A direct method for the solution of large sparse systems

of linear equations
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A new method for the solution of large sparse systems of linear equations that offers considerable
savings of computation time and storage is presented. The proposed method is easily programmable
for linear systems with a band type matrix of coefficients and can be used for large sparse systems,
where the non-zero elements in the matrix of coefficients are randomly spaced.

The system is restructured by tearing and the whole system is solved as a smaller linear system of
the tear variables, using a modification of the Newton method, for which the derivatives are calculated

directly from the equations.
(Received March 1974, Revised April 1975)

1. Introduction
Many numerical problems require the solution of a large sparse
system of linear equations. Typical examples are the solution of
partial differential equations by finite difference approximation,
the solution of two point boundary value problems and linear
programming. Our objective was to develop an efficient direct
method for the solution of large, sparse systems of linear
equations. A system of linear equations can be written in the
form:

Ax =b . )]
Direct and iterative methods can be used for the computation
of the values of X.

For direct methods of solution the matrix 4 is brought into
the form of an upper triangular matrix by a series of constant
multiplications and subtractions of rows. The resultant form of
equation (1) with an upper triangular matrix is then solved by
back substitution. Gastinel (1970) and Walsh (1971) have
reviewed these methods.

The direct methods do not take advantage of the fact that for
most of the practical problems the matrix A is sparse, and are
inefficient for large systems (» > 100). Two main drawbacks
of the direct methods for the solution of large sparse systems of
linear equations are:

1. The matrix A and the vector b have to be stored. This
requires n(n + 1) words of storage for a system of n
equations.

2. The number of addition, substraction and multiplication
operations is proportional to n® (approximately }»° for the
Gauss method and 47> for the Jordan method.)

For large systems of linear equations iterative methods are
preferred. Their advantage over the direct methods is that it is
not necessary to store the whole matrix 4. In many cases the
solution may also be attained in smaller numbers of arithmetic
operations than is required for direct methods. However, for
many cases, the convergence of the iterative methods may be
slow or unattainable. The most widely used iterative methods
are the Jacobi and Gauss-Seidel methods. The iterative methods
for the solution of systems of linear equations were recently
reviewed by Young (1971, 1973).

Kron (1963) introduced the concept of decomposition of a
large sparse system into a set of smaller subsystems by the use
of ‘tearing methods’. The current status of decomposition and
tearing methods has been reviewed by Harary (1971) and
Ledet and Himmelblau (1970).

According to these methods an ‘output set’ for the system of
equations is chosen first. One variable is assigned to each
equation as the output variable of this equation. The system of

equations is then partitioned into the smallest irreducible
subsystem of equations that must be solved simultaneously.

For each subsystem of equations one or more ‘tearing’2
variables are chosen. These ‘tearing’ variables are the iteratesz
that need be chosen to obtain a solution of the subsystem.3 =3
The number of tearmg variables is usually smaller than theQ
number of equations in the subsystem An accepted criteriond
for selecting ‘tearing variables’ is the minimum number of such=
variables which will make is possible to solve the whole sub-v
system. The ordered set of equations that results is then so]ved\
by an iterative method. 0

Descriptions of established methods of partitioning andfl>
tearing as well as computer programs for this purpose may beo
found elsewhere (Ledet and Himmelblau, 1970).

In this paper we propose a method for the direct solution ofIO)
the sparse system of equations which has been restructured by3
tearing.

2. The proposed method
Let X = (xy, X, . . ., x,)7 be the set of variables in (1).

Let us choose X; = (x;, X5, . . ., X,,)T as a subset of X, so tha
a unique value for the variables » — m may be obtamedh

17161 /o101e/|ufwooy

directly by substitution in equation (2). g
w

Xmi1 = (=@ Xy — Q12X — ... — QX + b)) ey R
: 23
X, = (_an—m,lxl - an—m,2x2 T e e ‘g
«Q

an—m,n—lxn—l + bn—m)/an—m,n %

. (2]

where X+ 1, Xm+2, - - -» X, are the output set of variables that_
can be calculated if x,, x,, . . ., x,, are given. 2

In the system of equations (2) there are only (n — m) equations
from the original n equations of the system of equation (1). TheS,
m equations left may be rewritten in the form:

Si(X1) = o 1,1%1 + Qo1 2% + ..

E an—m+1,nxn - bn—m+l =0
fm(fl) = a,1% + Ap2X2 + .. o AppXpy — bn =0 (3)
F=[AED, Lo(XD, . . o f(X)]T = 0 is a system of m linear
equations, where the principal variables are contained in
vector X, and the other variables may be calculated by sub-
stitution from system (2).

