The design of the MAX macroprocessor

D. Nudds

Computing Laboratory, University of Bradford, Bradford, West Yorkshire BD7 1DP

A new macroprocessor has been designed for general purpose text manipulation. The system aims
to provide the user with a completely flexible system free of any syntactic rules for the specification
of macro calls. Although the lack of restriction implies greater system overheads in the form of more
extensive scanning and comparison of the scanned text with the set of defined macros, a block
structure together with a tree structured macro definition list enable a practicable working system
to be implemented which is not unrealistically slow.

(Received October 1974)

1. Introduction
In this article we consider the specification and application of a
macroprocessor MAX. Work on this system was motivated by
the following considerations.

First, a practical system was required which could be used for
a variety of purposes: particular examples include:

1. The development of high level machine oriented languages
via a macroprocessor. Macro definitions were required
which could be applied to a source text having a relatively
complex syntax.

2. Work on the translation between assembly languages of
different machines. Here the syntactic structure of the source
text undergoing processing is somewhat simpler, but the
semantics had to be taken into account in defining appro-
priate macros, so again a powerful and comprehensive
macroprocessor was desired.

3. Further work in the field of applications oriented languages
indicated a requirement for a system with easily written
macro definitions and free of restrictions concerning input
or output conventions, character sets and formats.

A second motivation was to examine the role of a formal
definition in producing a simple system which would be not
only easy to use but relatively straightforward to implement.
Actual experience in building the MAX system was not, of
course, a matter of proceeding in a linear progression from
formal definition through implementation to application: use
of the system led to developments in the implementation and
hence to the underlying formal model. But a formal description
gives a clear, succinct statement of the system, which is
readily modifiable, and encourages a modular implementation.
This formal description will be found in the Appendix.

The basic principle of all macroprocessors, whether called
macroassemblers or macrogenerators (special or general
purpose) is the substitution of symbols within a text, presented
as data to the processor according to rules specified by macro
definitions. A macro definition is a string of symbols too, which
may be incorporated in the same test. The simplest macro-
assemblers have the restriction that these definitions may not
themselves be processed. A general purpose processor, on the
other hand, allows the conversion process to apply to arbitrary
strings in the text, and the conversion of textual macro
definitions may take place.

General purpose processors, such as GPM (Strachey, 1965),
the TRAC system (Mooers, 1966), and ML/I (Brown, 1967),
usually have the property, also present in macroassemblers,
that the macro calls are made by placing the name of the macro
prior to the parameters on which the macro expansion is to be
carried out. The system we have adopted, paralleling the LIMP
system and STAGE2 (Waite, 1967; Waite, 1970), is more
general; effectively a distributed macro name is used, and

template matching is required of the macro definition against
the text being processed. At the same time in MAX, no assumed
conventions are built in regarding the parameter names or
abbreviations. This is achieved by distinguishing between the
internal representation of the individual atoms, or symbols,
which are macroprocessed, as against their external represen-
tation, whereby a symbol is represented by a string of characters.
Externally symbols are delimited by a specified separator
character. This separator itself may be redefined during
processing.

The MAX system presents, then, an attempt to overcome the
restrictions which Brown (1971) describes as being imposed on
the macroprocessors dealt with in his survey. There is no fixed
start or end to macro calls, as in STAGE?2 for example. Nor
are the start and end of the macro required to be explicitly
defined, as in ML/I and GPM. At the same time, the matching
mechanism is implemented with a tree structured macro defini-
tion set so as to give an acceptable processing speed. The user
however need not be aware (as he should be with STAGE2) of
the storage system. He simply considers his macro definitions
as a chronologically ordered list.

Certain predefined control symbols are necessary in any
system. In MAX there is a group of about 30 such symbols;
their external representations all begin with a special character
(e.g. ‘£’), which again may be replaced by any other character
at any stage if required. Thus the system has about the same
level of flexibility of character set over which it might operate
as ML/I, except that the MAX system has just one ‘punctuation’
rule: a predefined separator character separates symbols.

2. Matching with MAX

At any stage in the processing of a string by macroprocessors
there will be a set of macro definitions which may be applied to
the string. These definitions are effectively rewriting rules:
the whole process in fact may be considered as a form of
Markov algorithm. The general Markov algorithms allow for
repeated scanning of a string, on each scan the first rewriting
rule being applied. In contrast, macroprocessors generally are
essentially one-pass systems in which the string is passed through
the processor just once, and the rewriting is performed as
(in general) keywords are recognised which cause the application
of the rewriting rules.

Such systems may always be considered as Markov algorithms
by suitable expression of the rewriting rules in such a way that
they incorporate a marker which corresponds to that point up
to which the input string has currently been scanned.

