The Generation of Pseudo-Random Numbers on Electronic

Digital Computers
by A. R. Edmonds

Summary: Different methods of generation of sequences of pseudo-random numbers on
electronic digital computers are discussed. Statistical tests of randomness which can be
applied to such sequences are considered, and an account is given ot pseudo-random number
subroutines which have been written for the Pegasus and Mercury computers.

1 INTRODUCTION

In the last few years there has been an increasing demand
from users of electronic digital computers for long
sequences of random numbers. There are, broadly
speaking, three ways of supplying such sequences.

(i) Tables of random numbers may be recorded on
paper tape or punched cards. (Tippett, 1927; Kendall
and Babington Smith, 1939; The Rand Corporation,
1955.) The tapes or cards are fed into the computer at
suitable stages of the calculation. This method has
found little favour, since many problems require very
long sequences of random numbers (e.g. Monte Carlo
calculations) and the time taken to read in the tables
may soon become excessive. The labour needed to
prepare the tapes or cards must also be taken into
consideration.

(i) Random numbers may be generated by physical
processes such as radioactivity or discharges in gases.
(Cf. Dodd, 1953; Thomson, 1959.) Extra equipment is
required, the cost of which may be an appreciable
fraction of the cost of the computer. The chief ubjection
is a rather paradoxical one; the number sequences
cannot be repeated and so it is very difficult to check
methods of calculation or programs. For it is not
always possible to distinguish between variations in
results due to genuine random fluctuations and those
due to changes in the program or even to the faulty
running of the computer.

These methods have therefore been rejected in favour
of (iii) computer subroutines which produce, by recur-
sion, sequences of so-called pseudo-random numbers.
The computational procedures used in the subroutines
are such that these sequences satisfy to a required degree
some statistical tests of randomness.

We may represent the typical recursion relation of
these subroutines by

Xpif = R(X,,) (l)

where the x, are computer numbers of r digits, the value
of r depending on the computer being used. We shall
assume without much loss of generality that the numbers
are represented in the binary scale.

The relation (1) symbolizes a finite number of com-
puter operations carried out on the digits of x,; these
operations are not necessarily restricted to arithmetical
processes such as addition or multiplication.

Now the x, can have only 2" possible different values,
and (assuming the usual properties of digital computers)
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R(x) is a single-valued function of x. The relation (1)
and an initial value x, of x define a sequence x,, x,
X5, . . . As we go through this sequence we must even-
tually arrive at an x, with a value identical with that of
some previous element x; (i < n) of the sequence. If
i > 0 we have a non-cyclic sequence xq, Xy, . . . Xi_|
entering a cycle at x;. If i = 0 the whole sequence is
cyclic.

There are three criteria which should be satisfied by
any method of generation of pseudo-random numbers.

(i) The numbers produced should satisfy the tests of
randomness prescribed by the would-be user.

(i1) The rate of production of pseudo-random numbers
should compare favourably with the rate at which they
may be used up in typical computations. In certain
problems, e.g. many of those arising in operational
research, the amount of computation between the input
of successive random numbers is quite small. A method
which makes good use of the characteristics of the com-
puter to carry out each recursion in the shortest time
possible is needed in such cases. It will be clear that the
best method for one computer is not necessarily the best
for another.

(iii) The recursion relation should produce a suffi-
ciently long sequence of pseudo-random numbers. As
has been mentioned already, all sequences produced by
recursion relations of the type represented by equation (1)
are either cyclic or enter a cycle if prolonged far enough.
A cyclic sequence will not be a satisfactory source of
pseudo-random numbers unless the period is so great
that it is of no consequence in practical computations.

2 THE TESTING OF SEQUENCES FOR RANDOMNESS

Let us consider a finite sequence of symbols, each
symbol being taken from a set D of ¢ distinct symbols.
We shall follow Good (1953) and say that such a sequence
S of symbols a,, a,, as, . . . ay is random if (i) given «
and j, the probability that a; = « (j = 1,2, ... N; aeD)
is p,, where p, is independent of j, and

2 pa=1

xeD
and (ii) the probability is p, even if some or all of the
other symbols in the sequence S are known.

Good defines a perfectly random sequence as one in
which p, is independent of « and therefore is equal to 1.
We shall be concerned in this paper with sequences
which approximate to perfectly random sequences.
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The first task in testing the output of a generator of
alleged random numbers is to establish that there are no
systematic biases or correlations in the digits produced.
At this stage we are not particularly concerned with the
way in which the numbers will be used; we carry out
tests on long sequences of binary digits to ascertain
whether these sequences are in a general sense perfectly
random.