Since the system f; = 0 is linear, it may be solved directly by
means of Newton Raphson method in one iteration.

¥20Z Il

of:
Furthermore, the partial derivatives a—i—‘- which are required for
J
the Newton-Raphson method, may be calculated from
equation (4).

*Present Address: Department of Chemical Engineering, Ben Gurion University of the Negev, Beer-Sheva 84-120, Israel.

Volume 19 Number 4

353



ofi _ i
s x @
i J
where f; is calculated from the systems of equation (2) and (3)
by setting b = 0 and setting all the elements of X, except x; to
Zero. :
The problems of step size or curve fitting usually associated
with the numerical computation of derivatives, are thus

sidestepped.

Proof
Let us reorder and renumber the equations and variables of (1)
as required by equations (2) and (3).

Now, let us break up the reordered form of 4 as shown:

1 m n
Iy _
_ T @ S
4= : ®)
n—mj._........
Fy @ F
n
where T is an m x (n — m) matrix:
— all a12 ... alm
T=|: )
an—m,i an—m,2 LIRS an—m,m

S is a lower triangular square matrix with dimension

(n—m) x (n—m)

a1,m+1
§ = |%,m+1 az,m+2 )
an—m,m+1 an—m,m+2 LI 4 an—m,n

and the dimensions of F, and F, arem x mand (n — m) x m
respectively.

- an m+1,1 an—m+l,2 s an—m+1,m
Fy :
ap1 an2 <+ Qum (8)
Fz = an-m+l,m+1 an—m+1,m+2 LI an—m+1,n
an,m+1 Apm+2 Y
Further § may be rewritten as S = L+ D where Lis a lower

triangular matrix with zeros on the diagonal and D is a
diagonal matrix.

Now let us break up X and b:

[

where %, has already defined and
X3 = Xma1s Xmt2s e o x)"
51 =(byby... bn—m)T
and by = (Bpems 1> Dumrzs - b7

The systems (2) and (3) may be rewritten respectively as:

D Y(-Tx, — Lx, + b)) (10

X, =
and

fx) =F% + F;%, — b, . €8]
Note that equation (10) may be solved for X, row by row by
substitution only.

For the sake of the proof we shall solve equation (10) explicitly
for X, by:
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=0+ D 'L)"* D~-Tx, + b))
Substituting (12) into (11) obtains:
J&) =F.x, + F,(I + D7'L)™*
After rearrangement:
f(x) =[F, — F,d + D'L)"'TDIx, + F,(I + D7'L)
Db, — b, (14
From (14) it is obvious that f(x,) is a linear function of X, only

and it therefore can be solved for X; by means of the Newton-
Raphson method.

(12)

5_1(—TJ?1 + Bl) - Bz

For the proof of equation (4) let oty 1, &2, « - -5 Cpms Tags « « o5 Ly
the constant multipliers of X, from (14). Thus
§=F, —F,(I+ D '[)"*D'T. (15)
Then the partial derivative is:
% _
ox;
and by calculating the function values from (14), setting
b=0,x,X5..Xj_1, X415+, X, = 0and x; # 0 one gets

fl(f) = aljxj

f 2(X) = a, X
Jul®) =

Since all the additional linear terms vanish, the partial deri-
vatives may be calculated as shown in Equation (4) and the
proof is completed.

The algorithm for the solution of a set of linear equations by
the proposed method is:

1. Transform the equations into the form of Equatlons (2)and o
(3). Arrange the equations so that the minimum number of 5
tear variables is required. (When it is more convenient 8
Equation (5) may be used instead of (2) and (3)).

2. Assume initial values for the tear variables (X; # 0) and 2.
compute f(x,) by Equatlons (2) and (3). (Itis convenient to 5
choose x; = (1, 1,..., D).

3. Compute the partial derivatives by Equations (2), (3) and (4).

4. Compute x§ the exact solution for the tear set by one
iteration of the Newton—-Raphson method.

5. Compute the rest of the values of x; from equation (2).

(16)

X jX j
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This algorithm (excluding the selection of the tear variables and 9,

the ordering of the equations) can be easily programmed Ag
subroutine for solving linear systems by this method is shown‘Q
in Appendix 1. 2

For simple problems, or symmetrical systems, the minimum S
set of tear variables is easily formed by inspection. For complex 3
problems it is recommended to use methods that determine the%>
tear variables and the optimal order of computation (Harary, =
1971; Ledet and Himmelblau, 1970): 3

ThlS method requires m + 2 computations of the system of R
equations and the solution of a set of linear equations of
dimension m. Therefore, the method is more efficient if a
minimum set of tear variables is used. Essentially, this method
reduces the dimension of the problem from » to m.