For example, suppose we consider a simple system in which
the alphabet A consists of the letters 4, B, . . . Z. Suppose there
is a single macro which implies that if the current scanned
symbol is an A then it and the following symbol will be inter-
changed, and that scanning will then continue with the next

The Computer Journal

20z udy 61 U0 1s8n6 Ag 0£0LFE/0E/1/0Z/201E/UlWOD/ W00 dNo"dlWspeoe)/:SA]Y WoJj PAPEOUMOQ

symbol after the rewritten A. That is the production
Ax—->xA forall xin A

is to be applied but the string must not be rescanned so as to
cause the interchange of the rewritten 4 with the next letter.

The above conditions can be applied in a general Markov
algorithm by adding a special marker symbol to the alphabet.
Here we shall use ‘[]’ as the marker. Incidentally we shall
ignore the conventional use within Markov algorithms of a
period symbol to indicate a terminating rule. Such explicit
terminating rules will be dispensed with in our production
schema, as termination instead will be indicated by the non-
applicability of any of the production rules: this is equivalent
to having a single production containing the terminator symbol
as the last one of the set of productions.

First the initial string to be processed is preceded by this
marker (which may again have been indicated explicitly by an
appropriate production, but instead we shall adopt this as a
convention).

The productions are now written:

OAx—->xA[O forall xin A
Ox -x0O3 for all xin A .

The second production moves the marker through the string
whenever the first production cannot be applied, i.e. acts as a
marker.

In the above macro expansion we had a highly simplified
example of the standard form which most macro processors
use: the keyword followed by a list of arguments causes an
expansion according to the macro definition. The next piece of
text will then be scanned.

More generally, then, simpler macro processors may be
defined by Markov algorithms in which the production schema
are of the form:

OAB...Iab...j—>oa

where 4 ... I are fixed symbols in the alphabet, a...;j are
variables in the alphabet, and « is a string containing the
variables a . . . j and some fixed symbols in the alphabet. The
movement of the marker prevents repeated scanning.

The system which we have adopted for macro expansion is,
however, quite different. Rescanning is permitted, because all
the standard macros are defined by schema of form:

adx—-0O8p

where both « and B are arbitrary strings of symbols (fixed or
variable) in the alphabet, and x is a single symbol. In addition
the production schema

Ox—->xO forallxin A

occurs as a means of moving the marker one symbol to the
right. Productions of the form « [0 x » [0 f we shall call
‘macros’ and write them « x = B, for all strings « and f§ and
symbols x.

It follows that the matching mechanism required for this
schema is one in which symbols are compared one by one
working from right to left, starting with the symbol immediately
to the right of the marker. For example with a macro
Ax By C = xy Die. aproduction schema:

AxBy[dC—-OxyD (forallx,yinA)
and the string
ABEA[CABE;

first the C’s to the right of the marker are compared, then the 4
in the string is matched with the y in the definition. Since y
may stand for an A, the comparison is again successful, and so
next the E in the string is compared with the B in the definition.
They differ, so the match of the string with this production
schema is unsuccessful and the string will not be transformed.

If all the macros in the environment similarly fail to match,

Volume 20 Number 1

then the production schema

Ox-x013
applies and the string becomes A BE A C [] A B E. After this
transformation a further set of comparisons are now made to
determine whether any of the macros may be applied to the new
string.

Comparing the individual symbols from right to left in this
way might seem at first hand to be an awkward and unnatural
system. It does, however, give a neat and simple method of
dealing with the repeated application of macros. For example,
with the macros

X=4
Y=B8B
and Z=XY
the text oz is converted first to

OxXxXyYy then to
JAY thento
AOY which becomes
AOB and finally
AB[].

This description of the action of a macroprocessor in terms of ag
marker moving through a single text has, it is felt, the advantage:"
of simplicity. At least when a user of the system is uncertain as?
to the effect of a complex set of macros, he can work through:
an example in the manner shown above. It might be pomted"’
out, incidentally, that similar systems could be applied to the%>
description of other macroprocessors. GPM, for example,a
effectively requires the marker to move up to the closing symboB
(a semicolon for example) of the macro call. ML/I, on the othero
hand, requires the marker to move as far as the opening symbolg
(the macro name) of the call. The MAX system thus can bed
said to use call-by-value for its parameters, like GPM, asy
opposed to call-by-name as in ML/I. 3
Implementatlon of the MAX system may model the de5<
cription given above by means of a pair of stacks, one for the:
text on each side of the pomter No further stacks are neededi
for various levels of recursion as with other systems.

