A Monte Carlo Simulation of a Production Planning Problem
by F. 1. Musk

Summary: A computer program simulates the allocation of orders to a set of processing

machines.

In this setting, two aspects of the use of the Monte Carlo method are illustrated.

Some details of the program are given, together with a note on computer facilities useful to

work of this nature.

1 INTRODUCTION

How Monte Carlo methods are to be defined is
dependent upon the field of reference. A definition
acceptable to an operational research worker is unlikely
to be accepted by a mathematical physicist. The simu-
lation to be described here lies in the field of operational
research, in which Monte Carlo methods are usually
taken to mean obtaining data by sampling from models.
The examples to be given of the use of the Monte Carlo
method will refer to those aspects of the simulation
concerned with model sampling.

The behaviour of a system is governed by certain laws,
and in the course of its operation, it generates data,
which are observations of particular states of the system
taken at different times. A statement of the laws
governing the system constitutes the ‘“model,” which
may be hypothetical or real. If this statement includes
laws of a statistical nature, a Monte Carlo method can
be used to generate data, by “sampling” from the model.
By “‘sampling” is meant applying random or pseudo-
random numbers in such a way that they are transformed
by the model to quite different numbers which represent
data.

It may be postulated that data arisiag from the opera-
tion of a real system indicate the existence of a particular
set of laws or restraints. This can be tested by generating
data from this set and comparing them with data arising
from the real system. On the other hand, we may be
concerned with a real system operating under known
conditions. For example, a group of machines is loaded
in accordance with prescribed rules, and there is a large
element of chance in the availability and form of the
load. These rules can be compared with amended rules,
by studying the data generated by sampling from models
representing the behaviour of the system under both
sets of rules. The program to be described is such
an example.

Monte Carlo methods use random or pseudo-random
sampling numbers; the requirements of such sampling
numbers are outlined in Kendall and Babington Smith
(1938). For automatic computation it is convenient to
generate pseudo-random sampling numbers deter-
ministically.

The multiplicative congruential method used was

U,.,=23U,(mod 2% + 1);
U, = 10,987,654,321.

This method was ori.ginated by Lehmer (1949).
It should not be supposed that use of the Monte Carlo

90

method necessarily requires access to a computer, and
much useful work has been carried out with no tools
other than paper, pencil and tables of random numbers.
The literature on the subject is not extensive, but some
references to works describing practical applications of
Monte Carlo methods are given at the end of this paper,
for the benefit of readers who may wish to pursue the
subject further.

2 THE SIMULATION PROGRAM

The intention was to simulate closely the normal pro-
duction planning logic of a factory department in which
a variety of product types, occurring as ‘‘customers’
orders,” are subjected to a particular kind of processing
on a set of machines. A change in production policy
is analogous to an alteration to the program, so that by
running the program first as it is, and then in its amended
form, using data representing orders entering the depart-
ment, it is possible to assess, in units such as machine
hours used, the results to be expected from a proposed
change in production policy, without actually making
the change. Such a program has great value where
policy decisions carry elements of risk. The program
can, in the same way, show the effect on the department
of a change in the pattern of orders.

A detailed simulation of a plant operation, such as
this, can be justified for a single major problem, or for a
series of related problems, each of which may be investi-
gated by modification of the main computer program.
It can at the same time be used on a routine basis to
perform the production planning of the department.

The problem presented two aspects:

(1) To represent the loading and running of the
machines (the main program).

(2) To simulate the flow of customers’ orders entering
the department, to be used as data by the main
program (data generation program).

The latter will be considered first.

