Correspondence

To the Editor
The Computer Journal

Sir

I

was delighted to see Chung-Phillips’ and Rosen’s note on dynamic

storage allocation in FORTRAN appear in the literature (The
Computer Journal, Vol. 18, pp. 342-343). As the authors correctly
point out, the utility and flexibility of the majority of applications
programs written in FORTRAN are marred by that language’s
woefully static memory management philosophy.

1

In the interests of readability, modularity, and portability, however,

wish to call attention to three details of implementation which tend

to make the technique more serviceable in practice.

1.

Responsibility for storage allocation should be delegated to a
separate routine, say IALOCF (ARRAY, LENGTH) which
simply returns the index of the first word of an allocation relative
to the specified base ARRAY. This not only isolates the user
program from the details of memory management, but also
permits easy generalisation of the technique to several dynamic
storage areas simultaneously.

. Most modern operating systems provide mechanisms to allow user
programs to request and/or release actual core store during the
course of a job (viz. RFL command in SCOPE/KRONOS) and
many loaders will arrange to link blank COMMON last, in order
that it may be subsequently extended. Making use of these
features in conjunction with (1) above, truly dynamic systems are
easily achieved.

. Finally, I must protest that, according to the 1966 ANSI
FORTRAN standard, X3.9-1966, variable dimensioning infor-

" mation cannot be communicated through COMMON (blank

or labelled) but must be passed via the formal parameter list
(section 7.2.1.1.2). On some machine architectures, particularly
those without indirect addressing, use of such multi-dimensional
array arguments can be up to twice as expensive computationally
as to those in common storage; but in today’s world of exponen-
tially diverging hardware and software costs, even this loss is
probably tolerable in the interests of flexible program design.

In closing, if I may be so bold, I should like to propose that a proper

survey article of data structuring/management techniques in
FORTRAN, particularly as they affect production scientific codes, is
long overdue.

Yours faithfully,
J. T. HASTINGS

Atmospheric Technology Division
National Centre for Atmospheric Research
PO Box 3000

Boulder

Colorado 80303

USA

4 February 1976

To the Editor
The Computer Journal

Sir

With reference to the article ‘A note on dynamic data storage in
FORTRAN IV’ by Alice Chung-Phillips and R. W. Rosen in The
Computer Journal (Vol. 18, pp. 342-343; November, 1975), I was
most surprised to realise that the technique described had not been
published before although 1 for one have been using it for almost as
long as I can remember (since about 1963!) when variable dimension
statements were first allowed in FORTRAN.

I am writing to explain how with a slight extension it is possible

greatly to improve the efficiency of programs in which array sizes are
dependent on the input parameters. C-P and R state that if the size of
preassigned storage space is not suitable then only two statements
need to be adjusted. This is neither necessary nor desirable—I
sometimes make a mistake in changing just one statement!—and the
program has to be recompiled because of these changes. The follow-
ing method requires a once and for all compilation.

The Control Data Cyber 76 computer, using the standard SCOPE
operating system, works in a multiprogrammed mode and it is
advantageous, for getting fast throughput for a given program, for
the program to be as small as possible. SCOPE is able to schedule
small programs for execution more easily than large ones. In the
Cyber 76 small core memory (SCM) is used for execution and storage Y
of some data but large core memory (LCM) is used for extensive data <
and for working space by SCOPE. When elements in data arrays are S
to be accessed sequentially by a program the machine works faster 2
if the data are in LCM—for hardware reasons. The Cyber 762
FORTRAN compiler is such that blank COMMON blocks areo
placed at the end of all other information—program and labelled Z.
COMMON-—this is the key to success for the techmque g

