Some Techniques for dealing with Two-Level Storage
by R. A. Brooker

Summary: This paper describes some devices used in connection with Mercury Autocode
to overcome the difficulties of two-level storage, particularly for manipulating matrices

stored on the drum.

INTRODUCTION

Almost all digital computers employ multi-level storage
in some form as an economical means of realizing large
storage capacities. In most cases there are just two
levels: an immediate-access store (the fast store) supple-
mented by a much larger auxiliary store, which is slower
of access but very much less costly (word for word) than
the fast store. In Mercury the immediate-access store
is a 1,024-word (40 bits) ferrite-core matrix with an
access time of 10 usec. The auxiliary store is provided
by a 16,384-word magnetic drum which rotates at
3,475 r.p.m., corresponding to a revolution time of
17k msec. The storage locations on the drum are
arranged in 256 tracks each of 64 words, and each track
consists of two half tracks, or sectors, of 32 words.
These are numbered 0, 1, 2, . . ., 511, all the even-
numbered sectors (and likewise all the odd) occupying
the same azimuthal position on the drum. The fast
store is partitioned into 32 pages each of 32 words, and
provision is made to transfer the contents of any sector
to any page, and vice versa. Transfers from the drum
to the fast store are known as reading transfers, and
those in the reverse direction as writing transfers. In
either case the operation lasts for half a revolution of the
drum from the time at which the transfer proper begins.
Since the average waiting time is also half a revolution,
the total transfer time for randomly selected sectors is a
complete revolution of the drum. There is no delay,
however, when a transfer is followed immediately by
another transfer of opposite parity, i.e. an odd sector
followed by an even sector, or vice versa. Thus if a
group of consecutively numbered sectors are transferred
in rapid succession, then all except the first will take
half a revolution each. If all 32 words of a sector can
be used, then the access time to the drum is 0-54 msec
(1/32 of the revolution time) per word for individual
transfers, and correspondingly less if more than one
sector is involved. This should be compared with the
times of other operations, €.g.

transfers to and from the accumulator 120 usec
addition and subtraction 180 psec
multiplication 300 psec
red-tape instructions (counting, etc.) 60 usec

It can be seen that if transfers are confined to suitably
large sets of words (for example, routines, vectors, etc.),
and some at least of these are used repeatedly, then from
the time-economy point of view these arrangements may
compare favourably with a single fast store of indefinite
size. The capital saving can be appreciated when one

189

compares the cost of the two forms of storage: between
£2 and £3 per word for cores, and approximately 2s. 6d.
per word for the drum. (These figures are slowly
changing with time but appear to maintain the same
ratio.) It should be emphasized, however (and this is
often overlooked by machine designers), that while it
may be theoretically possible, it is not always convenient
to arrange one’s program to take advantage of two-level
storage, and this may prove a severe handicap to an
inexperienced programmer. Indeed it has been argued
that the resulting increase in programming costs more
than offsets the cost of a large one-level store!

An example of the difficulties which may arise is
provided by the serial Jacobi process (Goldstine, Murray
and Von Neumann, 1959) for the determination of the
latent roots and vectors of a symmetric matrix which is
too large to be contained in the fast store. In its simplest
form, this demands rapid access to both rows and
columns of a matrix, which is not possible with con-
ventional methods of recording matrices on a drum,
that is by rows or columns.

In the rest of this article we shall describe some of the
strategies adopted in connection with the Mercury
Autocode system (Brooker, 1958, 1959) for alleviating
the difficulties inherent in the form of two-level storage
just described.

THE GENERALIZED TRANSFER INSTRUCTIONS

The first problem was to provide the Autocode user
with some convenient means of access to data* stored
on the drum. Clearly the basic tansfer instructions
involving blocks of 32 words would be out of place in
an automatic-programming system. Instead, Autocode
treats the drum (or that portion of it occupied by
numerical data) as a consecutive series of locations
numbered 0-10,751 (sector n corresponding to the
addresses 32n to 32n + 31).

Pseudo-transfer instructions have been adopted which
can transfer any consecutive set of words on the drum
to any consecutive set of locations in the fast store, and
vice versa. To do this the user specifies the first location
on the drum, the first location in the fast store, and the
number of words to be transferred. Thus, for example,

e (1,000 + 20i — 20) aq, 20

transfers the ith row of a 20 X 20 matrix stored by rows
(see next section), starting at location 1,000, to the fast

* The question of instructions does not arise since this is taken
care of by the chapter-changing scheme.

