Tensor product approximations to data defined on
rectangular meshes in N-space
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The problem of interpolating amongst data defined on a rectangular mesh in real N-space can be
conveniently solved by constructing suitable tensor product hypersurfaces. In particular the problem
can be neatly formulated with the use of Kronecker products of matrices. Greville (1961) has
observed that the concept of the pseudo-inverse of a matrix allows this formulation to be extended
to the corresponding least-squares problem. The purpose of this note is to review this approach and
. to relate it to the method of surface fitting described by Clenshaw and Hayes (1965), in which the
surface is obtained by two stages of curve fitting.
There is a dearth of algorithms for solving the N-variable problem and two new ones are given here
in outline. They are similar to those developed independently by Pereyra and Scherer (1973).

(Received November 1974)

1. Introduction as the solution to that problem.
The problem we are considering is the representation of data Although it is clear from the presence of the inverses of ® and3
which are values of some unknown function of N independent YT separately that the interpolation in the two variables is in2
variables and which are given at all the vertices of a finite ~ some sense separated into two one-variable problems, (3) doesa
rectangular mesh in real N-space. The representation is to be by not fully illuminate that separation. If we partition 4 and Z3
an element of a tensor product space of functions of N variables  into rows & and z®7, s = 1(1)m,, then, after matrix>
constructed from N finite spaces of functions of one variable. transposition, (2) can be written in the form
For N = 2 we can represent the data by the triples (x;, y;, z;;), my )

i = 1(1)my, j = 1(1)m,, and the function which approximates Z ¢i(x;) ¥a© = 29, i = 1(my .
the z;; is of the form

moQ

peoj

wapeoe//:sdpy w

ng om2 : By definition (Halmos, 1958) this is the same as the Kronecker=-
f) = 3 3 a6 v () poduct form :
thus belonging to the tensor product space (Halmos, 1958) P®Y¥)a=z (4)8
{} ¢.> R (Y v where a and z are (m;m,) x 1 column vectors constructed3
1 ’ ny 1 na

‘lexicographically’ (in row order) from A and Z. Specifically®
where {S) means the span of the set S. In this paper {¢,} and grap y @ ) P YS

{y,} are bases for the corresponding linear function spaces so a=(011815- - Qimy 21+ Gy g1 e e )T %
that {1, . . ., ¢, is of dimension #,. Using the properties of the Kronecker product of nonsmgula rs

This is of course a much restricted problem (in the sense that ~ matrices (assuming again that the interpolation problem is®
the data and the approximating function have special forms)  Wwell-defined) we achieve ©
but one which occurs with sufficient frequency to be of practical a=(@'¥YY):; OR
interest. Furthermore it is not essentially difficult to extend the 3
methods considered in this paper to more generally defined )
data patterns. Particular variations of data structure are §

corresponding to (3).
The extension to N > 2 is straightforward, but complicated
by the problems of notation. The data can be represented by

considered in the papers of Clenshaw and Hayes (1965) and (N + 1)-tuples (x(1, x(2), . . ., x™ ) with i, = l(l)mk<
Buchanan and Thomas (1968). ~ in'» Zigiz.. iy ;
Rice (1969) discusses tensor product approximation in the ?(r)lrdmk 1N, and the hyp ersurface has the tensor productﬁ
L,-norm and produces theoretical results related to the ones ), x@, M S
which follow. S, X2, L, xE) . 2
: (®) (x*) &
2. Interpolation . §=1 s~§“1 (H o5 (x )). (6=
In this case the number of data vertices a_md- the number of The solution to the (assumed well-defined) 1nterpolat10n8
basis functions is the same, for each variable, i.e. n, = m, problem
k = 1(DN. For N = 2 we require . .
(DN a SED, o3 = 2 i = 1D, k = 1N,
_Zi ;1 aubs(x) V() = zij, i = 1(Dmy, j = 1(1)m,. can then be written immediately as
Defining the matrices a=(2'®9'®...0 o) ™
. N
A = [a,] where a and z are column vectors each with [T m, elements,
= [0l tively containing all th dz, . in lexic
T _ i respectively containing all the a,,  , and z; _, in lexico-
)] graphic order. Also " Y
Z = [z;] T = [d)(k)(x(k))]
allows us to write the above aTs is the matrix that would be involved in interpolation in the
PAYT = Z . (@) variable x® alone with all other variables fixed, i.e. interpolation
If the interpolation problem is well-defined we can immediately ~ along mesh lines parallel to the x* co- -ordinate axis. (7) shows
write clearly fhe separation of the N-variable problem into N
A=0"1ZwNH! (3)  one-variable problems.
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3. Least-squares approximation
In this case the number of data vertices in each variable exceeds
the number of basis functions in that variable, i.e. m; > ny,
k = 1(1)N.