2.1 Data Generation

Let us suppose that each order entering the processing
department consists of a number of identical ““packages.”
Each machine in the department has 100 positions. A
package can be processed in each position, and the kind
of processing given to the package is governed by the
machine setting and certain physical characteristics of
the package. The machine setting and package type also
determine the average amount of time required to

$202 YoJe|\ 0z uo 3senb Aq 889¢1/06/2/Z/2191Me/|ulod/woo dno-olwepeoe//:sdiy woij papeojumoq

Simulation of Production Planning

process the package, and this average can be anything
from 20 to 100 hours. Loading of an empty machine
is staggered in such a way that processing of the first
package is due to end just after the last package is
placed in its position, and thereafter packages are
replaced as they are processed. When a production run
starts, therefore, and when it ends, there is a considerable
loss of machine time, so that runs must be as long as
possible.

The order data is available for a period of 50 weeks,
but we require for the exercise a much longer period, say
500 weeks, and this has to be generated, using the Monte
Carlo method. The orders can vary in three respects.
There is variation in

() the total volume entering the department each
week (in terms of machine capacity);

(2) the order types (physical characteristics of a
package and kind of processing required);

(3) the number of packages in each order type.

With regard to the first source of variation, our
available data enables us to build a step function, and
hence by smoothing and substituting percentage prob-
ability for cumulative frequency, a distribution function
as shown in Fig. 1.

Y
100%

804 - — — e — ——

PERCENTAGE PROBABILITY

on/

NO. OF MACHINE HOURS

Fi1G. 1.—Machine capacity distribution curve.

This means, for example, that the probability of
attaining 10,000 machine hours or less is 809, but it
can be used in another way. It will be noted that, as
the curve is constantly increasing, there is a one-to-one
correspondence through it between points on the x- and

91

y-axes. If on the y-axis, the range of probability is
divided into, say, 100 equal sections, and these sections
correspond to the numbers 0 to 99, then if these numbers
are drawn at random, the probability of drawing one
particular section is exactly the same as the probability
of drawing any of the others. Suppose section 80 is
drawn—this will correspond, through the curve, with
10,000 machine hours. Thus, the constant drawing of
random numbers can generate a set of machine hours,
but in this set, the frequency of occurrence differs from
member to member, for there is a greater probability of
drawing from the centre of the machine hours range
than from the ends. In fact, the set of machine hours
obeys the frequency laws of the original data, and can
be considered an extension of these data. This model
sampling is a simple case of the use of the Monte Carlo
method.

Suppose that 500 “total volumes” (described as T to
Ts00) have been generated in the manner indicated.
There are a number of different types of order, and, of
course, some order types will occur more frequently
than others, so the order types form a distribution.
Within each order type there will be a distribution of
packages. That is, the number of packages in an order
of a particular type may vary each time that order type
occurs. As we know for how many machine hours on
average one package of each order type will run, the
distribution of packages within order types can be
specified in machine hours.

The types of order occurring in successive weeks are
generally not unrelated, for there is a tendency for order
types to occur in runs. These trends can be measured by
auto-regression techniques, and due allowance can be
made for them in the model. In the case under dis-
cussion this was not done, for the relationships were
slight, probably because of the confounding introduced
by the presence of many customers handling a variety
of textile selling lines. Generally, to ignore such ten-
dencies will introduce more frequent machine change-
over than would occur in practice. 1f, however, the
problem is to compare the ratio of change-over fre-
quencies between one production policy and another,
such a simplification will have but minor relevance. We
can proceed as follows.

Using model sampling as before, and taking random
numbers, the first number is related to an order type.
The next random number is related, through the distri-
bution curve for this order type, to a number of machine
hours. This is A;, say. Is T, — h; < 0? If not, we
return to the distribution of order types, take another
random number, and repeat until 7; — Xh; < 0. We
have now generated a set of orders for the first week.
Thus, sets of incoming orders can be built up week by
week, and these are of the same pattern as actual orders.

When using a computer for this work, two modi-
fications are necessary. Firstly, instead of dividing the
y-axis into 100 (or multiples of 100) equal sections, it
is more convenient, for a binary machine, to divide it
into sections to a power of 2, say 128, or 1,024, for

$202 YoJe|\ 0z uo 3senb Aq 889¢1/06/2/Z/2191Me/|ulod/woo dno-olwepeoe//:sdiy woij papeojumoq

Simulation of Production Planning

obvious reasons. Secondly, to place a table of random
numbers in the main store of the computer is a waste
of storage space, and since most computers cannot
generate random numbers, pseudo-random numbers,
which they can generate, have to be used.