¥202 Iudy 61 U0 1senb Ag 00902 1/68 L/¥/2Z/81o1e/|ulwoo/wod dno-ojwapeoe//:sdiy wolj papeojumoq

Techniques for Two-Level Storage

store locations a,, a;, . .
writing operation is ¢,.

These pseudo-transfer operations are effected by
means of a small routine (36 instructions) kept per-
manently available in the working store. A further page
of the working store is used as a buffer store in con-
nection with these operations. The routine first deter-
mines S and 7T from the relation ¢ = 32S -+ T, where a
is the specified drum address, S the sector on which it
lies, and T is the address within the sector (0 < 7 < 31).
(This is done by shifting and collating.)

In a reading operation the relevant sectors S, S -+ I,
etc., are transferred one at a time to the buffer page,
from which the words are copied into their final destina-
tion in the fast store. The total time for a transfer by
this scheme is (17-25p + 0-36n) msec, where p is the
number of sectors involved, and # is the number of words

L n—1 n— 1',
transferred: p is either [Y:' + 1 or [Y | + 2
depending on the positioning of the words relative to
the sector divisions.

In a writing operation the words are copied from their
original locations in the fast store into the buffer page,
and from there transferred to the drum. It is not quite
as simple as the reading operation, because of the need
to preserve the “flanking™ material on the first and last
sectors of the group of sectors involved. These sectors
are first read down to the buffer page before the material
1o be placed on them is transferred there. There is no
need for this with the intermediate sectors because all
the material on these sectors will be replaced. The time
for a writing transfer is thus (34-5 + 0-36n) msec, if only
one sector isinvolved, and [17-25(p + 2) + 0-36n] msec,
if more than one sector is involved.

. dye. The corresponding

THE MATRIX OPERATIONS

To make the drum still more useful to the Autocode
user, the pseudo-transfer operations are supplemented
by a set of instructions (¢g to ¢,g) for manipulating
matrices recorded on the drum, and for the input and
output of material direct to the drum. These assume
the matrices to be stored by rows, that is the elements
in any row stand in consecutive locations, with the first
element of each row following the last element of the
previous row. Thus the element ; ; stands in the loca-
tion @' +n(i — 1)+, — 1, where i = I(1)m and j =
I(1)n. The first element of the first row stands in &’
which will be referred to as the /ocation of the matrix.
An example of a matrix operation is the multiplication
instruction

a’ = (b, ¢, u, v, w) corresponding to
A(u X v) = Bu x w)C(w X v).

Here a’, b', ¢’ are the locations of A, B, C, and u, v, w
their dimensions. A complete list of the matrix instruc-
tions can be found in the Autocode Manual (Brooker,
Richards, Berg and Kerr, 1959). In the remaining

190

section we describe some of the methods used in the
actual routines which perform these operations.

THE ““WINDOW”’ DEVICE

The generalized transfer operations provided for the
Autocode user are unsuitable for use behind the scenes
where more efficient techniques are called for. Instead,
five special transfer operations were developed whereby
the programmer can look at successive rows of a matrix
recorded on the drum, through a “window” consisting
of two or more pages of the fast store. A somewhat
similar scheme has also been suggested by Robertson
(1957). These pages correspond to the sectors over which
the row extends. The standard size of a window is five
pages (although this could be altered by means of a
preset parameter in the routine), and is associated with
a directive of the form

a— 159

which allocates the 160 variables ay, a,, . . ., a5 to
five pages of the fast store. Also associated with each
window is a 40-digit code word consisting of four 10-bit
parameters describing the relationship of the material
in the window to that on the corresponding sectors of
the drum. The five transfer operations associated with
a window are as follows.

1. Opening the window.

This is denoted by ¢,(a, a, p),
where @’ is an arbitrary drum address,
a is the variable to be employed as code word,
p is the first page of the window.

As in the case of ¢4 and ¢, the routine first finds S
and T from the relation

a =325 + T,

S being the sector on which @’ lies. This is transferred
to page p and the code word set up as follows:

2. READ, denoted by ¢, (a, i, n).

This is for use after the window has been opened (or
following another ¢, instruction). The effect is to
transfer the next » words from the drum, i.e. those
standing in @’ -+ 1,a" + 2, ..., a = n, to n consecutive
locations in the window. The index i/ is adjusted so that
if the associated directive is x — 159 these locations can
be referred to as x;, x; ,), etc.