For N = 2 we are required to find the a, that minimise

my my ny n2 2
B 8(e- £ B asewmon) . ®
i=1 j=1 s=1 t=1

or, equivalently, to solve the now overdetermined system (4)
in the least-squares sense. Peters and Wilkinson (1970) have
given an excellent account of the problem of finding the least-
squares solution of a linear system, showing that it may be
solved by extensions of the familiar methods of Gauss-elimi-
nation or Householder transformations; the solution is
represented symbolically by

a=PR¥V)'z. ()
where B' means the pseudo-inverse of B. Pseudo-inverses are

discussed in this and related contexts by Greville (1959, 1960
and 1961), but from the more classical point of view as gener-

alisations of the concept of the inverse of a nonsingular matrix. .

In particular in Greville (1961) he notes the result (9) and ob-
serves that the properties of pseudo-inverses enable us to write
it in the manner equivalent to (5):

a= (@ ®¥Hz. (10)
The generalisation to N > 2 js immediate:
=P RP®...0 Bz . 1)

To complete the comparison we note that when N = 2 we
could also write

A =o'z PNt (12)
corresponding to (3).

4. Computational methods

The separation of the N-variable problem into N one-variable
problems is not simply a theoretical nicety, but neither is it a
panacea for multivariable problems. In the simplest terms we
have exchanged the problem of size for one of complexity:
-in effect the (pseudo-) inversion of a single matrix of size

N N
( I mk> X ( I nk>for the (pseudo-) inversion of N matrices

k=1
each of size m, x n, plus the evaluatlon of the Kronecker
product.

An interesting aspect of the Kronecker product form (11) of
the solution is that it corresponds to a well-known method of
surface fitting in which the Kronecker product does not appear
explicitly. A typical description of this method for N = 2 can
be found in Clenshaw and Hayes (1965). The authors observe
that if the {¢,} are orthogonal polynomials of degree s with
respect to the usual summation inner-product over the data set
{x;}, and likewise the {y,} over the set {y;}, then least-squares
curve fitting with

(@) fi(x) =
for each j, and then with

®) b0) = ¥ a.0) to the data set {(7;, b,):] = 1(D)mz)

for each s, produces the true least-squares surface of the form
(1) for the data {(x;, y;, z;;)}. This is clearly so because the
orthogonality of the two sets {¢,} and {y,} separately guaran-
tees the orthogonality of the tensor product basis {¢./,} with
respect to the double sum inner-product over the set {(x;, y;)}.
and the two diagonal systems of normal equations for the curve
fitting processes:

@ by; T $7(xi) = X 21j¢s(x1), Vs 5, 13)

1(1)m,}

):n‘,l bsjd,(x) to the data set {(x;, z;;): i
s=1
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and

(b) ast Z 'Ilrzi(yj) = Z bsj!//t(yj), V s, t’ (14)

combine immediately into the diagonal system

a4, T 5 92x) Y2(r) = ST 2 by Vs, ¢,

for the surface fitting process. That this separation into two
curve fitting processes is possible for more general bases {¢,}
and {y,} is less clear. It is again caused by the transfer of the
main properties of the ¢, and ¥, to the product functions ¢g,,
in this case their linear independence.

To show this we note that if the surface is obtained by first
fitting functions 3_ b;@((x) to {(x;, z;;): i = 1(1)m, }, for each j,

and then Y a,/,(») to {(y), bs;): j = 1(1)m,}, for each s, the
' t
resulting form is as required (equation 1), and the two over-

determined sets of equations we have to solve (in the least-
squares sense) have matrix forms

®B =27 S

and s
T 8

. A¥Y" =B §
ie. . 3
A= o'ZwH . 3

But this is the solution (12) of the surface fitting problem, arﬁ

oe//:

our proof is complete.