Suppose that we have established that the output of
a generator is perfectly random in the sense that very
long sequences of digits have passed tests of randomness.
For the purposes of the following argument it is irrelevant
whether the generator is a physical process or a computer
subroutine. In a particular application a block of digits
of a definite length may be required to be random when
considered in isolation. The remark of Kendall and
Babington Smith (1938) is relevant here, namely (p. 155),
““if a series S is locally random in a Domain, it does not
follow that any part of S is locally random in that
Domain.” They conclude that a set of random numbers
which is adequate for all requirements is impossible,
and the only solution is to carry out tests on blocks of
numbers and give the results of these tests, so that the
prospective user can choose from the tables those blocks
which are suitable for his problem.

This procedure can in principle be applied to sequences
of pseudo-random numbers produced on digital com-
puters; however, numbers can be produced by the million
and different users may need blocks of widely differing
sizes. It is thus not at all easy to decide how to present
the numbers describing the statistical properties of the
output of a pseudo-random number generator.

If we are considering a sequence of numbers rather
than of the symbols referred to at the beginning of this
section, the symbols in the set D will be replaced by all
the r-digit binary numbers and ¢ will be equal to 2.
The statistical tests will be carried out with these numbers,
usually taken to be either the integers 0, 1,2, ...2" — |
or the fractions 0, 1.277,2.2°", ... 1 — 2", However,
a sequence of numbers may satisfy tests of randomness
to an apparently high degree without all the individual
digits being random. This is due to the fact that the
significance of the digits composing the numbers decreases
as we move to the right of each number, and lack of
randomness in the digits on the extreme right of the
numbers may thus not be detected.

A computer programmer might be tempted for reasons
of convenience to make use of supposedly random digits
appearing in the right-hand ends of the registers of the
computer, possibly throwing away the rest, not realizing
that statistical tests had been carried out effectively only
on the more significant digits.

This circumstance is likely to arise, for example, with
the Mercury computer, where the 40-bit register which
would contain the output of the pseudo-random number
generator can be addressed as four 10-bit registers.

There are, in fact, methods of generation of pseudo-
random numbers which give quite good randomness to
the digits on the left, while those on the right cannot be
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said to be random at all; these methods will be discussed
in the next section.

The tests of Kendall and Babington Smith (1938) have
been used frequently on sequences of decimal digits,
although there seems to be no reason to suppose them
to be superior to other possible tests. They may be
adapted in various ways for testing sequences of binary
digits produced by pseudo-random number generators.

These tests are four in number. In the frequency test,
the frequencies of the different digits in the sequence are
recorded. In the serial test, a bivariate table is prepared
showing the distribution of pairs of digits in the sequence,
arranged in rows according to the first digit and in
columns according to the second. The digits may also
be considered in blocks of, say, five, and the number of
blocks in which all digits are the same, the number with
four of a kind, etc., are counted. This is called the
poker test. The gap test is concerned with the gaps
between successive digits of the same kind in the sequence,
say, between the zeros. The number of gaps of length
zero, of length one, etc., are counted.

In all these tests the deviations of the observed counts
from those expected from a perfectly random sequence
are studied. Chi-squared tests are used to give a measure
of the permissible divergence from expectation.

Some care may be necessary in adapting these tests to
binary sequences. Good (1953) has considered the
generalized serial test, in which the frequencies of occur-
rence of sub-sequences of two or more digits are studied.
He has pointed out that the mode of use of the chi-
squared test by Kendall er al. (1938) in the serial test is
incorrect, and has particularly serious consequences
when binary sequences are being investigated.

3 METHODS OF GENERATION OF PSEUDO-RANDOM
SEQUENCES

It is a futile occupation to carry out detailed statistical
tests of randomness on the output of a generator unless
we have some knowledge of the cycle structure of the
sequence as a whole. The proof of local randomness
is of no account if it is the case that the digits tested lie
in a cycle of which the period is so short that the sequence
may be repeated during the running of a computation,
or if the digits lie in a non-cyclic sequence which
collapses all too soon into a small loop.

From this point of view methods of generation fall
into two classes.

(@) Those for which there is, or appears to be, no way
of determining the cycle structure other than the brute
force procedure of investigating the sequence by actual
computation. A moment’s thought will show that this
is ideally not merely a matter of computing, say, hun-
dreds of thousands of recursions of the basic relation;
intermediate terms should be stored and compared with
the current terms of the sequence.

(b) Those for which mathematical analysis can deter-
mine the cycle structure, and even suggest suitable
parameters in the recursion relation to give the longest
period and most satisfactory output.
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The best-known method of type (a) is the so-called
middle-squares method of Von Neumann and Metropolis
(Metropolis, 1956). The number x, ., is obtained from
the r-digit x, by selecting the middle r digits from the
2r-digit number got by squaring x,. This procedure can
be carried out rapidly only on a computer which has
shift operations which link the two halves of a 2r-digit
product register. Metropolis (1956) has examined the
behaviour of sequences for values of r appreciably
smaller than those normally used in computers, but
nevertheless has demonstrated graphically the unpre-
dictable qualities of the sequences generated by the
middle-squares method.

