Curve Fitting with a Digital Computer
by C. W. Clenshaw

Summary: Forsythe (1957) has described a method for fitting polynomials to a set of points,

using the principle of least squares.

The method, designed to exploit the advantages of

high-speed computers, uses orthogonal polynomials to overcome the problems of ill-
conditioning which are usually associated with this approach. The present paper shows
how this powerful method can be modified to save a substantial proportion of the machine

storage.
coefficients in its Chebyshev series:

INTRODUCTION

Curve fitting is essentially the process of finding a smooth
curve which passes near to each of a number of prescribed
points in a plane. In a numerical, as opposed to
graphical, approach to this problem, it is customary to
use a polynomial to provide the curve; polynomials are
easy to evaluate, their unknown coefficients occur
linearly, and their degree affords a convenient measure
of smoothness. The nearness is then usually achieved by
imposing the ‘“‘least-squares” criterion. By this means
the original vague requirement is converted into a
definite and tractable problem.

The numerical solution of this problem involves a
considerable amount of arithmetic in all but the most
trivial cases. The classical method fits a number of
function values by a polynomial in the form

ko + kix + kox? + ...+ ko,

using the least-squares criterion. It has the grave disad-
vantage of requiring the solution of a set of simultaneous
equations for the coefficients & that may be ill-conditioned,
often severely so when n is large. This defect can be
removed by using orthogonal polynomials. A method,
designed for desk machines, which makes some use of
such polynomials has been described by Hayes and
Vickers (1951). More recently, a method using essentially
the same polynomials, but prepared for use with a
digital computer, was discussed by Forsythe (1957) and
again by Ascher and Forsythe (1958).

The main purpose of the present paper is to show how
this powerful method can be modified to save a sub-
stantial proportion of the machine storage.

After a brief outline of Forsythe’s proposals, we
describe the modified method in detail. Next there is a
discussion of the factors which help us decide upon the
“best”” degree for the approximating polynomial,
followed by a description of a curve-fitting program,
based on the modified method, which has been prepared
for the DEUCE at the National Physical Laboratory.
Finally, we show how the method is simplified in cases
when the function value is available at all points of
the range.

FORSYTHE'S METHOD

Let y, (r =20, 1, 2, . . . m) be the observed or com-
puted values of a dependent variable y at given values x,
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This is achieved by representing each polynomial within the machine by the

of the independent variable x. Then the polynomial
Yi(x) of degree i which minimizes the residual sum
of squares

8 = X {Yilx,) — »)? (1)
r=0
may be obtained by truncating the series

Copo(X) + ¢ py(X) + opa(x) 4. . (2)

after (i + 1) terms. Here pi(x) is a polynomial of
degree 7 satisfying the orthogonality condition

The coefficients ¢; in (2) are therefore given by
¢ = X 1 (x) Z{pi ()} (4)

The pi(x) may be computed successively from the
following three-term recurrence formula, as suggested
previously by Householder (1953), Stiefel (1955), and
Lanczos (1957):

Pi (x) = Ni(x — oy ) pi(x) — Bipi (). (5

Here ); determines the normalization of the polynomials,
Bo = 0 and

Z X,{ pi(xr)}2
Z{p(x)y

A 2 A pix))?

TS AR ER T

Xi =
Forsythe, following the previous writers, chooses A; = 1,
so that the coefficient of x/ in the expression for p;(x)
is independent of i, and in fact is unity.

The generation of the polynomials by equation (5),
and the computation of the coefficients ¢; in

Yi(x) = copo(x) + ¢ py(x) + . ..+ pix), (7)

give the approximating polynomial of degree /, and we
can allow 7 to take all values up to m, at which stage the
approximating polynomial passes through all the
(m -+ 1) points (x,, y,).

The polynomial of “‘best” fit may be conceived as that
which most effectively compromises between smoothness,
as represented by the degree of the polynomial, and
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closeness to the data, measured by 8% in equation (1).
For practical purposes Forsythe regards the ‘‘best”
value of 7 as that at which the mean square of residuals,
defined as 82/(m — i), ceases to decrease significantly.
This criterion is easy to apply: we have only to examine
this quantity for each value of i as the computation
proceeds; when its decrease is regarded as insignificant,
the desired solution has been reached. Moreover, the
quantity 8? can conveniently be produced as a by-
product of the main calculations. For, from (1), (3),
(4), and (7), we find

87 = T AY: (%) + apilx) — 3}
= 821 1 2Ci Z pi(xr)yr —+ (’12 Z {pi(xr)}z
= 8 | — X {plx)) (®)

In considering the programming of this method,
Forsythe suggests that the storage of the polynomials
pi(x) should be effected by the retention of their numerical
values at every x,. Since the p;(x) are generated by a
three-term recurrence relation, we need the values of
two such polynomials at any given stage of the calcula-
tion. The data x, and y, are, of course, also needed
throughout the calculation for all r points, so that a
main store of 4(m + 1) positions is required. We next
consider how this requirement might be reduced.