We conclude that if {¢,} and {y,} are sets of 1ndependexg
functions, linear combinations of which are suitable for curve
fitting, then least-squares surface fitting with linear combilgi
ations of ¢/, can be achieved by least-squares curve fitting i
the two independent variables separately, provided also that
the data are available at all the vertices of a rectangular grié;
We also note that the order in which the variables are considered
is immaterial. If the i, are used first the separate equations are

BYT =Z QE»\)
and %
P4 =B s
with the same overall result as before. g

Weinstein (1971) has proved similar results for the mof@
general problem of L, -approximation of continuous functlo&
on compact sets in Ek, k=2

It is also clear that this approach can be extended to hlghsr
dimensions. If the data are {(x;, y;, i, z;5)} we fit surfaces‘g

SZ ; bW (¥) to {(xi, ¥, Zij)}

for each k and then curve fit the data {(w, bs,)} Wi
3 a,,.x.(w) for each s and ¢, obtaining the true least-squares
u N
o
N

hypersurface 3 2 3 @b (W ()1, (W)-

s t u

However, the natural insight into the construction of the
hypersurface that this gives us does not necessarily imply that
we have the most sensible computing scheme. Indeed it is not
obvious at first how we can control the above scheme since
we do not wish to have arrays with an unknown number N of
dimensions in order to cope with any number N of variables.
The answer is to store the N-dimensional arrays as one-
dimensional arrays with the elements stored in lexicographic
order, and this leads us naturally back to the Kronecker
product form (11). Rewriting (11) as

V=L Uo 1se

14

a=(® ®R)z (15)

where R, = <15;r ®...0 dﬂ,, gives
a= (@ ® DI R,z (16)
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by a well-known identity of Kronecker products (Halmos,
1958). Representing ¢I by [h;;] gives the partitioned form

a = hlll DR hlm]I Rl 0 LR 0 zl
L . 0 .

Rl...o
Buid .. B I| 10 0 ... R ||z

1

N N
where R, is of size ( II nk) X ( I mk> and each vector z; has
k=2 k=2

N
I1 m, elements. A little manipulation then shows that a has

k=2
the partitioned form
a= |:Rlvl :| ’
Rlvnl
in which each vector v; is given by
a7
Now each component R,v; of the above partition is of the same

general form as the right hand side of (11), and so can be
manipulated in a similar manner. Thus, storing the n, vectors

N
v; (each with [T my, elements) as one vector, we can operate on
k=2

each of the n, parts with (D;r = [h;;] exactly as in (17) we
operated on z with @I = [h;;]. If we repeat the operation with
(P;r = [h;;] on each of the resulting n;n, parts (each with

N
IT m; elements), and so on, then we have the following scheme
k=3

N
to produce finally the ( I nk> x 1 vector a of surface para-
k=1

meters. The local procedures COEFFICIENT MATRIX and
PSEUDO INVERSE calculate the elements of &, and
¢1 = [h;;] respectively.
comment outline of tensor product hypersurface algorithm using
explicit pseudo-inverses;
comment initialisation;
12:=1;
for k := 1 step 1 until Ndo /2 := 12 x m[k];
comment recursive calculation of hypersurface parameters;
for k := 1 step 1 until N do
beginp :=1;
11 :=ifk = 1then 1elsel/l x n[k — 1];
12 :=12 + m[k];
COEFFICIENT MATRIX;
PSEUDO INVERSE;
for 5 := 1 step 1 until /1 do
for i := 1 stepl until n[k] do
for ¢t := 1 step 1 until /2 do
begin a[p] := 0;

for j := 1 step 1 until m[k] do
a[p] := alp] + ALi,j1 x z[t + 12 x (j — 1 + m[k] x
(s — D)
p:=p+1
end
for i := 1 step 1 until p — 1 do z[i] := a[i]

end

ALGOL has been used here as a convenient medium for com-
munication ; actual coding may well be different. In particular
the way in which PSEUDO INVERSE is defined and used may
vary with the context, and the calculation of the inner-products
a[p] would be achieved with a double-precision procedure.
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Suitable array bounds for h a and z are
h[1:maxm, 1:maxn]
a[1:mp1]
z[1:mpl]
where maxm = max {m,, k = 1(1)N},
maxn = max {n,, k = 1(1)N},
and mpl = ] m,.
k=1

The other identifiers are self-explanatory, either being counting
indices or corresponding in an obvious way to variables used
in the text.

A possible criticism of the scheme is the need for explicitly

calculating all the 45: when compared with the economies
possible in those one-variable least-squares algorithms which
calculate the solution 4'b of Ax = b without actually exhibiting
A'. Such an approach can be used as an alternative to the above
scheme, but at greater cost in complexity, and the result is the

‘natural’ scheme of successive curve fitting described earlier,
coupled with the 1ex1cographlc storage of the arrays.