The mechanism of the operation is as follows. Assume
the window has just been opened. Then unless T = 31

¥202 Iudy 61 U0 1senb Ag 00902 1/68 L/¥/2Z/81o1e/|ulwoo/wod dno-ojwapeoe//:sdiy wolj papeojumoq

Techniques for Two-Level Storage

some of the next # words (and possibly all of them) lie
on the sector brought down to page p. The ¢, routine
then brings down the necessary number of sectors
S+1,S+2,...,S+ktopagesp+1,p+2,..,
p - k, to complete the transfer. The code word is
adjusted thus:

p+k

S+k T+ n
p T+ n

l
|
|

and the index i is set to the value T -+ 1, the address of
the first word required. Here S -+ k is the last sector
transferred and p + k the corresponding page: 7'+ n is
the location of the last element required. At the start
of any subsequent operation these quantities will be
referred to as S, P, and T respectively.

Subsequent applications of this operation cause the
code word to be adjusted in a similar fashion until a
case arises where T + n > 160 (the limit for a 5-page
window). In this case the last sector (S) transferred on
the previous occasion is brought down again to the first
page p, and the subsequent sectors to pages p -+ 1,
p + 2, etc. (unless 7 = 31 mod 32, in which case sectors
S + 1,8 -+ 2, etc., are transferred to p, p + 1, onwards).

This operation will be referred to as resetting the win-
dow. The code word and index are adjusted as follows:

1
p+k ‘ S+ k
T 5 31 mod 32 i
p ‘ Tmod 32 + n
o — Tn30d32+n
o 32
i = Tmod32 + 1
ptk | S+k+l
T = 31 mod 32 ‘
p n—1
|
n—1
kz[?z}
i=0.

It is clear that the window technique will be par-
ticularly useful when transferring successive rows of a
matrix, because there is no waste of flanking material,
the elements following the end of one row being part of
the next, and so on. The window must, of course, be
large enough to accommodate a row of the matrix under
all circumstances. The standard 5-page window permits
rows of up to 129 elements, which is sufficient for normal
matrix work. For n > 80 the resetting operation
(T -+ n > 160) will take place at every stage, and
correspondingly less frequently for smaller rows.

191

3. READ|WRITE, denoted by ¢; (a, i, n).

This is used when it is required to alter a row on the
drum in situ, that is to read it, alter it, and write it back
in the same position. 1t is very similar to ¢, and differs
only in the case where resetting takes place. In this case
the “‘active” pages p, p + 1, . . ., P are written back to
their corresponding sectors before transferring the last
sector S to page p (or sector S + I in the special case
T — 31 mod 32). The parameters a, i, n play the same
roles as in ¢,.

As it turned out, only one of the matrix operations
required this type of transfer, namely, the reduction
process as applied to the right-hand sides in matrix
division, and even here it can be dispensed with by using
separate READ and WRITE windows (see next section).
It is the WRITE operation which is more frequently
used owing to the fact that the matrix Autocode instruc-
tions are of the 3-address code variety, namely
AOB — C, where C is usually distinct from either 4 or B.

4. WRITE, denoted by ¢, (a, i, n).

Like the previous operations this is intended to be
used following a ¢, or another ¢, operation. The effect
is to prepare to write the next n words on to the drum.
The mechanism is as follows. Immediately after a ¢,
operation the code word and index are adjusted as
follows:

b4 ‘ S

p |T+n

i=T+1

(except in the special case T = 31 and n = 129, which
is dealt with below). Material destined for the next n
locations on the drum can then be placed in the corre-
sponding locations of the window, x;, X1y, €tc.

Subsequently applications cause the code word to be
adjusted in a similar fashion until the case T + n > 160
occurs. Two possibilities then arise, depending on
whether or not T is the last location of a page, i.c.
T — 3] mod 32. If not the active pages p, p + 1, etc.,
are written on to sectors S, S -+ 1, etc., stopping short
of the page containing the location T, outstanding
clements being copied across to the corresponding
locations on the first page. The code word and index
in this case become

;s [E]

p | (T'mod 32) + n

]

i = (T mod 32) + 1.

If T = 31 mod 32, then all the pages p, p+ 1, . . -

T . .
p+ 9 are transferred to their corresponding sectors.