This method has the advantage of iteration methods of small
storage requirements and the advantage of direct methods of
obtaining the solution in a fixed number of arithmetic
operations.

The proposed method can also be used for the inversion of
sparse matrices and for linear systems with more than one right
hand side vector of constants. (The inversion of a matrix is
equivalent to the problem of the solution of »n systems of n
linear equations, which vary only in the right hand vector of
constants). If there are k right hand side vectors, the solution
algorithm must be repeated k times. However, since the equ-
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ations have to be rearranged only once and the derivatives are
the same for the k systems, the amount of computation is
considerably reduced. For a system with & right hand vectors
(for the inversion of a n x n matrix k = n) the computation of
equations (2) and (3) m + 2k times and the solution of a re-
duced system of k sets of m linear equations, are required.

As for simple direct methods, the proposed method may be

—S —_
—C

©

COO0OO~ROO0OO—=OO
|

COON 2 2w OO0

COO OO0 OD «
COO0OOOCOOOO—~=OO
COO0O O OO~ OOO =
|
COO0OOON o v OO

[=NeNoloNeNoNo R

where s = 0-5 and ¢ = 0-86603.
If x,, is taken as the tear variable, the system is easily
transformed into:

X10 = —8Xq1y xg = —10/c — Xy,

xg =5+ s(x;; — x9) x; =10/c — x,

X¢ = X0 + S(x5 — x7) x5 = —10/c — x4 (18)
X4 =xg + 8(x; — x5) x3= 10/c — x5

X, = Xg + 5(xs — x3) x; = —10/c — x3

SGep) = s(x; —x3) — x4+ 5.

An exact solution of this problem was obtained in five minutes
with a desk calculator, using the proposed algorithm. Fourteen
multiplications and divisions were needed. The solution of this
problem by Carnahan et al. (1969) by the Gauss-Jordan
method required about 600 multiplications and divisions and
the use of a computer.

3.2. A linearised material balance of a chemical plant leads to the
following linear system with randomly spaced non-zero
elements (taken from Dorn et al. (1972) (See Fig. 1.)

(The zero elements of this coefficient matrix are not shown for
the sake of clarity). By tearing variables x,, x5, x¢ the coefficient
matrix can be rearranged into the form of equation (5). (Fig. 2)
The algorithm of the proposed method requires calculation of
the whole system five times and a solution of a 3 x 3 linear
system of equations.. An exact solution of this system was
obtained by the proposed method in one iteration. By the
Gauss-Seidel method 22 iterations (thus 22 calculations of the
whole system) were required for solution where the absolute
error of every one of the variables is less than 10~7. (The
starting vector was X° = (1, 1, .. ., 1)T). The advantage of the
proposed method is obvious. For this case it is extremely
difficult to use direct methods efficiently because of the
unordered spacing of the non-zero elements.

3.3. A system of linear submatrices obtained by the usual five
point difference approximation for the Laplace equation in a
rectangle (Reid; 1971)

For a k x [grid, the matrix 4 is of the order of n = k x land
has an / x / block form:

(19)
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sensitive to rounding errors. This problem has not yet been
completely solved.

3. Examples :

3.1. A system with a non-symmetric band of non-zero elements
in the matrix of coefficients, taken from Carnahan et al. (1969)
The matrix formulation of the problem is:

0 0 0 0] | x, [— 5]
0 0 0 0] | x, 10
0 0 0 O] | x; 0
0 0 0 Ol | x4 10
-1 0 0 0f | xs 0
0 0 0 0] |x¢| =] 10 (17)
0 —s -1 o} | x4y 0
0 c 0 0] | xsg 10
1 s 0 —sl |x 5
0 —c 0 —c| [x10 10
0 0 1 s] [xg4 | 0]

where I is the k x k identity matrix and T is the k x
tridiagonal matrix:

[ 4 -1

-1 4 -1

=~
Il
)

14 -
-1 4

L o

ovdnoogwepeogf/:sdnu wouy papediimoq

Obviously, the minimum number of tear streams is the smalleg.
value of either k or I If k has the smaller value, the first

variables can be used as the tear variables and the system can be
transformed into:

xi+k=C1+02+C3+4xi—bi i=l,2,...,n-—k
fi =catetestdx; —bi=n—k+1,.../nj

i+k—n
where:
0 fori<k
‘= {——x,-_k fori> k
0 for the first row of each block
€2 = {—xi_l elsewhere

_ 0 for the last row of each block
€3 = 1 =x;+; elsewhere
b=1
The problem was solved for k = 5 and / = 2, 6, 10 by the

proposed method by the Gauss elimination method with
pivoting on the largest element of each column and by the