Assume that 128 divisions have been taken, and that
the data on total machine hours are to be obtained.
Corresponding to each of the 128 divisions there is a
value for total machine hours, and these values are
stored sequentially in the main store, the first at position
50, say. The first pseudo-random number, which is
bigger than required, is found by a recurrence-relation
method. The number is taken modulo 128, which
means (as it is in binary) that all but the last seven bits
are discarded. The total machine-hours value in main
store address 50, modified by our pseudo-random
number (modulo 128), is then chosen, and the process
continues, thus building a set of weekly order capacities.

The point is worth making here that storage of a
distribution is not essential. The curve of the distri-
bution function is strictly increasing, and y is a known
function of x, so equally x is a (different) one-valued
function of y, the random number. Thus, as each
random number is obtained, the variate x can be cal-
culated from it. This requires that the original step
function corresponds closely to a known and alge-
braically manageable distribution, or that the step
function can be split into portions, and each portion
corresponds closely to a portion of a known curve. The
curve-fitting method is desirable when storage space is
limited and where the distribution has some permanence.
Model sampling for data should, however, be conducted
whenever possible before input of the main program.

2.2 The Main Program

There are four aspects of the main program.

(@) Input of orders and adjustment of data carried
over from the previous week in the main computer
store.

(b) The means of deciding where each order is to be
placed (the allocation logic—see 2.3).

(¢) Simulation of machine loading and the resultant
behaviour of machines (see 2.4).

(d) The output of results.

2.3 The Allocation Logic is a set of rules, not mutually
exclusive, of which the following are examples.

(a) An order for processing this week is to be preferred
to one for processing next week.

(b) An order requiring one machine setting cannot be
placed on a machine with a different setting,
without ending the run.

(¢) Two orders of different types which look the same
cannot be run together, even if they require the
same machine, setting.

(d) A machine must continue to run (fully loaded) as
long as reasonably possible.

92

Given any particular machine, the attributes of a
particular order which determine whether or not it
shall go on that machine are five in number. They are

Priority (P).
priority:

Orders are split into three categories of

p orders: those which must be processed this week.

q orders: those which should be processed this week
if possible, but which must be processed by
the end of next week.

r orders: those which may be processed this week, if
convenient, and must be processed by the
end of the week after next.

Appearance (A). The bulk of orders are plain.
These are called W orders (W for white). The rest
(coloured orders) distinguishable from white, are called
C orders.

Time (T). This is the average running time for one
package of the particular order type.

Size (S). The size of an order is the number of initial
packages on the order.

Machine Compatibility (Y). This attribute refers to
the machine setting required.

As regards appearance, two plain orders of different
types cannot be run consecutively, for they are indis-
tinguishable from one another. During the change-over
period, when machine positions vacated by packages of
the first order are being filled by packages of the second
order, orders of both types are sharing the machine,
and there is a danger of confusion. During a machine
run, plain orders must be separated in time by a coloured
order. If they cannot be so separated, the machine must
begin running-off (more and more positions become
empty).

Each machine is stored as a word in the computer,
and there are three sections of order locations (one
section for each priority). At the end of each week, the
remaining orders are moved up in priority, and the
next set of weekly orders is fed in.

At the beginning of the week all machines are in one
of four states:

State 1. Continuing to run into this week.
2. Running off, but not yet empty.
3. Empty, being used this week.
4. Empty, not being used this week.

A machine in state 4 has zeros throughout its word.
A machine in state 3 shows —1-0. States 1 and 2 show

i ;
Details of last order on | RT] T (M)

where RT is a signal indicating whether it is running off
or not, and 7' (M) is the time occupied on the machine
during this week.