¥202 Iudy 61 U0 1senb Ag 00902 1/68 L/¥/2Z/81o1e/|ulwoo/wod dno-ojwapeoe//:sdiy wolj papeojumoq

Techniques for Two-Level Storage

In this case the code word and index become

S r 1

P

n—1

The operation can be used to write successive rows of a
matrix on to the drum.

5. Closing the window, ¢5 (a).

The purpose of this operation is to restore all out-
standing material to the drum. Two cases arise according
to whether the window has been used for READ/WRITE
transfers or purely WRITE transfers. These can be
distinguished by comparing the two left-hand quantities
in the code word. If these differ then the window has
been used for READ/WRITE transfers: if not it
can be treated as if it had been used for WRITE
transfers.

Following a succession of READ/WRITE transfers
all that is necessary is to transfer the “active” pages of
the window to their respective sectors on the drum,
ie. pagesp,p+1,..., p+ ktosectors S, S+ 1, ...,
S+ k.

In the case of WRITE transfers the close operation is
done in two steps. First the WRITE operation
b4(a, i, 129) is employed to restore all the complete pages
to the drum, the parameter n = 129 being sufficient to
ensure that this will take place for all 7> 31. The
next step is to deal with outstanding elements which have
been copied into page p. The sector corresponding to
this page is transferred to page p + | and the flanking
material copied across to page p, which can then be
transferred to the drum. The second step can be
omitted if 7= 31 mod 32 since there are no outstanding
elements to deal with.

THE CENTRAL ROUTINE

The transfer operations as described can be realized
by a multi-entry subroutine of less than 100 instructions.
The routine currently employed dispenses with the
READ/WRITE transfer and extends to only 61 instruc-
tions; but this is partly due to another difference: the
treatment of the flanking elements in the WRITE

. T7.
operation. The sector S +- [33} 1s transferred to page p

before the outstanding elements are copied there. The
closure operation can then be completed by simply
transferring this page to its appropriate sector on the
drum. This is a clumsy device, however, and introduces
an extra transfer into the WRITE operation.

The call sequences for the five operations each extend
to 7 or 8 instructions.

192

TIME OF OPERATION

In addition to the time of the magnetic transfers
proper, approximately [-8 msec is spent within the
routine and the call sequences, thereby adding an
amount (1-8/n) msec to the access time for each element
of the row. Thus the scheme is less efficient (but still
very useful) for small values of #, in particular for n = 1,
e.g. column vectors. (This important special case is
considered later on.) However, it is not to be expected
that a general-purpose routine will be the most efficient
routine in any particular case.

The main contribution to the access time, that from
the magnetic transfers, is between 0-54 msec and
0-28 msec per element, depending on what proportion
of the sectors were transferred individually. Again, for
small values of # (less than 32), all the transfers will be
individual.

MATRIX MULTIPLICATION

To illustrate the use of the row transfer operations,
we give below the outline of a routine to form the matrix
product A(r X s) = B(r x f)C(t X s). The matrices
are stored by rows, starting at locations a’, &, ¢’. Their
dimensions are r, s, t. (The routine also illustrates some
of the conventions suggested by the British Computer
Society Research Committee on Scientific Programming

Notation. See The Computer Bulletin, Vol. 3, No. 3.)
@159 (pages 16-20) directives describing
b— 159 (pages 21-25) & window space
c—159 (pages 26-30) ! p
éi(@ —1,a,l16) open “4” window
éi(b" — 1, b,21) open “B”" window
= 1(1)r
ba(a, i, 5) prepare to write next row of A
(b, j, 1) read next row of B
di(c" — 1, ¢, 26) (re)open “C”” window
n=1(1)s prepare to accumulate

— elements of next row of 4
| aion1y=0
m = 1(1)t
| bs(c, k, 5) read next row of C
n=1(l)s
‘l ‘ Aiin1) = bGom1)Ck cn—1y + A)

close the “A4” window

A refinement incorporated in the actual program, but
not shown here, is a test for the special case where C has
less than 160 elements. In this case the entire matrix is
transferred to the “C”” window by means of a ¢ instruc-
tion, namely ¢¢(c’)co,q, where g = st, and remains
there for the entire process.