papeojumoq

€/0€/1/10C

3. Definitions and blocks
In the above examples the individual symbols are representedg
by single characters. A more powerful general system is in fact®
used in MAX whereby groups of individual characters represents
symbols. A single (but user definable) character is used tce
separate symbols. Here we shall use a space, or a string of}
spaces, as a separator. Special symbols are used for systemg
control and for other predefined purposes. For example, BEG3
starts a block, DEF starts a definition, +12 represents the>
positive integer twelve, and & represents a variable (umversaF—
symbol) within a definition. o

The definitions of the previous section may then be wrltten'“

DEF Z IS X Y ENDD

DEF XIS A ENDD

DEF YISB ENDD .
The order in which these definitions are presented to the pro-
cessor is critical here. Reversing their order would cause the
expansion of X and Y within the text of the first definition,
whilst the definition is read in by the macroprocessor. To shield
this from expansion on input, one of several possible scope

restricting symbols may be used. The simplest way, perhaps, is
to place the text of the macro within a block:

DEF BEG Z IS X Y ENDQ ENDD
or, in abbreviated form:
MACZIS X YENDM .

31

Within the brackets BEG ... ENDQ the text is evaluated
using only the macros deﬁned within the block (together with
global, system defined macros). Thus in the text
O DEF BEG Z IS X Y ENDQ ENDD
the marker is moved from left to right, and within the block no
evaluation takes place. When the marker reaches the symbol
ENDQ, the text becomes
DEF Z1IS X Y (] ENDD

and this causes the definition Z = X Y to be created and stored
at the current block level.

Alternative brackets are the pair BEG ... END, with the
same effect as BEG ... ENDQ, except that additionally on
reading the end-of-block symbol END, the marker is moved
back to the beginning of the text enclosed within the block,
and the text is re-evaluated at the outer block level (the
brackets being removed) with all macros defined within the
block discarded.

The following simple example illustrates some successive
stages in the processing of text with two block levels. Some
intermediate stages where the marker simply moves from left
to right are indicated by the broken lines.

The following simple example illustrates some successive stages in the processing of text with two block levels. Some intermediate
stages where the marker simply moves from left to right are indicated by the broken lines.

[0 BEG DEF 4 IS B ENDD AB BEG DEFBISAC ENDD 4 BC END B END
BEG DEF 4 IS B] ENDD AB BEG DEFBISAC ENDD A BC END B END
................ —

BEG Od AB BEG DEFBISAC ENDD 4 BC END B END

A macro (4 = B)is now applicable in the outer block. However when the marker enters the inner block, the macro is inapplicable.

BEG BB BEG DEFBISAC[ENDD 4 BC END B END
................................... —
BEG BB BEG AOBC END B END
--------- -
A macro (B = A C) is now applicable in the inner block.
BEG BB BEG AAcCccCcO END B END
............ —_
Now, in the next, outer, block level again:
BEG BB O AACC B END
The macro A The macro 4 = B leads to
BEG BB BBCC B[] END
....................... —
and then to
O BB BBCC B
and so on according to the macros defined in the now current block.
Parameters within a macro definition are represented by: BEG . .. ENDQ symbols, however, as processing is required &

(@) the universal symbol @ on the left-hand side of a definition—
the template;

(b) the symbols 1,2,3 ... in the right-hand side of a macro
definition—the macro body.

For example with a macro defined by

DEF A & B ¢ IS 4 FFF 2 ENDD

the text ... A XB[O Y... will be matched against the
template. The symbol 2in the macro body represents the second
symbol of the matching text, whilst 4 represents the fourth
symbol. Hence the textis replaced by ... [] Y FFF X.
The pointer is positioned ready for re-evaluation of the
generated text. This text will now be processed as required by
the definitions of the current block.

Supposing, however, it were required to prohibit such a
re-evaluation by an existing definition. One way of doing this
would be to surround the above text by the block-quote symbols
BEG ... ENDQ. That is, the macro is required to generate the
text-...[] BEG Y FFF X ENDQ. ... The macro needed for
this is 4 ® B® = BEG 4 FFF 2 ENDQ. However, if the
textual definition

(1 DEF 4 ¢ B ¢ IS BEG 4 FFF 2 ENDQ ENDD
is presented to the macroprocessor, it will be converted into
DEF A ® B®IS 4FFF2[]ENDD
before the macro is defined and stored away. In several other
macro systems, this sort of problem is resolved by allowing for
quoting brackets equivalent to our BEG...ENDQ to be

nested, and for the processor, on each scan, simply to strip off
the outer layer of brackets. This is not possible with the

32

to contmue inside the brackets. Indeed these symbols are not 3
the standard ‘skip-quotes’ or literal brackets, and so an
alternative quoting system is employed in addition.

In the MAX system each symbol is designed to be treated
uniformly. Instead therefore of introducing further special &
separate symbols which would have the effect of suspending the o
normal effect of the processor, the system incorporates the o
quotation mark within the symbol itself. We indicate this
quotation property in our description by following a symbol by
apostrophes equal in number to the level of quotation applied.
Absence of apostrophes is equivalent to a zero-level quote.