First let us assume we have decided to put the data in LCM, thls\
is achieved by using the FORTRAN LEVEL statement and——usmgo
the notation of the referenced paper—we write LEVEL 2, A, Alsoa
we put the array A into blank COMMON thus COMMON/ /A(1)3
and note particularly that the dimension of A is one—the smallest?
possible value. Now we follow C-P and R and compute the sub-g
array sizes and in particular ITOTAL, the total space required. Weg3
can check this against NTOTAL but in our case NTOTAL is pre-set 3
once and for all as the maximum number of words of LCM that anyo
program can use. If in the statement IF(ITOTAL.GT. NTOTAL)—
CALL EXIT the CALL EXIT is executed then we must rethink ours
problem but if not we encounter the statement CALL MEMORYLZ
(ITOTAL). This causes SCOPE to change the LCM space allocation®
to be ITOTAL which is the size we now know to be required and weo
have never asked for more space than is absolutely necessary. In fact,g
even NTOTAL and the IF statement are redundant because theX
system knows how much LCM is available and if the CALLa
MEMORYL statement cannot satisfy the requirement then the Jobo’
aborts with an appropriate message .

We can go further, suppose in the example we do not require KEY.Z
and JANS after a certain stage in the program (such arrays arec
deliberately placed last in the order of the sub-arrays) then at this®
state we execute CALL MEMORYL(I1) and scope will reduce theo
LCM allocation accordingly.

It remains only to exp]am that if we do not wish to use LCM“o
because either our data is relatively small or it is not accessedo
sequentially then the only changes required to the above in order to,\,
use SCM instead are: N

~
(i) omit the LEVEL statement and

(ii) insert IPROG = MEMORYS(0)
and ITOTAL = 12 + NS*NP — 1 + IPROG
CALL MEMORYS(ITOTAL)
in place of ITOTAL = 12 + NS*NP — 1
and CALL MEMORYL(ITOTAL) used previously.

The function MEMORYS(0) returns the current size of SCM i.e.
after compilation and the allocation of space for arrays with fixed
dimensions, hence the ITOTAL computed is now the total SCM
required for everything. CALL MEMORYS(ITOTAL) reserves the
total SCM space required.

In conclusion, I should point out that this technique is also
applicable to Control Data lower Cyber computers and probably to
many others but in some cases there is insufficient flexibility in the
monitor to allow this dynamic adjustment of storage space. Further-
more, most charging algorithms take account of how much SCM
and LCM is used and for how long, so it is to the advantage of the

The Computer Journal

programmer to be as economical as possible.

Yours faithfully,

G. N. LANCE

Division of Computing Research
CSIRO
P.O. Box 1800
Canberra City
A.C.T. 2601
Australia
2 March 1976

Editor’s note:

Dr. Lance mentions that he was surprised to realise that the technique
described had not been published before. Other colleagues have
pointed out that, although there does not appear to be a previous
publication of exactly this technique, a paper addressing the same
problem more comprehensively (‘How to implement variable-
dimension arrays in FORTRAN without rewriting the compiler’ by
D. A. Joslin) did appear in The Computer Bulletin, Vol. 15, No. 7,
pp. 258-260, July 1971.

To the Editor
The Computer Journal
Sir
I started your article ‘An approach to systems design’ in Volume 19,
No. 1 enthusiastically. But PROPLAN? You must be joking! I can
only find one thing to say—p(@@@3&//@@!!!)
Yours faithfully,

J. K. CROSTON
4 Market Way
Chester CH1 2BW
31 March 1976

To the Editor
The Computer Journal
Sir

User extensible languages
I read with interest the paper by Napper and Fisher on ALEC.
Extensible languages are theoretically a very powerful tool in com-
plex programming situations but unfortunately few practical
implementations yet exist.

The CAP-Sogeti-Gemini group of companies have for some years
used internally, and made available commercially, a software
production language called CPL1. The basic language is a PL/1
subset providing arithmetic, character and bit string, pointer and
label data together with arrays and structures. By careful choice of
language features and compilation techniques it has been possible to
achieve object code efficiency which differs little from good assembler
coding on a wide range of machines, from mainframes to minis.
This has permitted use of CPL1 in situations where other high level
languages were ruled out on size or speed considerations. While the
basic language meets all common programming needs, user exten-
sions are particularly valuable in two different contexts: application
oriented extensions and environmental extensions. The first allow
simplification of programming for specific applications, the second
exploitation of facilities in particular machines or operating systems.
In CPL1 it was essential that such extensions should produce code
no worse than for the basic language and this precluded definition
in terms of existing CPL1 constructs, even in those cases where this
was possible. The necessary extension mechanism is therefore
closest to Example 4 of the formal macros of Napper and Fisher, and
is provided by the following compiler design technique.