20z Iudy 61 uo ysenb Aq 199939/898/1;'/6L/9I3!U9/

Table 1 Comparison of the CPU Times for Example 3.3

CPU TIME (msec)
n=kxl
Propoused Gauss Gauss—Seidel*
method elimination double sweep
10 10 20 20
30 30 460 180
50 40 2040 390

*The criteria for convergence for this method was that the Euclidean norm
of the errors was less than 10-7.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1|1 -1
2 1 —1
3 1 -1
55 55
4| -5 1 -5
1 1
5 ~3 1 -3
1 35 1 35 1
61 =5 =2 ~! ! ~90 ~2 !
10
7 a 1
6
8 — 1
5 g
9 —1—1 l 5
! :
10 —1—1 1 ‘_ah
1 e
11 -3 1 B
¢ E
12 —= 1 o
i §
3 (0]
13 -3 1 2
5 o
2 S
14 -z 1 g
3
15 4 1 El
1 1 3
16 "3 =7 ! g
1 1 £
17 -3 -3 1 3
9 9 3
18 10 10 ! 2
2 >
19 -3 1 =
{ g
20 -3 1 S
l [(e)
21 -z 1 g
» 6 6 ,
7 7
4 4
23 -~z —= 1
1 1
24 —1 o 1

Fig. 1

Gauss-Seidel double sweep method. (PL/I programming with
double precision on an IBM 370/168 computer). The Gauss—
Seidel double sweep method has been tested since Brandon
(1974) suggested that this is the best method for the solution of
this type of problem.
Comparison of the CPU time required is shown in Table 1.
For n = 50 the proposed method is 30 times faster than

another direct method and 10 times faster than an efficient
iterative method.

A computer program for the solution of this example is given
in Appendix 2.

4. Conclusions
The new method combines advantages of direct and indirect
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methods and results in considerable savings of computing time
and storage for large sparse sets of linear systems and can be
useful for the solution of partial differential equations and for
linear programming. Essentially, the dimension of the system is
reduced from » to m. In addition it is shown how the derivatives
of the Newton method can be calculated directly from the
functions.

The restructuring of the system of equations is not a deterring
requirement. For diagonal band type matrices the variables of
any one row (less one) can be taken as the tear variables in a
general program of the proposed method.

We have also found that this method is efficient for the
inversion of matrices.
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Appendix 1 PL/1 subroutine for the solution of a sparse system of linear equations

LINEQ.
/**#****#*******************************an*ane****************************#*****#ﬁ
* *
;* PURPOSE *;
* OBTAIN A SOLUTION OF A SPARSE SET OF LINEAR EQUATIONS */
/* METHOD */
| * USING A SPECIALLY ORDERED SYSTEM WHICH IS A FUNCTION OF THE TEAR VARIABLES ONLY, */
hd A SMALLER SET OF LINEAR EQUATIONS IS OBTAINED. THIS SMALLER SET IS THEN SOLVED BY A */
[ * STANDARD GAUSS ELIMINATION METHOD. (SEE FOR EXAMPLE: SUBROUTINE SIMQ FROM IBM, */
[ * SYSTEM/360 SCIENTIFIC SUBROUTINE PACKAGE, FORM NO. GH20-0205-4, 1970) */
[* DESCRIPTION OF THE PARAMETERS */
* K—FIXED—NUMBER OF THE TEAR VARIABLES */
* XX—(K)BlN(53)———RESULTANT SOLUTION OF THE TEAR VARIABLES. */
* ERR—BIN(53)—AN INDICATOR FOR THE ACCURACY OF THE SOLUTION. FOR A NORMAL EXIT ERR ¥/
* CONTAINS THE EUCL. NORM OF THE FUNCTION VALUES AT THE SOLUTION FOR A */
| * SINGULAR SYSTEM ERR IS SET TO 1(ONE). */
[ * FUN—FUNCTION—CALCULATES THE FUNCTION VALUES FOR GIVEN TEAR VARIABLES */
| * A N *N SYSTEM OF LINEAR EQUATIONS IS RECONSTRUCTED IN THE FOLLOWING FORM: */
* X(K + 1) = —(A(1, 1) *X(1) + A(1,2) *X@2) + ... + A(1, K) *X(K) — B(1))/A(1, K + 1) */
|* X(K +2) = —(AQ 1) *X(1) + A@Q,2) *X(2) + ... + A@R, K + 1) *X(K) — BQ2))/AQ2, K + 2) :7
* @)
;* X(N) = —(A(N — K, 1) *X(1) + AN — K,2) *X(2) + ... */g
| * .+ A(N——K,N—1)*X(N—1)—B(N—K))/A(N—K,N) *=
* Y1) = AN — K + 1, 1) *X(1) + AN — K, 2) *X(2) + ... 3
[* c+ AN — K +1,N)*X(N) — B(N — K — 1) 2
* : * =
. o
;* Y(K) = A(N, 1) *X(1) + A(N, 2) *X(2) + ... + A(N, N) *X(N) — B(N) */3
* *[=
;* (X(), X(2), . . ., X(K) ARE THE TEAR VARIABLES) */g
* *[5
f* USAGE *,%
/* CALL FUN(SG, XX, Y) . *
* SG—BIT(1)—INDICATES THE VALUE THAT THE B VECTOR RECEIVES. FOR SG = ‘1’ *E'
* B RECEIVES ITS REAL VALUE, ELSE IT IS SET AT ZERO. */8
[* XX—(K)BIN(53)—CURRENT VALUE OF THE TEAR VARIABLES. *ﬁ
| * Y—(K)BIN(53)—RESULTANT FUNCTION VALUE *S
* : *5
/**#***#*#**&**#*##****#*****#*##**#-**#**-*******#************#i****#***##**#**#*g