$202 YoJe|\ 0z uo 3senb Aq 889¢1/06/2/Z/2191Me/|ulod/woo dno-olwepeoe//:sdiy woij papeojumoq

Simulation of Production Planning

The words which represent orders are similar, showing

Details of order S

where S is the number of packages in the order.

2.4 The Simulation of Machine Loading illustrates a
further use of the Monte Carlo method. It will be sup-
posed that the allocation logic has determined that a
particular order is to be placed on a certain machine.
For simplicity, it will be assumed that loading is not
staggered, and that at the start of a machine run all
packages will be placed at once.

The first position of the machine will be occupied at
time ¢, say (and so will all the others). The average time
taken to process a package of a particular order is known.
Let us say this is H hours, but if N packages are to be
processed, they will not all take exactly H hours. Their
times will be distributed in some known manner.

Suppose the order to be placed has N packages, where
N is greater than 100. As there are only 100 positions,
the whole order will not be placed at once.

The distribution of processing times is known, so we
can find, by Monte Carlo, a processing time for the
package placed in each position. If for the first position
this is ¢,, the run will finish at # + ¢, hours. The run
on the second machine position will finish at # + ¢, hours,
and so on for all positions. There are now N — 100
packages left of the order, and we continue to place the
packages until the order is exhausted. The first position
may now be occupied for ¢t + t; 4 t;, -+ t3 hours, say.
If this takes it into next week we can forget it. If the
allocation logic finds another order which can be put on,
this will probably have a different distribution of running
times. The process continues until the machine is
running into next week, or there are no further orders
which can appropriately be put on. The machine begins
to empty (running off). When does it finish? There is a
rule which requires machines to stop running when no
more than 10 packages, say, are engaged, and we have a
pattern as shown in Fig. 2.

The position of the lop-off (vertical) line in the time
scale indicates when the machine is empty, and this is
found from the eleventh longest time of running.

A point of comparison between this and the previous
example of the use of the Monte Carlo method may be
mentioned here. The first example generated data
before the main program was placed in the computer.
It is best to do this wherever possible. The present
example is an integral part of the main program.

2.5 The Program Structure

At the beginning of a week, attention is given first to
the machines loaded and running into this week. They
are of two types for they are running plain (W) or
coloured (C) orders. If the machine is W, the program
inspects it and looks (first in priority p, then in g, then in

93

LOP-OFF
POSITION LINE
| thetipetiz+tiaetis + Y6
2 to +top+toz+toa+tos
3 t3i+t32+t334%34. . .
10 ends
4 to the
right of
5 this line
6
09 99,1+ 99,2+ 99,3
100 tioo, 1+ t100,24%100,3+100,4
t(_____t_l.'!'?_ engaged _ _ _ _ _ _ N

F1G. 2.—Machine position run lengths.

r) for another order, which is identical. 1f the identical
order is a p order, it is placed, the program having first
ensured that it will be completed in this week. Let there
be no identical order. Another plain order cannot be
sought, for it would not be possible to distinguish
between the two, when they were running off. As pre-
viously mentioned, two plain orders must be separated
by a coloured order. Because of this, and as there are
many more plain than coloured orders, the program
bestows coloured orders to machines grudgingly. If
the machine has a coloured order on, the program
prefers next, of course, a white to a coloured order.

Once the program begins to work on a particular
machine, it never leaves it until the machine is empty
or is running into next week. A state is reached where
all machines, which have time left available this week,
are empty at some time during the week.

The next stage of the program deals with machine
states 2 and 3. This is an interesting sub-program, for
it looks for chains of orders which will provide good
runs on the machines. The chain of orders is now of
prime importance, not the machine, and the program
selects, tests and discards or keeps orders according to
the rules of order priority and dependent upon the
greatest amount of time available on a machine. The
program is eager to find a chain which will cause a
machine to run over into next week, for by doing so,
it keeps runs of orders alive. It is playing a game with a
steadily diminishing number of orders, until finally
there are no orders left, or all machines are running into
next week.