¥202 Iudy 61 U0 1senb Ag 00902 1/68 L/¥/2Z/81o1e/|ulwoo/wod dno-ojwapeoe//:sdiy wolj papeojumoq

Techniques for Two-Level Storage

REDUCTION TO TRIANGULAR FORM

This is the means of evaluating determinants and is
part of the process of matrix division. The actual
method used is that described by Wilkinson (1953)
which employs row interchanges. The storage layout
is of interest here. After r reductions there are r pivotal
equations and a square array of order n — r, thus

\

r pivotal rows

n — r partially
reduced rows

The rows are packed end to end on the drum so as to
take advantage of the row transfer operations. The
number of sectors scanned in each reduction gets pro-
gressively less. The ¢4 and ¢, instructions are used to
effect the row interchanges, which, because they lie
outside the inner loop, need not be treated as efficiently
as the rest of the calculation. This principle was used
extensively in coding the matrix routines.

TRANSPOSITION

As a further illustration of storage strategy we describe
very briefly the method used to transpose a rectangular
(m x n) matrix stored by rows in the usual way. As
many rows as possible are transferred to the fast store,
at the same time leaving space for a single row of the
corresponding partition of the transpose. The number
of rows is the maximum value of p such that pn + p < 480
(the size of the fast data store).

& M ——

The window transfers cannot be used here, and the
transposed row segments are built up individually in
the p (consecutive) spare locations and transferred to

the drum by &, operations. The method relies on
being able to transfer a sufficient number of rows so
that the matrix is completed in as few sections as possible.
Thus for a 30 x 40 matrix there are three sections 11,
11, 8. Except for small matrices (more precisely those
for which m(n + 1) < 480) the operation does not
permit the user to transpose a matrix on top of itself.

SINGLE PAGE WINDOWS

When dealing with one-dimensional arrays of any
kind, it is more convenient to call for the elements singly
rather than n at a time. It has already been mentioned
that the general window routine is less efficient for small
values of n, but in the particular case n = 1 the window
can be confined to a single page, and the central routine
becomes very much simpler. As a result the access time
due to red-tape operations can be reduced to 180 usec
per element. The transfer operations take precisely the
same form as before, and the following example illustrates
their use in this case.

Form the expression

N—s
f: 21 XIX(1+s)
t=
from X’s recorded on the drum in locations x" 4 1,

X +2,... x 4+ N (N being too large for the series to
be contained in the fast store).

a— 31 X, window

b — 31 X . 5 window
f=0

$1(x’, a, 16) opens X, window

é(x" + s, b, 17) opens X, 5 window
t = 1(1)N—s
bo(a, i, 1) calls for next X,
ba(b, j, 1) calls for next X, ..y
\ f= aibj +f
CONCLUSIONS

Operational experience with the ¢ and ¢; instruc-
tions has proved them to be very suitable forms of drum
transfer instructions for the ordinary Autocode user:
they are easily understood and easy to use. The row
transfer operations have so far only been used behind
the scenes in writing the routines for matrix arithmetic.
However, this is only because it is necessary to write
out by hand the call sequences for ¢; — ¢5 in terms of
machine instructions. If it is decided to make these
operations generally available then this would be done
automatically by including the appropriate “generators”
in the program.

The row transfer operations could possibly be used in
other problems involving a two-dimensional array, e.g. in
the solution of partial differential equations where the
finite difference mesh is too large to be contained in the
fast store.

193

¥202 Iudy 61 U0 1senb Ag 00902 1/68 L/¥/2Z/81o1e/|ulwoo/wod dno-ojwapeoe//:sdiy wolj papeojumoq

Techniques for Two-Level Storage

REFERENCES

BROOKER, R. A. (1958). ““The Autocode Programs developed for the Manchester University Computers,” The Computer Journal,
Vol. 1, p. 15.

BROOKER, R. A. (1958). *Further Autocode Facilities for the Manchester (Mercury) Computer,” The Computer Journal, Vol. 1,
p. 124,

BROOKER, R. A. (1959). “Mercury Autocode: Additional Notes,” The Computer Journal, Vol. 2, No. 1, April 1959, p. xi.

BRrOOKER, R. A. RICHARDS, B., BERG, E., and KERR, R. (1959). “The Manchester Mercury Autocode System,” The Computing
Machine Laboratory, University of Manchester, May 1959.

ROBERTSON, H. (1957). “Cyclic Use of the High-Speed Store,” C.E.R.N. Report (European Organization for Nuclear Research,
Geneva).

GoLDSTINE, H. H., MURRAY, F. J., and VON NEUMANN (1959). “The Jacobi Method for Real Symmetric Matrices,” J. Assoc.
Comp. Mach., Vol. 6, p. 59.

