Correspondence

To the Editor
The Computer Journal

Sir

I

was delighted to see Chung-Phillips’ and Rosen’s note on dynamic

storage allocation in FORTRAN appear in the literature (The
Computer Journal, Vol. 18, pp. 342-343). As the authors correctly
point out, the utility and flexibility of the majority of applications
programs written in FORTRAN are marred by that language’s
woefully static memory management philosophy.

1

In the interests of readability, modularity, and portability, however,

wish to call attention to three details of implementation which tend

to make the technique more serviceable in practice.

1.

Responsibility for storage allocation should be delegated to a
separate routine, say IALOCF (ARRAY, LENGTH) which
simply returns the index of the first word of an allocation relative
to the specified base ARRAY. This not only isolates the user
program from the details of memory management, but also
permits easy generalisation of the technique to several dynamic
storage areas simultaneously.

. Most modern operating systems provide mechanisms to allow user
programs to request and/or release actual core store during the
course of a job (viz. RFL command in SCOPE/KRONOS) and
many loaders will arrange to link blank COMMON last, in order
that it may be subsequently extended. Making use of these
features in conjunction with (1) above, truly dynamic systems are
easily achieved.

. Finally, I must protest that, according to the 1966 ANSI
FORTRAN standard, X3.9-1966, variable dimensioning infor-

" mation cannot be communicated through COMMON (blank

or labelled) but must be passed via the formal parameter list
(section 7.2.1.1.2). On some machine architectures, particularly
those without indirect addressing, use of such multi-dimensional
array arguments can be up to twice as expensive computationally
as to those in common storage; but in today’s world of exponen-
tially diverging hardware and software costs, even this loss is
probably tolerable in the interests of flexible program design.

In closing, if I may be so bold, I should like to propose that a proper

survey article of data structuring/management techniques in
FORTRAN, particularly as they affect production scientific codes, is
long overdue.

Yours faithfully,
J. T. HASTINGS

Atmospheric Technology Division
National Centre for Atmospheric Research
PO Box 3000

Boulder

Colorado 80303

USA

4 February 1976

To the Editor
The Computer Journal

Sir

With reference to the article ‘A note on dynamic data storage in
FORTRAN IV’ by Alice Chung-Phillips and R. W. Rosen in The
Computer Journal (Vol. 18, pp. 342-343; November, 1975), I was
most surprised to realise that the technique described had not been
published before although 1 for one have been using it for almost as
long as I can remember (since about 1963!) when variable dimension
statements were first allowed in FORTRAN.

I am writing to explain how with a slight extension it is possible

greatly to improve the efficiency of programs in which array sizes are
dependent on the input parameters. C-P and R state that if the size of
preassigned storage space is not suitable then only two statements
need to be adjusted. This is neither necessary nor desirable—I
sometimes make a mistake in changing just one statement!—and the
program has to be recompiled because of these changes. The follow-
ing method requires a once and for all compilation.

The Control Data Cyber 76 computer, using the standard SCOPE
operating system, works in a multiprogrammed mode and it is
advantageous, for getting fast throughput for a given program, for
the program to be as small as possible. SCOPE is able to schedule
small programs for execution more easily than large ones. In the
Cyber 76 small core memory (SCM) is used for execution and storage Y
of some data but large core memory (LCM) is used for extensive data <
and for working space by SCOPE. When elements in data arrays are S
to be accessed sequentially by a program the machine works faster 2
if the data are in LCM—for hardware reasons. The Cyber 762
FORTRAN compiler is such that blank COMMON blocks areo
placed at the end of all other information—program and labelled Z.
COMMON-—this is the key to success for the techmque g

First let us assume we have decided to put the data in LCM, thls\
is achieved by using the FORTRAN LEVEL statement and——usmgo
the notation of the referenced paper—we write LEVEL 2, A, Alsoa
we put the array A into blank COMMON thus COMMON/ /A(1)3
and note particularly that the dimension of A is one—the smallest?
possible value. Now we follow C-P and R and compute the sub-g
array sizes and in particular ITOTAL, the total space required. Weg3
can check this against NTOTAL but in our case NTOTAL is pre-set 3
once and for all as the maximum number of words of LCM that anyo
program can use. If in the statement IF(ITOTAL.GT. NTOTAL)—
CALL EXIT the CALL EXIT is executed then we must rethink ours
problem but if not we encounter the statement CALL MEMORYLZ
(ITOTAL). This causes SCOPE to change the LCM space allocation®
to be ITOTAL which is the size we now know to be required and weo
have never asked for more space than is absolutely necessary. In fact,g
even NTOTAL and the IF statement are redundant because theX
system knows how much LCM is available and if the CALLa
MEMORYL statement cannot satisfy the requirement then the Jobo’
aborts with an appropriate message 3

We can go further, suppose in the example we do not require KEY.Z
and JANS after a certain stage in the program (such arrays arec
deliberately placed last in the order of the sub-arrays) then at this®
state we execute CALL MEMORYL(I1) and scope will reduce theo
LCM allocation accordingly.

It remains only to exp]am that if we do not wish to use LCM“o
because either our data is relatively small or it is not accessedo
sequentially then the only changes required to the above in order to,\,
use SCM instead are: N

~
(i) omit the LEVEL statement and

(ii) insert IPROG = MEMORYS(0)
and ITOTAL = 12 + NS*NP — 1 + IPROG
CALL MEMORYS(ITOTAL)
in place of ITOTAL = 12 + NS*NP — 1
and CALL MEMORYL(ITOTAL) used previously.

The function MEMORYS(0) returns the current size of SCM i.e.
after compilation and the allocation of space for arrays with fixed
dimensions, hence the ITOTAL computed is now the total SCM
required for everything. CALL MEMORYS(ITOTAL) reserves the
total SCM space required.

In conclusion, I should point out that this technique is also
applicable to Control Data lower Cyber computers and probably to
many others but in some cases there is insufficient flexibility in the
monitor to allow this dynamic adjustment of storage space. Further-
more, most charging algorithms take account of how much SCM
and LCM is used and for how long, so it is to the advantage of the

The Computer Journal