Quoted symbols of this form are regarded simply as further
symbols in the alphabet of MAX. A quoted control symbol like 3
DEF’ is not in itself a control symbol. Likewise quoted =
parameter symbols such as 2’ are not parameter symbols.

A quote-level is dropped from a symbol at the time when a
macro is applied. Hence the text

DEF A ¢ B ¢ IS BEG’ 4 FFF 2 ENDQ’ ENDD
causes the macro A & B® = BEG’ 4 FFF 2 ENDQ’ to be stored.

When this matches the incoming text, ... A X B[Y...,
then the text is changed to ... [BEG Y FFF XENDQ...
which in turn becomes ... YFFF X []... the BEG and

ENDQ having had the required effect of shielding the enclosed
text from matching against any previously defined macros.
As a further example of the use of quoted symbols, consider
the situation in which we wish to create definitions using a
different notation. It may be required to write, for example,
DEFINE NEXT = 1; in place of DEF NEXT IS 1 ENDD.

The Computer Journal

ao1Je/|ulwoo/wod dno olwapese//:sdyy wodj pepeowmoq

(')

N

€/0¢/

-b

(,0
U

@
('D

Z udy gL U0 1s

S
N

This may be achieved using the macro defined by
DEF DEFINE ¢ = &; 1S DEF’ 21IS’' 4 ENDD’ ENDD .

4. Further facilities

Additional control symbols are defined which allow for binary
representation of integers, and arithmetic operations upon
them. Output onto a special output stream is controlled by
further symbols; such facilities are required because the nature
of the scanning process implies that symbols cannot be auto-
matically output during macroprocessing. Only at the termi-
nation of the process may it be assumed in general that symbols
to the left of the pointer cannot match a stored macro definition.
Hence if intermediate output is required, which is highly
desirable not only for storage economy but also for debugging
purposes, then it must be demanded explicitly by the
programmer.

A full description of all the control symbols which have been
built into the current implementation of MAX is to be found
in the Appendix. These symbols may be regarded as calls to
macros which are valid within all block levels: these macros
are in effect defined in a special block, the outer block. The user,
too, can also define macros in this outer block, and thus build
up whatever special control symbols he requires. These special
symbols are recognised by the MAX processor by the initial
character of their external representation, just as are the built-in
control symbols.

In the following examples will be seen the use of several of
these control symbols.

5. Examples
First, we consider the conversion of an algebraic expression
into postfix form.

It is simple to write macro definitions in MAX which will
convert a fully parenthesised algebraic expression into postfix
form, for example (4 + (B*C))* D) into ABC* D * +
A number of macros of form (¥ 6 &) = 2 4 CONC § CONC
are required, where 0 stands for one of the arithmetic
operators. These macros may be defined by a set of macro
definitions such as, for example,

MAC (¢ *) IS 2 4 CONC * CONC ENDM
and similar ones for each operator.

The effect of the CONC control symbol is to concatenate the
characters representing the two previous symbols into a single
symbol. However it is only applicable in the case where the two
previous symbols are unquoted character strings. Otherwise it
has no effect (but remains in the text). Thus, for example,
2 4 CONC is not changed when input as part of the definition
so the CONC symbol does not need to be quoted.

The template matches only when a pair of parentheses contains
just two operand symbols separated by an operator symbol.
The string in the example is scanned until the pointer reaches the
symbol C, i.e.

((4+(B*OC))*D)
which is converted to

((A+ OBCCONC*CONC)*D).

This in turn becomes

((A+ 0OBC*CONC)*D)
and then (A+BC*[J)*D) '
which becomes ([ABC*+ *D)
similarly, and finally ABC*+ D*,

The macro definitions required for this need not be explicitly
written in the text. Instead they may be generated by the macro
defined by

MACGEN ¢ ISMAC' (92 ®)IS
2’4 CONC 2 CONC ENDM' ENDM

Volume 20 Number1

together with the calls
GEN + GEN — GEN * GEN |

which will produce the required macro definitions.

This example has assumed that the initial source text consists
of symbols which are represented by single characters, whilst
it forms a final text which is a single symbol represented by a
character string. The control symbol DSEP allows redefinition
of the separator character, or for symbols to be represented by
single characters. We shall see a use of this in the next example.

Suppose, as part of a macro assembler, we wish to convert a
line of form

MOVE aa...a,bb...binto the text
LOAD aa...a
STO bb...b .

