Test Programs for HEC

and the whole unit can be worked through by the program
in a few minutes.

The programmer’s dream is to produce the kind of
test which will cause the computer to print out
“CHANGE VALVE 9 ON CHASSIS 23,” but this
kind of thing, while possible for a limited range of faults,
can never be applied to a whole machine.

A successful set of test programs for a computer can
only be built up as a result of experience of the tendencies
to failure of the computer. They will contain patterns
to which the computer is sensitive, and those combina-
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tions of operations and timing which it finds most
difficult.

Test programs are not a certain means for diagnosing
all computer ills, but they are powerful instruments which
can be useful in the hands of a good engineer.
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Transposing Matrices in a Digital Computer
by P. F. Windley*

Summary: In November 1957 the problem of transposing a matrix in the store of a computer
was given as an exercise to students taking the Cambridge University Diploma in Numerical
Analysis and Automatic Computing. The best solution received was due to the author,
who describes it in this paper, together with some of the other methods suggested.

Given a matrix of m (rows) by n (columns) stored by
rows in a digital computer, it is required io transpose
the element a; with address ni + j to address mj + i
where 0<i<m—1, 0<j<<n—1. If a large
amount of storage space is available it is easy to place
the transposed matrix elsewhere in the store and then,
if necessary, transfer it back to the position it originally
occupied. This is impossible with a large matrix or if
storage space is limited. Methods such as that of
Berman (1958) or that used in the Pegasus Matrix scheme
(Ferranti, 1958) are, therefore, not considered.

One possible method to overcome this, due to M.
Fieldhouse, is as follows. Suppose the element ay, is
in location 0. Take the element @, in location n, place
it in location 1 and shift all the remaining elements of
the first row one place further down the store. Then
take element a,,, place it in location 2 and shift all the
elements of the first two rows down one place. Repeat
this process for all the elements of the first column.
Consider the remaining m(n — 1) elements. The first
row will have been shifted (/n — 1) places, the second
row (m — 2) places, and in general the i row
{(m — i — 1) places. Hence the element originally in
ni + j will now be in

ni+j+m—i—1)=in—1)+(G—1)+mj#0.

* Now at University of Leeds.
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Consider these elements as an m by (n — 1) matrix
starting in location m. If this is transposed the element
inin — 1)+ (j — 1) + m will be in

I=m(j— 1)+ m=1i-+ mj

and the original matrix will have been correctly trans-
posed. Theproblemhasnow been reduced to transposing
an m by (n — 1) matrix. The process can therefore be
repeated (n — 2) times to transpose all the elements. The
whole process involves {ni(m —n(n — 1)+(m — 1) (n—1)
reading and writing operations to and from the store. If
this is being programmed for a machine with a fast
working store, it may be fast for small matrices, especially
if there isan instruction available which exchanges rapidly
a number in the accumulator with a number in the store.

For a larger matrix it is desirable to have a method
which does not involve a factor of m2n? in the time
required. The following method is due to J. C. Gower.
Regard the transposition as a permutation of the
addresses of the elements. Now any permutation may
be broken down into a set of mutually exclusive cycles.
Assume, at any stage, that all the cycles which contain
any address between 0 and (x — 1), are known to have
been correctly transposed. Calculate the addresses of
the cycle containing x without actually doing any trans-
positions. If any address occurs less than x, that cycle
is known to have been transposed and a new trial can

$202 YoJel\ 0z uo 3senb Aq zzG86E/. b/ L/Z/e101 e/ ulod/woo dno-olwepeoe//:sdiy woij papeojumoq



Transposing Matrices
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FiG. 1.—Flow diagram of the last method described.

start at x - 1. If the cycle returns to x without
encountering any smaller address, then the cycle may be
repeated and the transpositions done. To speed up
the process, a count may be kept of the number of
elements transposed. It is then unnecessary to test at
each cycle to determine whether or not the transposition
is complete. This method reduces to a minimum the
number of reading and writing operations to the store.
Another method, due to the author, which saves
going round each cycle once, but which involves more
reading and writing operations will now be described.
Consider each element in turn. Suppose that all ele-
ments to go in addresses O to (x — 1) have been correctly
positioned. At every stage place one element in its
correct position, leaving those elements which are not
yet correctly positioned so that they are met in the
same sequence when going round a cycle. To do this
start from x and calculate the addresses going back-
wards round the cycle containing x, without actually
doing any transpositions, until the first address, », is
reached, such that y > x. If » = x this cycle has been
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completely transposed, and a new trial can start at
x - 1. If » > x the element to go in x is in y. Inter-
change the elements in x and y. All the elements to go in
addresses between 0 and x have now been transposed.
The element now in y is still in its correct order, with
respect to addresses greater than x, in its own cycle.
The process is now repeated starting at x + 1. When
it has been carried out for every element, the matrix
will have been transposed. There is no need to consider
the first element or the last two elements. The first and
last element remain fixed, and the remaining element
must be in its right place when all the other elements
have been correctly transposed. When going round
cycles it is only necessary to test for » >- x. Exchanging
element x with itself in the case of equality will be
quicker and require fewer orders than to test for ) — v
every time. The flow diagram of the method is shown
in Fig. 1.

As an example consider a matrix where 2 - 3,n - 5.

Matrix
| 2 3 4 5\ becomes | 6 11
6 7 8 9 10 2 7 12
I 12 13 14 15 3 8 13
4 9 14
S 10 15

The permutation is from

(12 345 678 91011 1213 14 195)
to
(161127123813 4 914 510 15).

Or in cycle notation
() (241014 126) (375139 11)(8) (15).

In this case the method just described would cause the
contents of the following pairs of addresses to be
exchanged in turn:

2and 6; 3 and 11;4and6;5and 7;:6and 12;: 7and 11:
8 and 8; 9 and 13; 10 and 12; 11 and 13: 12 and 14:
13 and 13.

Hence 2~ 6— 4
311 7
4— 6—12-—10
5> 7111313

6— 2
7> 5
8 — 8
9 13— 11
101214
11— 3
12— 6
13—~ 9
14 12
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