THE MODIFIED METHOD

Essentially the modification consists of a more compact
storage procedure. An obvious way to achieve economy
of storage would be to store the coefficients of the
powers of x in the explicit expression for p;(x), rather
than the values of p;i(x) at every x,. Similarly, each
Yi(x) could be stored, and punched out, in the same form.

However, in arranging these polynomials as power
series, we run the risk of introducing large coefficients,
with a possible loss of accuracy when the polynomial is
evaluated. This risk becomes serious as / increases.

Similar economy can be gained, however, without
incurring this risk, by representing each polynomial
within the machine by the coefficients in its Chebyshev
expansion. When we require, for a given x, the numerical
value of a function f(x) which is represented by its
Chebyshev series

S(x) = a0 — a\Ti(x) + a;T5(x) + . .. + a,T(x), (9)

where T,(x) = cos (scos 'x) is the Chebyshev poly-
nomial in x of degree s, we may use the method of
recurrence given by Clenshaw (1955). Briefly, this
entails evaluating successively the quantities b,, b,_,,
... by, where

by = 2xbs .y — by ., + a,, with b, | =b,, ,=0. (10)
The required value is then given by
S(x) = by — by)

as can be verified by substituting for the a, in (9) their
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expressions in terms of the b, from (10), and using the
recurrence relation

Ty ((x) — 2xT(x) + Ts_y(x) = 0.

It is assumed here, without loss of generality, that the x,
all lie in the range (—1, 1).

In order to be able to calculate p;(x) at any point, we
accordingly store the coefficients P{” in the expression

pix) = LPQ - PPTI(x) 4 POTA(x) + . ..
+ POT; (¥) + Ti(x), (0 > 0). (1)

The polynomials p;(x) have been normalized by making
the coefficient of Tj(x) in (11), namely P, equal to
unity. The definition of the polynomials is completed
by putting po(x) = 4, and we set A; = 2 in equations
(5) and (6).

The number of storage positions required to represent
pi(x) has thus been reduced from (m -+ 1) to i, so that
for m > i, the main storage requirement has been nearly
halved.

Substituting (11) in the equation (5) with A; = 2 and
comparing coefficients of Tj(x), we obtain

PEED — PO L PO — 20 (PO — BPED, (12)

where P =1 for i > 0.
all 7 and .

Equation (12) is valid for

From these equations we calculate the coefficients in
the Chebyshev series for p; . (x) from those for p;(x)
and p; ().

Similarly, the approximating polynomial Y;(x) can be
represented within the machine by the coefficients A4,
say, in its Chebyshev series

Yi(x) = 3P + APTi(x)
+ ADTH(x) + ... = ADT(x). (13)

As each coefficient ¢; in the expression (7) is found
from (4), the coefficients 4{) are obtained from their
predecessors by means of the relation

AD — AG=D L ¢, PO, (14)

which may be derived by comparing the coefficients of
Ti(x) in the equation

Yi(x) = Y; 1(x) + cipi(x). (15)

While the modification which we have introduced
certainly saves much storage, a loss in speed may some-
times result, since the computation of p;(x) from its
Chebyshev series for each x, would take longer than the
extraction of each p;(x) from its store. On the other
hand, the modified method requires the application of
the recurrence relation (12) only (7 + 2) times to define
pi(x), whereas in the original method of Forsythe,
equation (5) is used (m + 1) times. The final decision
as to which method is faster will depend upon the number
of data points, the highest degree of polynomial required,
and the characteristics of the computer; in particular the
original method is faster whenever 4(m 4 1) locations
are available in the immediate-access store.
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CHOICE OF “‘BEST”’ DEGREE

The main output of the program consists of the
coefficients A{, which can be punched out at the con-
clusion of each i-cycle. These coefficients provide
another indication of the “best” value of i. If we were
dealing with exact values of a well-behaved mathematical
function, we would expect the A4 to decrease with
increasing j, for fixed large values of i. In practice,
however, the readings y, invariably contain rounding and
observational errors, which affect the behaviour of the
AW, For values of j exceeding a certain value k, say,
the coefficients will fluctuate about zero in an apparently
random manner, and as / increases this behaviour persists
with little change in k. The polynomial Y,(x) may then
be accepted as the desired solution. Although it may
sometimes be difficult to alight confidently on a definite
k, the choice in such a case is not critical, since the
difference between Y,(x) and each of its immediate
neighbours Y, _(x) and Y. ,(x) is then small for all x
in the range, and any one of these three polynomials
may be regarded as a satisfactory solution.

The values of all the coefficients A% will, of course,
all be changed during every i-cycle. When the “best”
degree k£ has been passed, however, the changes in
the 4% will merely be of the order of the unwanted
“noise” present in the data, and the smallness of
these changes is a most valuable check on the arith-
metic.

Another criterion for the choice of k depends on the
behaviour of the successive sets of residuals Y;(x,) — y,.
Examination of the complete set would usually be exces-
sively laborious; in practice it is often sufficient to
inspect the extreme values. In the DEUCE program
compiled in the Mathematics Division of the National
Physical Laboratory, the largest positive residual P;
and the numerically largest negative residual N; are
punched out, together with the corresponding values of
x, & and x;, say.