Other methods of type (a) have been proposed, but
do not seem to have found much favour.

Sequences of type (b) may be obtained by the reduc-
tion of certain sequences of integers. These sequences
are defined by the relations

uOZO’uI:l;uan:un‘T'unrI(’7:09I»29~'-) (2)

mn=0,1,2,...) (3

Uy =d; Uy | = kLI,,

where a and k are positive integers.

The sequence (2) is known as the Fibonacci series.

If M is a positive integer, which in the case of the
sequence (3) is supposed prime to a, then for both (2)
and (3) the least non-negative residues mod M of the
elements ug, u;, . . . form a periodic sequence. It was
first suggested by Lehmer (1951) that such reduced
sequences might be used as sets of pseudo-random
numbers.

These sequences have the virtue that, given the values
of M and in case (3) of a and k, the period may be
computed by the use of number theory.

The reduction of a sequence of integers for general
integer M will involve division operations, which on
most computers are very time-consuming. It has there-
fore been the practice to choose values of M which make
explicit division unnecessary. The most obvious value
to take is 2", where 4 is chosen to correspond to the
number of binary positions in the accumulator of the
computer. The reduction consists of simply keeping the
h least-significant digits in a 2/4-digit product, or ignoring
the overflow on addition in an A-digit accumulator.
(See Thomson (1958) for a useful modification to this
method.)

This procedure has the merit of simplicity, but, as
Lehmer (1949) has pointed out, the digits on the right-
hand ends of the numbers produced are subject to short
periods. Values of M of the type 2" may, however, be
satisfactory when only the left-hand or more-significant
digits are employed.

Such a generator will, of course, be perfectly safe in
the hands of someone acquainted with its limitations;
but if we have the task of writing a random-number sub-
routine for general use we must bear in mind some of
the remarks made in Section 2 of this paper. It is, in
fact, desirable to have a procedure which produces, in
every position of the register, digits which are individually
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random. This property in a generator must entail a
certain sacrifice in speed.

From this point of view a suitable choice of M has
been suggested by Lehmer (1949), namely M = 2" + 1.
The residues mod M are computed in quite a simple
fashion, as a result of the following considerations. We
may represent a positive integer 4 less than 22" by the
contents @ and « of two registers each containing /i bits,
e.g. the two halves of the product register. Thus
A = a + a.2% Then the (possibly negative) residue of
A mod (2% - 1) will be @ — « and the not necessarily
least positive residue of 4 mod (2 — 1) will be ¢ + o.
Forclearlyd =a — a + 22" + 1) = a + « + a2 —1).
It is a straightforward matter to program a computer
to give the desired least non-negative residue in either
case without the necessity of carrying out a division.

The reduction of both the sequences (2) and (3) can
give us periodic sequences of numbers with periods
sufficiently large to make them otherwise suitable as
sequences of pseudo-random numbers. However, it has
been found by the application of statistical tests that
sequences derived from the Fibonacci series are not very
satisfactory from the point of view of randomness (see
Taussky and Todd, 1956). Attempts have been made to
remedy this failing by modifying the procedure somewhat
(Neovius, 1955), but these modifications are only effective
on certain computers.

If the degree of randomness required is not high, this
method is attractive, since numbers are generated much
faster than by other procedures.

We consider now the choice of the parameters M, a
and & for the reduced sequence of type (3). The necessary
theory is given by Duparc, Lekkerkerker and Peremans
(1953) or, in a more general form, by Hardy and Wright
(1956).

The maximum period possible for the sequence is
determined by the value of M.

We consider first the case of M = 24 Duparc et
al. (1953) show that the maximum period is 2”2, and
that the period of the sequence has this value only when
the multiplier & takes a value which is an odd power of
one of the integers 3, 5, 13, 19, 21, . ..

In the case of M = 2" + 1 we assume

M =2h=1=ppps...

where p,, p,, p; . . . are different primes. The case of
repeated prime factors is not important, since this
corresponds to a relatively short period, and we may
reject such an M outright.

The maximum period for an M of the above form is
equal to the L.C.M. of the numbers p, — I, p, — I,
p3 — 1, ... and we denote it by L(M ). This maximum
period is obtained only for certain values of the multi-
plier k. Such a value of k£ can be found by a tentative
procedure which is described by Duparc et al. (1953).
It is easiest to search for a suitable & through the small
integers. However, it seems likely that putting a small k
into the recursion relation may give an undesirable
correlation between successive x,. This difficulty is
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overcome by replacing the k& obtained by the Duparc
procedure by a power of that k; the exponent must be
prime to L(M ) to give a period equal to L(M ).