Here the newline will be regarded as a terminator. The strings
a...aand bb . . .brepresent any sequences of characters not
containing a comma.
This is tackled by converting MOVE into LOAD and scanning
through the subsequent characters as far as a comma. During
scanning each character is to be treated as a separate symbol. Ins

MACM OV EISLOAD OUT' ML ENDM

the symbol OUT has the effect of printing out the prevrous%
symbol LOAD. 1t is quoted to delay the output until the macro-.
has been applied. ML is a single symbol used in effect as a3
special marker to be moved through the subsequent charactersz
as far as the comma:

MAC ML ¢ 1S 2 OUT' ML ENDM
MAC ML ,ISN/L’' STO OUT’' MS ENDM .

Note here the order of the macro definitions; in matching text®
the latter will be tried first, and thus when a match occurs it wills
override the first, more general, one. The control symbol N/L3
(also quoted) has the effect of producing a new line on theZ
output stream. The symbol MS is used to scan through thes
subsequent text as far as the end of the line. This is hercz
represented by the symbol EOL:

MAC MS & 1S 2 OUT' MS ENDM
MAC MS EOL IS N/L' ENDM

To insert the symbol EOL at the end of each subsequent line oi8
input the macro call EOL DEOL is made. The latter control®
symbol has the effect of defining the previous one, whatever 1t8
may be, as the inserted one. Processing of the text must treatc—
all subsequent characters as individual symbols: this may beg
achieved by a call of the built in macro: NULL DSEP. 2

This example illustrates one difference between MAX ando
many other macroprocessors: because the matchmg is made by8
comparing symbol against symbol, a device is needed to scan
through an arbitrary number of symbols in the input stream.=.
The above example illustrates one, quite general, way. AnO
alternatlve, more efficient, way is to redefine the meaning of a2
separator in the context of scanning a statement of the above
form. Thus we define:

MAC MOVEIS LOAD OUT’, DSEP’' ML ENDM

On recognising the characters MOVE (followed by a space
separator), the processor outputs LOAD and inserts ML at the
head of the subsequent text, which is scanned with a comma
regarded as the separator. When the next symbol after ML (i.e.
aa . .. a) is recognised, then it too must be output:

MAC ML & IS 2 OUT’ N/L' STO OUT’ MS SPSS
DSEP’' ENDM .

There follow the characters STO on a new line. Subsequent
scanning requires a switch back to a space as separator (the
space being represented by SPSS which is the separator at the
time the definitions are input), Finally, when the symbol

eojumbdQg

oDiwapeoe;/:sdy

/L/0Z/o101)e/

3

bb ... b following MS is scanned, it too is output:
MAC MS ¢ IS 2 OUT’ N/L' ENDM .

Note here that we have not used a fixed terminator at the end of
this macro call. It would be quite possible to incorporate
further macros to deal with text between bb . . . b and the end of
the line using this latter method.

6. Conclusion

The preceding sections have indicated the ease with which the
MAX system may be used. Although conditional macro
expressions and other expansion time evaluations are not
present, we have somewhat simpler, if more primitive, facilities
which produce the same effect by allowing for multiple defini-
tions. This need not make the additional demands on storage
space, or on matching time, that might seem, at first sight, to be
demanded. In our implementation at Bradford for ICL 1900
machines, a tree structure is used for storage of all macros.
This leads to economies of space used in storing the templates
by which the macros are compared with the scanned text, and
also economies in time used for these comparisons. A hashing
technique, as used in ML/I implementations, is not practicable
in MAX, as there is no fixed position within a template which
may be identified as the key-word.

Speed of matching is of great importance for a practicable
implementation of MAX, as a scan is made each time the
pointer is advanced through the source text; in this scan the
current text must effectively be compared with all of the
currently active macros. With a tree structure, this can be
achieved by comparing the current symbols of the text in turn
against the symbols in the macro template tree. Once a point
in the tree is established further symbols are compared, the
process continuing until either a complete template has been
matched, or the tree has been exhausted. The situation is
complicated by the existence of universal elements in the macro
definitions, which can lead to more than one definition being
applicable at any given position within a scan. Thus a sequence
of searches may be required, but the number of alternative
subtrees to be searched will be small compared with the total
number of definitions each of which would be individually
searched if a simple linear scan were used.

This system has been used at Bradford in text conversion
applications. Speed depends, of course, on the amount of
macro conversion involved, and on the total number of macros.
With small sets a practicable interactive system may be
constructed, even though the system was originally developed
with a batch environment for lengthy texts. A translator for
converting between assembly languages of differing machines
was written as a set of 245 MAX definitions (Nudds, 1974).
This program effectively performed the functions of an input
routine besides simply converting machine code instructions,
and so the conversion processes were quite complex. Although
the conversion speed proved to be relatively slow, the match and
conversion of a single macro was performed in about one
second.