$202 YoJe|\ 0z uo 3senb Aq 889¢1/06/2/Z/2191Me/|ulod/woo dno-olwepeoe//:sdiy woij papeojumoq

Simulation of Production Planning

The final stage prints results, promotes in priority the
unused orders, and takes in the next week’s orders.
The machine words are retimed to the beginning of the
next week as origin, and machines with negative times
are reduced to state 4. Machine time requirements are
calculated and this generally entails transfer of state 4
machines to state 3. There is considerable comparison
and adjustment of orders, after which the program
returns to the first allocation stage.

Finally, the results obtained from a run on the
“standard” program are compared with results derived
from the “policy adjusted” program, and analysed by
the use of routine statistical methods.

3 COMPUTER FACILITIES FOR SIMULATION WORK

What attributes of a computer are of special signifi-
cance in programming this kind of simulation? An
obvious one is a generous storage capacity, in both
main and working stores. Another is a word length
which allows for packing of a detailed classification.
Further useful attributes are as follows:

(a) Extensive modify and count facilities.
(b) Fast logical shifts.

(¢) Versatile arithmetical functions.

(d) Single word transfers between stores.
(e) Variety of jump instructions.

The last attribute is of value, if only to avoid inelegant
programming routines, but particularly to avoid long
exit routines where transfers from the main store deal
only with small sections of program. There is generally

REFERENCES

CRANE, R. R., BRown, F. B., and BLANCHARD, R. O. (1955).
Soc. Amer., Vol. 3, p. 262.

Jessor, W. N. (1956).

JonEs, H. G., and Leg, A. M. (1955).

KenpALL, M. G., and BABINGTON SMITH, B. (1938).
Vol. 101, p. 147.

LeumMer, D. H. (1949).

no problem of entering a subroutine, but the provision
of suitable exits, if the subroutine is to be used for
more than one purpose, can be difficult. In this partic-
ular case, the necessary preparation, before entering a
subroutine, involved the placing in the working store of
all pieces of program to which the sub-program could
possibly transfer, and the sub-program itself carried a
tail of exit routines. In these circumstances, general-
purpose subroutines have sizes bounded above and
below. The lower limit is determined by the size of the
exit tail, the upper by the degree of generality required.

Finally, a program of this nature is almost bound to
be lengthy. Quite apart from detailed testing of sub-
sections, there is a requirement for extensive testing of
the full program when assembled. It is at this stage
that the need for a facility to explore the route taken by a
test through the program emerges. This can be done,
for example, by embedding in the program instructions
to print the contents of a working-store program
location at frequent intervals, but it is convenient if an
appropriate device is provided on the computer. Such
a device was the optional “punch on block transfer”
facility, which served as a guide through the network of
loops for all tests.

4 ACKNOWLEDGEMENTS

My thanks are due to Miss G. M. Overton who
co-operated in the work, to Mrs. W. F. M. Payne of
Ferranti Limited and Mr. W. N. Jessop for their helpful
advice and assistance, and to the Directors of
Courtaulds Limited for permission to publish.

“An Analysis of a Railroad Classification Yard,” J. Operat. Res.

“Monte Carlo Methods and Industrial Problems,” Applied Statistics, Vol. 5, p. 158.
“Monte Carlo Methods in Heavy Industry,” Operat. Res. Quart., Vol. 6, p. 108.
“Randomness and Random Sampling Numbers,” J. R. Statist. Soc.,

“Mathematical Methods in Large-Scale Computing Units” (Proceedings of a Second Symposium on

Large-Scale Digital Calculating Machinery), Annals of the Computation Laboratory, Harvard University, Vol. 26, p. 141

(published 1951).

94

$202 YoJe|\ 0z uo 3senb Aq 889¢1/06/2/Z/2191Me/|ulod/woo dno-olwepeoe//:sdiy woij papeojumoq