In choosing M we must consider three points.

(a) For speed of production of pseudo-random
numbers M should be small enough for double-
length arithmetic to be unnecessary.

(b) The largest integer in the sequence produced will
be M — 1; thus the larger M the greater the
number of pseudo-random digits produced at
each recursion.

(¢) M should be chosen so that a long period is
possible.

It might be thought that the maximum period L(M)
would in general increase with M, so that one could
satisfy (b) above while also satisfying (¢). However, an
example will show that things are not so simple. Suppose
we have a computer with 39-bit registers, e.g. the Ferranti
Pegasus machine. It is natural to consider first the
values 238 -1 and 23 — 1 for M. Since 238 + 1 =
5.229.457.525313, L(23® - 1) is equal to 525312, and
L(2% — 1) is even less. On the other hand, if we take
the Mersenne prime 23! — 1 we get L(M ) =231 —2 =
2 147 483 646. This choice has the disadvantages that
only thirty positions in the computer register are filled
with pseudo-random digits, and since shift operations
are necessary to carry out the arithmetic, the resulting
subroutine is somewhat slower than that for M = 238 + |
would be. There is no value of 4 between 38 and 31
which gives a period significantly longer than L(238 + 1).

With M = 23 — 1 the maximum period can be
obtained with k = 13. A suitable value in the recursion
relation is thus k& = 455470 314 = 33 mod (23! — 1),
since the exponent 13 is prime to the period 23! — 2.

Since this M is prime, any starting value u, may be
taken. The above values of M and k have been used in
the Pegasus library routine R 980. This routine takes
51 milliseconds to generate each 30-bit pseudo-random
number.

A pseudo-random number generator of similar type
has been devised for the Ferranti Mercury computer.
The problem of choosing suitable M and k values is in
this case rather more complicated, since Mercury is a
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floating-point machine with a 30-bit register for the
numerical part, and a 10-bit register for the exponent.
Thus a smaller M had to be chosen, namely M = 22° + [.
This M gives a maximum period L(M) = 3033 168,
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random sequences.

A programme of tests is now being conducted at the
University of London Computer Unit which will give
information about the randomness of individual blocks
of numbers produced by the Mercury routine. The
results obtained will be published together with starting
values (u,) for each block, so that users will be able to
choose sets of numbers with the statistical properties
appropriate to their requirements.
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Time-Sharing on the National-Elliott 802
by R. L. Cook

Summary: This article discusses some of the programming techniques that have been evolved
at Elliott Brothers for dealing with on-line applications of the 802 computer in the process-
control field. Time-sharing or program interruption methods are described with particular
reference to a straightforward data-logging application.

THE 802 COMPUTER

The 802 was designed for two purposes: to perform as
a small general-purpose computer, and also to act as the
computing centre for on-line process-control systems.

The logical elements of the 802 consist of a junction
transistor-magnetic core element shown in Fig. 1. By
this means, the high reliability and the little or no main-
tenance that are required in on-line applications can be
achieved.

The 802 has a magnetic-core store capable of holding
1,024 words, each of 33 binary digits. The size of the
store can be extended to 4,096 words if necsssary. The
order code comprises 64 basic orders, most of which
refer to the single accumulator and one specified store
address. Great care has been taken to ensure that the
order code is simple to learn, consistent, and without
exceptions. Each 33-bit word can hold two 16-bit
orders, together with a B digit. If the B digit is present,
the first order is obeyed in the normal manner, but the
(new) contents of the store address specified by this
order are added to the second order before it is
obeyed.

In this way any location of the store may be
used as a B-modifier. If the B digit is absent, the
two orders are obeyed sequentially without B modifi-
cation.

There are three independent input channels on the
802: channel 1 is normally attached to a paper-tape
input device; channel 2 can receive information, via a
switch, from any number of different input devices; and
the third channel consists of a set of manually-operated
keys, called the Number Generator, that enables a single
word to be entered. The switch on channel 2 is operated
by program control, and by this means, any number of
different devices, each capable of giving digital informa-
tion, may be simultaneously attached to the 802 and
individually switched. Two output channels are pro-
vided from the computer: channel 1 is fixed and normally
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F1G. 1.—The junction transistor and magnetic core which make up
the logical element of the 802. The use of solid state devices ensures
the high reliability required for on-line working, in addition to
minimizing the space and power required for the computer.

operates a paper-tape punch, and channel 2 can be
attached by means of a switch to any device capable of
accepting digital information.

The completely transistorized 803 computer, which is
functionally identical to the 802 except that it has a
4,096-word core store and a 39-digit word, is also used
for process-control applications in the manner described
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