Appendix A formal definition of MAX

1. Basic symbols

The following are constituents of a text which is processed by
the MAX system.

(@) the set W of words (strings of characters from a predefined
alphabet)

(b) the set I of integers +0, +1, —1, +2, —2,...
(c) the set P of parameters 1,2,3, ...
(d) the set U containing the universal symbol @

(e) the set C of control symbols BEG, END, ENDQ, DEF,
IS, ENDD, and so on.

H

The set of basic symbolsis B= WulIuPu Uuv C.

2. Symbols

Any basic symbol may be combined with a quotecount; a
quotecount is a member of the set Q = {q0,91,42,...}. A
symbol is a member of the set S = BX Q, e.g. if be B and
q = qi then s = (b, gi) is a symbol. We shall write such a
symbol as s = b’, and we shall write ° = b, where no confusion
might arise. If S = (b, gi) = b® then the symbol S~ = »~!
when z+>1 1, ST=85=05° when i =0 and the symbol
S’ =b'"1,

3. Markers
There is a further class of markers

M= {do0,01,02,03,...} .

4, Text
A text (or internal text) is an ordered set of symbols containing
one marker. An initial text is a text in which the marker []0
appears as the first element of the text. Additionally an input
stream of characters (the input text) is available, and an outputs
stream of characters may be produced (the output text). Eachz
symbol in a text may be considered to be represented by am
configuration of characters in an external text (input text or
output text). The rules for the interpretation of i input texts ando
representation in output texts will be described in Sections 93

yw

and 10. g

?
5. Production and Macros S
A production is a rewriting rule of form ¢, — ¢, where ¢; and t2§

are texts. It therefore has the general form

5
U Uy...UOmUyy...Upp— Vy...V.0On £
Verr oo Verad

where all U;, V; are symbols. In this case a,b, ¢, d >0, and (Omg
is a marker.

The appropriate sequences of symbols are understood to be\
omitted where any of a, b, ¢, or d are zero.

A macro is a production withm =n, b =1, ¢ = 0. Its form
is therefore U; ... U, (O0m U,,.; > Om V...V,

We shall abbrev1ate thls as

. UaUa+l = Vl"' Vd(m) .

Jo|oIE

6. Production sets
The MAX system consists of an ordered set of productions
This production set contains

(a) control productions, a set Pc

(b) a variable set Py

(c) the production set Pm
Om®—->10mforallm=0,1,2,....

20z udy 61 U0 3senb Aq 0£01¥€/0€/1/0Z

7. Transformations
These productions are used to transform a given text. Trans-
formation of text is carried out according to the following
procedure. The text is compared with productions in sets Pc,
Py, and P,, in turn.

If the textis ... S_3 S_, S_; OOm Sy Sy S, . .. then a match
occurs with the production

U,U0,..U0,0O0mU,....Uyp—= V...V . 0On
Vc+1"°Vc+d
for which, foralli,1 <i<a+ b,

either U =9

or Ui = Si-a-1

The first production for which a match occurs specifies that the
text is transformed to

The Computer Journal

oo.S_a_l Wl"' Wch Wc+1... Wc+dSbSb+1"'

where
W, = Sj—a-1if Vi=j(jeP)
¢ 7 | V; otherwise

If a match occurs with some control productions, the set P,
may also change, or some other events concerned with com-
munication with the external environment may take place.

8. Basic control productions

The following control productions withm = 0, 1,2, ... are in
the set Pc. Here m* stands for m + 1, for any integer m.
The same notation applies for all symbols Se U P

(a) Om BEG - BEG Om*
() BEG S, S,...S,OmREPT - BEG Om S7S;...S;
(©)BEG S, S,...S,0Om* END -» Om S7 S5...S;

for all Sy, S5,...S,in S.

(@dBEGS, S,...SOm* ENDQ =S, S,...S,Om
forall S; S,...S,in S.

When productions of form (c) or (d) are applied, all productions
with markers [Jm’ are deleted from the set P,.

(¢) DEFS,; S,...S,ISS,.{...S, (0m ENDD — [m for all
symbols S, ... S, in S. When this production is applied,
the production S; S,...S, = S,41...S5;(m) is placed
at the beginning of P,, when m # 0. If m = 0 then the
production S;S,...S,= Sps1...-5: (), for I =0,1,
2...is placed in Pc.

(f) DEFS,; S,...S,-.,(OmARG® - DEFS,S,...S,-, P
Om DEF’ n* 1IS'n’ ENDD' forall S;, S,, ... S,-; in S,
and for all n > 2. Also (n =1) DEF (Om ARG ¢ —
DEF & (IJm DEF’ 21S’ 1’ ENDD'.

