given order. A series
of comments are written down the right hand side of the
column to indicate the corresponding nodal applications.

The subroutine for the initial conditions is:

Set coefficient order = 0

Sety =0
Sety =1
Setx =1
Sett =0
End

The differential equations lead to the code

Comment: beginning of first single application
Set coefficient order = 0

Integrate y’' to y (=x") (a, b

Integrate x’ to x (c

Sett; = x*x(=r) d, e

Sett, =x*r f
Comment: beginning of second single application

Set coefficient order = 1

Integrate x’ to x (c

Sett;, = x*x (=r) d, e

Sett, =x*r 02

Differentiate ¢, to ¢ (g
Comment: beginning of third single application

Set coefficient order = 2
Loopcommences:Set t; = x * x (=r) e

Sett, =x*r f

Differentiate #, to #; (g
Decrement coefficient order

Differentiate #5 to 7, (=)") (h,i
Decrement coefficient order

Integrate y"’ to)’ G
Increment coefficient order

Integrate y' to y (=x") (a, b

Increment coefficient order

Integrate x’ to x (c
Increment coefficient order and loop until required order is
achieved

End

References

3. The relationship between the new and existing algorithms
The new algorithm may be considered to be a simpler version
of the existing algorithm given in Barton, Willers and Zahar
(1971). For those wishing to compare the two algorithms, the
following is intended to summarise the precise relationship
between them.

Syntax analysis

New algorithm The SDG is formed in a similar manner to a.
syntax tree. Optimisation takes place as the SDG is being:
constructed.

Existing algorithm A syntax tree is constructed, and is them
converted to matrix form. Each row of the matrix is equivalent
to the classical canonical form as described in Moore (1966).
As the matrix form is constructed the rows are searched for
possible optimisations.

Comparison The optimised SDG is entirely equivalent to the
optimised matrix form.

ojumoq

Code generation, first stage
New algorithm A number is associated with each arc of thm
SDG. This number represents the highest order of knowng
Taylor series coefficients for each variable. Constants and thes’
independent variable are recognised. The code for the initiaF
conditions is generated and the SDG for the dlfferentla%
equations modified accordingly.

eoe//'s

Existing algorithm A matrix D is constructed which contam%
information regarding the difference between the number oﬁ
terms needed and the number obtained for a partlculalb
operation. This involves tracing back through the matrix form
whilst counting differentiation operators, and recognisings
constants, the independent variable and variables which are thev
result of an integration. Code for the initial conditions 1@
generated.

o1e/|ul

Comparison The matrix D, the matrix form and the orders ofE
the coefficients that have been dealt with are equlvalent to theg
SDG. By tracing back through the SDG, it is possible to;
generate the matrix D.

Code generation, second stage
New algorithm The algorithm is applied to the nodes of th
SDG, and code is generated as the algorithm progresses.

Ssonb A zo9ze Y

%
&
=
=
o
8
3
~
x
=~
3
-
=
)
B
©
-
=.
»
o
@
172
o
1Y
B
B
o
(=N
¥
=
(=N
o
=]
=]
L]
S
fa
o
L d

code is generated using the matrix form and stored informatiorn.
on the order of the coefficients that have been dealt with.

Iudy 6

Comparison The SDG contains all the requlred 1nformat10nN
however, it may be necessary to scan ahead to deduce that thlé.‘i
is the final application. The matrix D may be examined to
ascertain the beginning of the recurrence loop. The code that is
produced should be of a similar quality.

BARTON, D., WILLERS, I. M., and ZAHAR, R. V. M. (1971). The automatic solution of systems of ordinary differential equations by the
method of Taylor series. The Computer Journal, Vol. 14, No. 3, pp. 243-248; also in The Best Computer Papers of 1971, Auerbach (Ed.y

Petrocelli, Philadelphia, 1971, pp. 147-163.
BarTON, D., WILLERS, I. M., and ZAHAR, R. V. M. (1970).

Taylor series methods for ordinary dlﬁ'erentlal equations—an evaluation,

Proc. Math Software Sympostum Purdue University, Lafayette, Indiana.

GRraHAM, R. M. (1964).
MOooRrE, R. E. (1966).

Volume 19 Number 4

Bounded context translation, AFIPS SJCC, Vol. 25, p. 17-29.
Interval Analysis, Prentice-Hall, Englewood Cliffs, NJ.

347