WILKINSON, J. H. (1953). ‘‘Linear Algebra on the Pilot A.C.E.,” Proceedings of a Symposium held at the National Physical
Laboratory, March 1953. London, H.M.S.0., 1954.

Book Review

Proceedings of the Canadian Conference for Computing and relatively restricted topics and to run information lecture
Data Processing. 383 pages. (Toronto: University courses for potential users and others wanting a less specialized
Press, $5.00; London: Oxford University Press, 40s. 0d.) approach.

There is a further disadvantage of such ‘‘all-in” con-

The first Canadian Computing Conference, held at the Uni- ferences: often even the most informative and more original

versity of Toronto in June 1958, was organized largely on contributions are forced to be somewhat sketchy and less

the initiative of the Toronto University Computation Centre. detailed than one could wish them to be. It is very aggra-

Its object was, apparently, to review developments in the vating to be told that such and such a procedure was success-

Canadian computing field, since the Centre was established fully programmed but to be given little or nothing of the

a decade ago, and to give some picture of the current problems and difficulties encountered or of the program

situation. The degree to which the Conference succeeded itself. And, of course, there is the inevitable danger of

may be judged from these the published Proceedings. repetition. Although it is difficult completely to avoid this
There are several informative and interesting papers on in any actual conference, there is much to be said for some
data processing in banking, life insurance, the National and Jjudicious sub-editing, on the one hand, and expansion on

C.P. Railways, the Ontario Highways Department, the the other, in the published reports.

Government Service and the aircraft and oil industries. One feature of the Toronto Conference must be stressed:

There is a paper on the application of computers to Canadian the very clear fact that the University there is well aware of

business forecasting, which summarizes “improvements in its responsibility not merely to train analysts, programmers

statistical theory that have stemmed from computer appli- and computer engineers, but also to “study the theoretical
cation,” for example in recognizing the inadequacy of the ideas that are relevant to a broad understanding of the
twelve-month moving average; and there is an after-dinner whole business” (W. H. Watson, “‘On learning to do better.”)
address by the Deputy Minister of Economics of the Ontario In this connection, the paper on Computer Education in

Government, who expressed the hope that “by taking more Canadian Universities is of considerable interest. Here an

of the guess work out of business economic dislocations may attempt is made to assess Canada’s computer manpower

be discerned sooner and corrective action taken in time.” requirements for 1960 and the probable student output from

It is, however, a little difficult to understand why it was which they will be, partially, met—"“our present curricula
necessary to include a number of contributions, which, while and enrolments are extremely inadequate and will require
competent in a condensed way, are essentially introductory drastic improvements.” It would be of interest to know
in character (e.g. ““‘Fundamentals of Computers,” “Elements whether a serious and comprehensive survey of the position
of Programming,” “Character Representation and Storage,” in the U.K. has ever been attempted or even contemplated.
etc.), alongside others of greater interest and of a much It would also be interesting to ascertain to what extent the
more restricted and technical character, dealing with systems development of numerical automation is influencing the
optimization, multiple and orthogonal regression, self- curricula of our own universities and major technical colleges.
consistent field theory, crystal structure, and large-scale Throughout the Proceedings the influence of the U.S.A. is,
matrix calculations. Especially incongruous is a blatant as one might expect, strongly evident. It is, however,
sales-talk type of paper on the Burroughs E 101, which pertinent to point out that the British contribution to com-
contrasts strongly with a useful survey of the problems of puter science is by no means negligible. Indeed, one has the
high-speed printing and two informative papers on automatic impression, from time to time reading this volume, that it
programming, one from Remington Rand, the other from would be helpful all round if more systematic information

[.B.M. about British work and achievements in all fields of the

Probably the “‘registrants™ included both those with con- science were made available to our Canadian colleagues. We
siderable computer experience and others attending to find on our side are grateful for this volume both as a useful
out “what it’s all about.” This is always a problem con- survey of the Canadian computing scene and as a non-
fronting the organizers of general conferences on computing, academic introduction to computer science and some of its
although it may be partially overcome by running parallel applications.

sessions. The solution is, maybe, to limit conferences to R. GoobpMmaN.

194

¥202 Iudy 61 U0 1senb Ag 00902 1/68 L/¥/2Z/81o1e/|ulwoo/wod dno-ojwapeoe//:sdiy wolj papeojumoq