(g) OOm MAC — [Jm DEF BEG
(/) OOmENDM — [0m ENDQ ENDD

() SOmMINC - S* Om for SinIuP
() S*OmDEC - S[Om forSinITu P
k) S;S,O0mADD — S; (Omx where, if S; = a°€el
() S,S,CmSUB — S, Om S2=bel,

S3 = to, t=a+ b
S,=UU=a-b
(m) +n OmPZ —» TRUE Om forn=20,1,2,...
—n[mPZ - FALSE(Om forn=1,2,...
S[OmPZ —» TRAP [Om for any other S.
(n) 0 Om ZE — TRUE (Om
+n [Om ZE —» FALSE [(Om
—n[mZE - FALSE(m forn=1,2,...
SOmZE — TRAP (Om for any other S.
(o) S; S, OmCONC — [Im S; where
ifSl = a1°, a € /4
and S, = a,°, a, e W
then S; = a;
where a; = aja, e W
S, S, O0m CONC - S, S, [Im TRAP
for any other Sy, S,.
) S;S,O0mCDB - S; [m where S; = a,°% a, €1,
Sz = a2°, a € W
and is a representation of a decimal digit d. Then
S3 = a3°, a; EIand as = 1001 + d.
S; S, OOm CDB — S, S, [(Om TRAP otherwise.
(@) S; OOm CBD — 8,8, [(Om
where

@) if S; = a,°and 0 < @; = 10c + d where 0 < d <9,
then S, = a,° and a, € W is the representation of the

Volume 20 Number1

digit d, S3; = a,° where a; is the integer ¢ if ¢ # 0 or
if ¢ = 0, a5 is the character +.

(ii) correspondingly if 0 < —a; = 10c + d, with a,
representing d, and a; representing ¢ or the character

S; (Om CBD — s; [Im TRAP otherwise.

9. Output control productions
In the latter three sets of productions it is assumed that basic
symbols in W may be representations of particular external
characters. Each symbol has an external representation and
strings of external representations may be produced (output)
using the following productions.
(r SOmOUT - Om
the representation of S is output
(s) OmSP - Om
a separator character is output
() OmN/L-> Om
a newline character is output, i.e. the output device is
placed at character position 1 on the next line.
() +iOmTAB - Om .
The output device is moved onwards to character positiong
i on the same or the next line.

ojumoQg

10. Input control productions
External representations may be converted into internals
representations by means of the control symbol INP.

(v) OmINP - Im x INP
where x is the next symbol which is externally represented3
in the input stream of characters.

eoe//:sAy wouy pep

3p

no'ol

In the following productions the interpretation of extemato
representations of symbols may be controlled. It is assumedS
that words are represented externally by strings of characterss
other than the control character. The external representation ofS,
a symbol is the external representation of the basic symbol3
followed by that number of control symbols equal to its quoteﬂ
level.

Basic symbols other than words are represented as follows:
integers: their signed form preceded by the control character
parameters: an unsigned number preceded by the control\

character
the universal symbol: the control symbol alone.
control symbols: any other string of characters preceded.by thc:<
control character.
Any number of separators may be used to separate extemal‘I>
representations of symbols. At the end of each line of input ag
specified symbol may be placed on the text, when [Jm INP:
occurs. The following productions control input

(w) S[OmDSEP - [m
If S = w°® where we W and represents single character,
then henceforth that character will be treated as the
separator (SPSS). If not, then all subsequent characters
will be regarded as separate words.

(x) SOmDCON — [Om
Similarly the character w (S = w°) will be henceforth
treated as the control character. If S # w° for a character
w, there will be no subsequent control character.

(») sOmDEOL - [(Om
The symbol s is henceforth regarded as being represented
at the end of each line of input, unless s is the universal
symbol in which case no symbol is recognised.

(z) OmC- Om
All characters on the current line of input are to be ignored,
(regarded as comment).

It should be noted in the above that these productions control

0€/L/10¢/eP

0e0Ly

20z Iudy

35

these productions may not necessarily start with the symbol
INP, although this will generally be the case.

the effect of future applications of the INP production. It is
possible that text to be processed after an application of one of

References

Brown, P. J. (1967). The ML/1 Macroprocessor, CACM, Vol. 10, pp. 618-623.

Brown, P. J. (1971). A Survey of Macroprocessors, Ann. Rev. Automatic Programming, Vol. 6, pp. 37-88, Pergamon Press, Oxford.
Mookrs, C. N. (1966). TRAC, Procedure-describing Language for the Reactive Type-writer, CACM, Vol. 9, pp. 215-219.

Nupps, D. (1974). The Simulation of a Digital Computer and its Languages on another Computer, Ph.D. Thesis, University of Bradford.
STRACHEY, C. (1965). A General-Purpose Macrogenerator, The Computer Journal, Vol. 8, pp. 225-241.