PROC(K, XX, FUN, ERR);

DCL  (XX(*), P(K), DY(K, K), Y(K), ERR) BIN(53), K FIXED, ST BIT(1), FUN ENTRY(BIT(1), ( *)BIN(53), ( *)BIN(53)),

DMLSQ ENTRY((*, *)BIN(53), ( *)BIN(53), FIXED, BIT(1));

DMLSQ = STANDARD IBM METHOD, USING GAUSS ELIMINATION FOR THE SOLUTION OF A SYSTEM OF

*
/* LINEAR EQUATIONS
/* SET INITIAL VALUE OF XX TO 1
XX = 1;
[* CALCULATE THE FUNCTION VALUE
CALL FUN(‘’B, XX, Y);
[* CALCULATE THE PARTIAL DERIVATIVES
DO 1 =1TOK; P = O; P(l) = XX(I); CALL FUN(‘'O’B, P, DY(*, I)); DY(*, I) = DY(*, )/XX(l);
END;
/* CALCULATE THE EXACT SOLUTION
IF K = 1 THEN XX(1) = XX(1) — Y(1)/DY(1, 1);
ELSE DO; P — —Y; CALL DMLSQ(DY, P, K, ST);
IF ST THEN ERR = 1; / * SINGULAR SYSTEM
ELSE DO; XX(*) = XX(*) + P(*); CALL FUN(1'B, XX, Y);
ERR = SQRT(SUM(Y *Y));

END; END;
END LINEQ;

Appendix 2: Main program and function for the solution of example 3.3
LIN: PROCEDURE OPTIONS(MAIN:

| * THIS MAIN PROGRAM SOLVES EXAMPLE 3.3 (FOR N = 50) BY THE PROPOSED METHOD.

DCL  FUN ENTRY(BIT(1), ( ¥BIN(53), (*)BIN(53)), (XX, YY)(5), ERR) BIN(53), | FIXED,
(X(50) BIN(53), (N, K) FIXED) EXTERNAL;
K = 5; N = 50; CALL LINEQ(K, XX, FUN, ERR);
CALL FUN(1’B, XX, YY);
PUT EDIT(* * * * THE SOLUTION FOR N = *N,’ * * *)
(PAGE, A, F(2), AY('X(,),”’) =" X() DO | =1 TO N))
(SKIP, A, F(2), A, E(23, 15));
IF ERR > 1E-5 THEN PUT EDIT(" * * * THE ERROR IS’ ERR,  * * *)
(SKIP(5), A, E(12, 5), A);
END LIN;
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FUN: PROC(SG, XX, Y);
DCL G BIT(1), (XX, Y)(*), B(50), C1, C2, C3) BIN(53),
(1, KK) FIXED, (X(50) BIN(53), (K, N) FIXED) EXTERNAL;
IF SG THEN B = 1; ELSE B = 0;
DO I =1 TO K;: X(I) = XX(l); END; KK = 0;
DO | =1TO N; KK = KK + 1; C1, C2, C3 = 0;
IFI> K THEN C1 = —X(I — K); IF KK > 1 THEN C2 = —X(I — 1);
IF KK < K THEN C3 = —X(I + 1);
IFl< = N — K THEN X(I + K) = C1 + C2 + 4*X(l) + C3 — B(l);
ELSE Y(KK) = C1 + C2 + 4*X(l) + C3 — B());
IF KK = K THEN KK = 0;
END; DCL YY(5) BIN(53); YY = Y; PUT DATA (X, YY);
END FUN;
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