CPL1 source is first translated into a series of macros in a language
called MACOMP. The basic set of these macros effectively define a
conceptual machine whose operations can be sensibly redefined in
terms of any existing machine code.

The next stage of translation is via the MACOMP processor which
produces object machine output using a preset macro definition
table. This mechanism provides advantages other than extension
facilities. For example a new macro definition table will produce a
cross compiler for another target machine and the full CPL1
compiler, itself written in CPL1, can then be bootstrapped across.

Extensions are made to the language by use of BUILTIN pro-
- cedures and functions in the CPL1 source. The required operation
of these procedures is defined in the MACOMP language, which

Volume 19 Number 4

includes comprehensive conditional facilities, and the results added
to the macro definition table. Use of the corresponding function in
the CPL1 source causes the front end of the translator to pass
details of the invocation, together with the parameters and their
attributes through to the MACOMP processor. The processor then
uses the definition table to generate object code. By this means
application oriented extensions may often be made more efficient
than use of basic facilities, by taking advantage of particular user
restrictions or by use of special machine facilities.

The mechanism may also be used to change the implementation of
facilities in the basic language as well as adding new features. For
example the basic procedure linkage mechanism used on the IBM
370 implementation follows the Assembler convention. However for
specific applications alternative macros have been written which
allow parameters to be passed directly in registers, or which use a
linkage mechanism compatible with CICS. These alternative sets of
macros can be selected in preference to the standard ones by a
compile time switch without any alteration to the CPL1 program.

Yours faithfully,
J. K. BUCKLE
Gemini Computer Systems Limited
84 Baker Street, London WIM 1DL
26 March 1976

To the Editor
The Computer Journal

Sir
Chaining and self-modification in BASIC

Donald Perlis (this Journal, Vol. 19, p. 90) drew attention to an
unusual feature of a BASIC program in that it referred to its own
name. The program also created and CHAINed to another program.
An even more introverted program, listed below, will modify itself
and CHAIN to its modified version. The example given is trivial,
and its only application could be to show the number of times that a
program had been used : examination of line 230 in the listing reveals
that this program has been used 103 times before this listing was
produced. However, 1 believe it is sufficient to demonstrate the
possibility of writing self-modifying (and thus ‘learning’) programs in
a high-level language—a task usually carried out in assembler. The
only other high-level language 1 know in which this can be done is an
extended version of DEC’s FOCAL, and I should be most interested
to learn of other examples.
AUTMOD BA 3.0 26-MAR-76

100 REM PROGRAM AUTMOD

110 REM CHAINS TO ITSELF

120 REM MODIFIES LINE 230 EACH TIME

130 DIM L$(72)

140 FILE #1:“AUTMOD.BA”

150 FILEV #2:“AUTMOD.BA”

160 INPUT 4:1:L$

170 IF END 4:1 THEN 310

180 X = POS(L$,“,” 1)

185 X$ = SEGS$(LS, 1, X)

190 V = VAL(XS)

200 IF V = 230 THEN 230

210 PRINT #2:L$

220 GOTO 160

230 Z = 103

240 PRINT Z

250 X = POS(LS$, “=",1)

260 PRINT 2:SEGS$(LS, 1, X)

270 B = VAL(SEGS$(LS, X + 1, 72))

280 B=B + 1

290 PRINT #2:B

300 GOTO 160

310 CLOSE #2

320 CHAIN “AUTMOD.BA”

330 END

The program runs on a PDP-8 under OS/8 BASIC.

Yours faithfully,
C. C. WILTON-DAVIES

Royal Naval Physiological Laboratory

Fort Road, Alverstoke

Hampshire PO12 2DU

29 March 1976

381

20z udy 61 U0 158n6 Aq | 1/9Z€/08E/7/61/51014e/|uf00/W0d"dNo"oILLSPEDE//:SARY W) PAPEOUMOQ