Like &%, the numerically larger of P; and N, will
decrease appreciably as i increases until & is reached,
after which it will usually decrease only slowly.

The quantities P; and N; serve another and more useful
purpose, however. If one reading y, has an outstandingly
large error, there will be a tendency for P; (or N;) to
occur at the corresponding x,, for different values i.
Therefore if ¢ (or 7;) remains unchanged for several
values of i/, it may be desirable to examine the reading at
this point, or to repeat the calculation with this reading
omitted.

It may be observed that P; and N; would be deter-
mined more rapidly if y, — Y;_,(x,) were stored in place
of y,. This replacement would not affect the calculation
of ¢, since 20 i (x,) pi(x,) = 0.

r

DETAILED DESCRIPTION OF PROGRAM

To clarify the procedure, we now consider the arith-
metic involved in one cycle. Let us suppose that at the
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beginning of the ith cycle the machine store holds the
following quantities:

(A) x,and y, forr=20,1,2, ...
(B) PitD for j=0,1,2,...1;
P® for j=0,1,2,...(—1).

(C) AP forj=0,1,2,...1
(D) Pi.,.], Ni—h gir——l’ MNi—1 and 8,2
(E) Other numbers, not required for output.

Of these stores, (A), (B) and (C) must have 2(m + 1),
(2i + 1) and (i + 1) positions respectively, while (D)
and (E) each need only a few positions. The contents
of (C) and (D) comprise the output at the end of the
previous cycle.

The first step is the calculation of those quantities
which depend directly on the initial data. Each pair
(x,, y,) is extracted in turn from store (A), and p; . (x,)
calculated by summation of its Chebyshev series
(cf. (10)), using the coefficients stored in (B). Then
{pi . 1(x,)}? is formed and added to the partial sum
2{pi.(x)}* stored in (E). Similarly the sums
X xdpi . (x)¥? and X y,p;.(x,) are accumulated. In
conjunction with this computation it is convenient to cal-
culate the function Y;(x,), whose Chebyshev coefficients
are in store (C), and thence the residual {Yi(x,) — »,}
for each x,. If this exceeds numerically the largest so
far obtained in this cycle we send it to the P; (or N;)
position, and store the corresponding value of &; (or ;).

When the complete sums have been formed, we cal-
culate «; ., and B; . ; from (6) with A; .| = 2, ¢; .| from
(4) and hence 87 . | from (8).

Now we can evaluate from (14) the coefficients 4¢ "
which overwrite the contents of store (C). Likewise
equation (12) enables us to compute the P¢ "2, which
can replace the P{*! after the latter have been trans-
ferred to the P( position. The cycle is now complete:
we can punch out the contents of stores (C) and (D),
and start a new cycle.

The main program is entered at the beginning of the
above cycle, with i = — 1. The stores (C), (D) and (E)
then contain zeros, while (B) holds only P{”’ = 1. For
this first cycle only, we can arrange to omit that part of
the program which evaluates the residuals { Yi(x,) — »,},
and to insert the value 3, = 0.

If m is less than 30, the program may be allowed to
find the best least-squares polynomial of degree m. The
corresponding P,, and N,, would be zero if there were
no rounding errors, so their actual size affords a valuable
check on the build-up of such errors.

In general, the results required from a specific problem
will not be simply the Chebyshev coefficients A{, and
it will usually be necessary to operate on these subse-
quently with an auxiliary program. A few such programs
will cover most of the common requirements, and might
include, for example, one which calculates all the
residuals §; for a given k, one to form a table of Y,(x)
at equal intervals of x, and one which rearranges Y,(x)
into a power series (where such rearrangement is possible
without loss of accuracy).

m.
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SPEED AND STORAGE

In order to give an indication of the rate of operation
of the program, which uses fixed-point arithmetic through-
out, we present in Table | examples of the time taken
by DEUCE, which has an addition time of 0-062 msec,
and a multiplication and division time of 2 msec approxi-
mately. The table shows the number of minutes taken
to read in the program and data, and calculate and
punch all the least-squares polynomials Yo(x), Y(x),

. Yi(x), using (m + 1) points, for various values of
i and m.

TABLE 1

iNum { 20 100 300
2 1L 3
4 | 205
6 | 1 3 74

8 ‘ 15 4 10L
o | 2 5 14
15 | 3% 9y 25
20 |5 15 39
25 | — 22 58

The DEUCE has a high-speed store of 400 words and
a magnetic-drum store of 8,192 words, each word con-
sisting of 32 binary digits. The program described
above allows for values of (m -+ 1) up to 3,840, and for
polynomials of degree not exceeding 29. Its practical
application has so far been restricted to data with m not
exceeding 100; the greatest value of i required has
been 12. The numbers in Table 1 which refer to larger
problems have been obtained from data specially
prepared to test the present program.

FITTING TO A COMPLETE CURVE

The general procedure may be simplified when the y,
are given at the points x, = cos mr[m, as has been shown
by Lanczos (N.B.S., 1952). We can make direct use of
this solution in problems where we are given a formula
or graph from which the value of y, corresponding to
any chosen x, may be readily obtained.
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