WAITE, W. M. (1967). A Language Independent Macro Processor, CACM, Vol. 10, pp. 433-440.

WAITE, W. M. (1970). The Mobile Programming Programming System: STAGE 2, CACM, Vol. 12, pp. 507-510.

Book reviews

Formal Languages and Programming, edited by R. Aguilar, 1976,
129 pages. (North-Holland, US$15.00)

wdi) pepeojumoq

Revised report on the algorithmic language ALGOL 68, edited byo
A. van Wijngaarden et al, 1976; 236 pages. (Springer- Verlag,;—
DM 24) or (Stichting MC Tract, 50, Dfl. 25)

ede//:sdy

One might think to use formal language theory to describe exponen-
tial growth in colonies of cells or simple animals; symbols are
attached to strings one at a time by production systems, whereas all
the animals repreduce themselves simultaneously, however. What is
needed instead is a variant theory called Lindenmayer systems.
Readers who wish to explore this tempting byway in formal language
theory should certainly join the tour led by Arto Salomaa at this
symposium, for he has a delightful way of describing recent theo-
retical work to newcomers. Thus we learn about the animals in IL
systems who discuss their reproduction problems together, and those
in OL systems who do not. It seems some animals are more context-
free than others.

Recent work in transporting compilers across ‘families’ of com-
puters, in discovering equivalent grammars from which faster
compilers might be written, and in describing ‘extensible’ languages
(i.e. families of languages) such as ALGOL 68, appears to entail the
study of ‘families of grammars’. These are sets of related grammars
whose common features can be abstracted by grammar-generating
functions called ‘grammar forms’. The prophet Seymour Ginsburg
came down from the mountain for just long enough to present to the
symposium the tablets on which he had briefly though clearly
inscribed the main results obtained by his colleagues in this new
work.

Doubts are being voiced increasingly about the way in which
compound data types have to be declared in the current crop of very
high level languages. It is being suggested that what we ought to be
offered instead is provision to declare sets or ‘clusters’ of functions to
access the data. The data themselves should remain hidden behind

This report is the final definition of the programming language;
ALGOL 68. It is a substantial revision of the original l'eportQ
(Mathematlsch Centrum Amsterdam, MR 101 February 1969) bothB
in style and content, and was first published as a supplement toO
ALGOL Bulletin 36 in March 1974. The draft was subjected toS
meticulous scrutiny, and numerous corrections were made before3
the first publication of th: revised report in Acta Informancai
Volume 5, parts 1, 2 and 3 (December 1975). o

The two vo]umes which are the subject of this review are 1dentlcal—
reprints of the Acta Informatica text. For the first time, the reportm
has been able to be printed in several typefaces, which as readers oﬁ?
the draft will confirm adds greatly to its readability. In addition, the‘&
review of the draft by so many people seems to have been worth-C>
while; by August 1976 only one minor error was known to thea
edltor of ALGOL Bulletin.

The revised report is a very specnahsed document, for an audlenceh
of specialists. It is a formal and rigorous definition of a complexw
language, and as such of interest to limited classes of people
Theoretical linguists and some computer scientists may find 1@
interesting. University lecturers with the time and inclination tog
study the metalanguage may find it reassuring to have on theLr"’
bookshelf, as the final authority for settling arguments. Compller:
writers will find it essential reading, although arduous. It is mosto
definitely not suitable as an introduction to ALGOL 68 for pro=>
grammers—even experienced programmers—since the formal=
descriptive technique is not easy to follow, even with practice. 8

Anyone who wishes to learn ALGOL 68 (which I would stronglyh

the functions. Melkanoff explains how this proposal might serve to
relate linguistic mechanisms for data type declaration to hardware
mechanism for memory protection, and how formal language theory
and proofs of program correctness might then be used to design both
mechanisms more neatly.

Many of us are still arguing over the best way for pairs of co-
routines to share variables in order to pass information ‘horizontally’
between shared storage areas. Adin Falkoff explains how files are
shared in time-sharing-APL to the satisfaction of its users apparently,
although his solution seems to me far less general than the better-
known ones of Dijkstra and Per Brinch Hansen.

The paper by Kupka is flatulent and the one by Indermark is
marred by incomplete definition of terms. Intending readers of the
three minor papers should bear in mind that their French authors
work in an algebraic tradition that refers to contextfree and regular

languages as ‘algebraic’ and ‘rational’ languages.
R. EDWARDS (Egham)

36

recommend) should read one of the introductory texts which are
increasingly available. Anyone who needs the report, particularly
anyone who is still working from the draft version, should hasten
to order one of these reprints. The choice between them would seem
to be a matter of convenience, or the current state of the currency
markets.

The Computer Journal