The complexity arises from the need to do all the curve ﬁttmg
in any one variable with only one implicit pseudo-inversion of >
the relevant @,. For example at the first stage we have to solve
the m; equations in »; unknowns
I PED) = z, = 1(1)m,

Z(1) i
21 i1j2. L J1

i1=

N
for all [T m, values of j,, . .
k=2

., jn- We can write this as

@12(1) = Z

N
where Z™) is an array of size n;, x [] m, and Z is an array of
k=2
. N ..
size m; x [] m, containing the data ordinates. At the second
k=2

stage, however, Z™) becomes the data on the right hand sides
of the m, equations in n, unknowns

n2
2 —
2 2w PO = 2,

. t1J2.
i2=1

,stz = 1(Dm, ,

N
for all ny TT my values of iy, s, . .
k=3

., jn- To write this as

D, Z@ = 7z
it is necessary to permute the elements of Z¥ so that it becomes
N

of size m, x ny [] my. Successive stages are similar, and the
k=3

N-1
final array obtained, Z™, is of size ny x [ #,, and taken in
k=1

column order this is the vector of hypersurface parameters.
An outline of this scheme is shown below, where the array bis
initially set equal to the array Z above and the array c is finally
the array Z®™ above.

comment outline of tensor product hypersurface algorithm using
implicit pseudo-inverses;
comment initialisation;
12:=1;
for k := 2 step 1 until N do /2 := 12 x m[k];
comment recursive calculation of hypersurface parameters;
for k := 1 step 1 until N do
beging := 1;
I1 :=ifk =1then 1 else/l x n[k — 1];
COEFFICIENT MATRIX;
LEAST SQUARES SOLUTION (phi, ¢, b, m[k], n[k],
11 x 12, eta, coda);
if kK = N then goto coda;
12:=12 + mlk + 17;
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for s := 1 step 1 until /1 do 5. Examples of use

for i := 1 step 1 until n[k] do The simplest formulation occurs when the basis functions
for t := 1 step 1 until /2 do ¢(x) = x'~1. However if polynomials are considered suitable
begin for j := 1 step 1 until m[k + 1] do then the orthogonal polynomial scheme described by Clenshaw
blj,ql :=cli,t +12x (j—1+ mk + 1] x and Hayes can be extended to higher dimensions, and would be

(s — 1))] more desirable for the usual reasons.
q:= A formulation which has recently found considerable favour
end; occurs when the ¢; are cubic B-splines (Cox, 1972; Hayes and
coda: end Halliday, 1972). This results not only in a representation which

. deals effectively with local non-polynomial behaviour in the
As with the previous algorithm the procedure COEFFICIENT g1 44 als0 ciuses the &, to ha\Ije z:, band structure, each row
MATRIX calculates the elements of the array phi = &,. The containing at most four non-zero entries. In this case the
proced_ure LEAST SQUARES SOLUTION solves (phi)(c) = b schemes given in Section 4 can be made even more efficient if
for ¢, in the least squares sense; the p arameters used here are the pseudo-inversion and least-squares solution procedures are
those required by the procedure of Businger and Golub (1965).

. ; - for phi. b and specially tailored to the band structure (Reid, 1967).
For this second algorithm suitable array bounds for phi, b an The schemes given can be used to solve the classic spline

¢are interpolation problem where the knots are placed at the data
phi[1:maxm, 1:maxn] vertices, or the more general interpolation problem where the
B[ 1:maxm, 1:mp2] knots are positioned to.dc?al with the local behaviour of the
e[1:maxn, 1:mp2] data. In the latter case it is necessary for the knots and data

vertices to satisfy the conditions derived by Schoenberg and
Whitney (1953). When the schemes are being used in the least-g
squares sense the knots can, in theory, be positioned arbltrarlly,c>
again with the idea of dealing with the local behaviour of thea
data. In this case the &, may not be of maximal rank 1. TheQ
coding is, of course, intended to describe the logic of the  first scheme deals with this if PSEUDO INVERSE is no
algorithm and, as before, is clearly not a finished program. restricted to the maximal rank case. The second scheme wills
There is virtually no difference in the storage requirements of  fail as it stands because the procedure of Businger and Golubg
the two schemes because the arrays z and a of the first scheme  assumes maximal rank. If maximal rank is required then theﬂ\)
and the arrays b and ¢ of the second scheme store the same  Schoenberg-Whitney conditions must be satisfied by somes
information in different forms. Note that at any one time only  subset of the data (Cox and Hayes, 1973); if it is not, then th
one of the @, exists in storage. This is in contrast to the linear  solution obtained by pseudo-inversion is that one of the linear>

system for the complete N-dimensional problem obtained when manifold of possible solutions which has minimum norm, i. es 2
no attempt is made to separate the variables. This latter method minimises

is used of necessity when the data are ‘randomly’ distributed ) 3
in some finite region of N-space (Hayes and Halliday, 1972). (s 2z . as,. ..sN>
The overdetermined system to be solved is freeeoin

where maxm and maxn are as previously defined and

N
mp2 = [1 my; the other identifiers are self-explanatory. This
k=2

(Peters and Wilkinson, 1970).

The schemes are designed solely for use with data which ares
where each row of 4 corresponds to a data point and each  values of a function which cannot reasonably be evaluated at>

Aa=z

ueuu[woo/woo

column to an element of the tensor product basis of functions;  other values of the independent variables. If the underlymg,:
the solution is simply - data function can be evaluated anywhere in its domain then
a= Az Gordon (1969) has shown that there are more efficient methods>

_ for finding hypersurface representations, in the sense o@
N N ' ining m ccur: in ini i

but 4 has dimensions kI;[l my, X k]=_[1 n, and for N > 2 storage” Z:zsﬁ cygthohr i‘ea::ve " ; :t):,ilif ;S?sta point or obtaining a spec1ﬁ(§
Finally, it is worth noting that, once obtained, the hyper‘ﬂ
. . R surface representation (6) will be evaluated through a further?
Moreover the numllaeerof long operations required to find 4 computer routine. If B-spline bases are used then the evaluatiom
is of the order of m"n"", whereas the number required to find 1 5ytine, Iike the surface fitting routine, can be specially tailoredz
all the <15,t and their Kronecker product with Z, as in our first  to achieve economies by using the compact support propert)g
scheme, is of the order of N(n?m + m"*'), where m and nare  of the B-splines.
typical values of m, and n,. Since m is unlikely to be of the
order of n*", unless N = 1, and in view of the relatively small ~ Acknowledgement
storage required, it seems to be worthwhile having a special I would like to thank the referee for his helpful comments, and
algorithm for separating the variables when the data are  in particular for drawing my attention to the work of Call and
defined on a rectangular mesh. Judd (1974) which covers similar ground to this paper.

considerations predominate.
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Book review

Fortran Programming—A spiral approach, by C. B. Kreitzburg and
B. Schneiderman, 1976; 437 pages. (Jarcourt Brace Jovanovitch,
£4-25)

Simplified ANSI FORTRAN IV Programming, second edition by
G. A. and Joan B. Silver, 1976; 334 pages. (Harcourt Brace
Jovanovitch, £5-50)

After preparing lecture notes on FORTRAN programming, many
lecturers, including the above authors, publish their notes in book
form. In a market already saturated by at least sixty very similar
books, these additions seem superfluous. However, both books could
form the basic material for an introductory course if supplemented
with practical experience and tutorial advice.

By British standards, both books would be considered ‘oversized’.
Presumably the American market believes that the more pages, the
better the book. British students, as well as hesitating at the price,
would consider them tedious reading and tend to skip text in search
of the next matter of substance. Both are slightly oriented towards
the authors’ local FORTRAN compilers.

Fortran Programming—A spiral approach has been thoughtfully
prepared. During the gradual advance from the simple to the
complex, the student is introduced to new concepts in a well ordered
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sequence. Good programming style is emphasised, and thenz
illustrated in an ANSI standard FORTRAN context. It is one of the3
better text books on this topic. Lecturers would be encouraged tox:
use it if the Instructor’s Manual mentioned in the preface could beg
obtained. )
The second edition of Simplified ANSI FORTRAN IV programming%
claims to adhere to ANSI Standard FORTRAN. It also contains a
brief section on structured programming. Some inaccuracies (€.g:5
Page 59 TRACE and DISPLAY debugging facilities are erroneouslyS
attributed to ANSI) and misleading definitions (e.g. Page 323
“Top/down programming means that the logic in the main program3
can be followed by reading it from top to bottom’) should be
corrected. Overall I prefer the spiral approach. %,\’
P. A. CLARKE (Harpenden)%

Erratum
Formula (3) of Hit ratios by S. J. Waters (Computer Journal,

Volume 19, No. 1, February 1976) should read:
N-B<H
BHR =1-—N<m

Similarly in Appendix 3.
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