Some consequences of deferred binding in COBOL

B. G. T. Lowden and I. R. MacCallum
Computing Centre, Universily of Essex, Wivenhoe Park, Colchester CO4 3SQ

It is a well known and accepted fact in systems design that once the basic objectives of a system
have been met, the cost of further expansion frequently outweighs any increased benefits and so
effectively deters development.

In many large organisations the implementation of sophisticated data base technology can represent
both a profitable and necessary investment which, amongst other things, provides a comprehensive
solution to the above problem. In other, perhaps smaller, installations the more important processing

requirements are simply those of flexibility in file design and ease of changing formats.
This paper sets out a proposal for a modified COBOL implementation which, by providing a level
of data independence adequate to most DP installations, may be seen to offer a viable alternative to

a full data-base system.

The approach is based on the transferral of the data division file definitions, from the COBOL
program, to the head of the physical files to which they pertain. Only those data elements referred to
in the application logic need then be declared in the program itself, and association between the two

definition sets may be deferred until run time.

This work is an extension of that being currently undertaken by MacCallum (1973) and MacCallum
and Jones (1975) forming part of a research programme aimed at improving information processing

techniques.
(Received October 1975)

Data independence (file design problems)

Probably the greatest difficulty in developing integrated systems
is that the addition of new applications normally involves
extensive changes to existing program suites. File format
changes, minor in themselves, can prove extremely costly in
terms of program modification and recompilation, one notable
example of this being decimalisation.

The size of the problem may be partly reduced by leaving space
for expansion in the data records, however this inevitably
increases both file sizes and processing overheads and does not
allow for changes in record structure.

The concept of data independence or ‘file transparency’
implies that the application program is independent of the
format, organisation and media of the files to which it refers.

To a certain extent all programs are data dependent in that
their logic will be bound to the size and appearance of particular
data fields. However it is an unfortunate fact of life that changes
to the structure, or content, of records within a file usually
necessitate alterations to all programs accessing that file
regardless of whether the changes actually affect fields used by
the program. It is this problem that the proposals of the next
sections seek to alleviate.

Towards a generalised hierarchical structure

Consider a typical inventory record as depicted in Fig. 1.
Whilst such a record may be simple to represent in a manual
system of multiple stock cards, the converse is true when
trying to define its structure in a COBOL data division.

For example there may be a variable number of occurrences
of the segments (ORDERS), (REQUIREMENTS) and
(CUSTOMER) within the owning segment (PART). In
addition the segments { DESCRIPTION) and (CUSTOMER)
may themselves be of variable length.

There are not many options open to the systems designer.
He may place upper bounds on the size of variable data items
and the number of repeats, thus incurring the usual penalties of
wasted space and inflexible design, or he may make each
segment into a record in its own right. Since, in a hierarchical
structure, a segment may only be identified in the context of
its superiors, this latter approach implies the overhead of
including additional key fields.

Neither of these techniques can be considered particularly

Volume 20 Number 1

y LLOJ; papeojumog

attractive to the commercial analyst and both entail prograt@_'
amendment if the level hierarchy (structure) is modified by;
say, the insertion of an additional segment (PRODU
between (PART) and (ORDERS), (REQUIREMENTS},
or even the simple re-arrangement of segments of the same
level.

As an example of a more flexible approach, consider
following data structure (Fig. 2). In this case, the file consists of
an ordered set of record occurrences A each of which consis§
of a hierarchical arrangement of segment occurrences
B, G, ...K. Segment occurrences which are marked with a§
asterisk, may own a variable number of filial segment occur
rences. All terminal segment occurrences can include variabfga
length fields. =

A convenient method for mapping this kind of structure ontd
linear storage is described more fully in Bowden, MacCallu@
and Patience (1971). Nodes corresponding to the segmemnt
occurrences marked with an asterisk are transformed into twd
levels, so that the parent node owns an explicit number of
filial segment occurrences. For example, if in Fig. 2D, Cand H
have k, m and n sons each, the transformed structure is as
shown in Fig. 3. >

Each record is seen to be represented as an ordered tree whose
nodes may hold variable length information, and may also
possess any number of successors. The nodal representation of
a segment occurrence might then appear on backing media as in
Fig. 4.

Clearly this form of dynamic structure is better suited to the
representation of commercial records, than is currently
permitted by the file section of COBOL’s data division. In fact
one may regard the latter as a degenerate case of the above.

i

PART
|
! I CUSTOMER
ORDERS REQUIREMENTS
PART-KEY (repeat) (repeat) DESCRIPTION (repeat)
ORD-KEY | ORD-QTY REQU-KEY REQU-QTY CUST-KEY
ORD-DATE REQU-DATE
o
Fig. 1

% E F G
L
|
J K
Fig. 2
Fig. 3
>
1T
N T
N successor addresses T words of information
(A zero implies that
there is no
corresponding
successor.)
Fig. 4
4
A suggested approach

The differences between the structure representations of Figs. 2
and 4 are purely procedural, and can be tabled in the form of a
simple, linear mapping function.

Further there is no reason why this function should not be
held as a fixed format descriptor record at the head of the file
itself, interpretation of data records being carried out at run
time. As an example, the mapping function for the structure of
Fig. 1 could be as specified in near COBOL format as follows:

Name Level Length Class Occurrences
PART) — — 1
PART-KEY 02 12 X —
ORDERS 02 — — *
ORD-KEY 03 6 9 —
ORD-DATE 03 4 9 —
ORD-QTY 03 4 9 —
REQUIREMENTS (02 — — *
REQU-KEY 03 8 9 —
REQU-DATE 03 4 9 —
REQU-QTY 03 4 9 —
DESCRIPTION 92 V' X —
CUSTOMER 02 — — *
CUST-KEY 03 8 9 —
52

where * denotes a variable number of segment occurrences and
V a variable length field.

The existence of an external, as opposed to a data division,
representation of a file’s structure can now be exploited to
provide a degree of data independence within the program
itself, since the association between the mapping function and
the program’s own view of the record structure may also be
deferred until run time.

Data definition
To develop the concept of deferred binding we first distinguish

four types of data variable associated with the program and
files.

1. True fixed length
These need to be fixed by virtue of the program logic, e.g. they
may be used in output formatting, or redefinition.

2. True variable length

Essential in many types of information processing for holding
fields of widely ranging sizes such as book titles, part
descriptions, etc.

3. Pseudo variable length

These are fixed length fields which may be subject to uniform
change from time to time within certain defined limits. Thus
no length descriptor fields are required within the file since
at any one time all occurrences are of equal size, and this
size is conveniently held in the mapping record. Examples
are numeric fields and descriptor codes.

4. Non-sensitive fields

Data which is held on file but not operated on, in any way, by
a particular program may be regarded as non-sensitive as far
as that program is concerned. Such data is usually described
as FILLER in COBOL’s data division.

Of the first three types, only true fixed length is currently
acceptable in COBOL. The proposed implementation allows
both true and pseudo variable length fields to be represented
as well as requiring only sensitive data to be declared. Below is
an example of data division syntax which embodies these
features and depicts a partition of the record format shown in
Fig. 1.

LFD PARTFILE.
VALUE OF ID IS “PTFILE 001",

@1 PART.
@2 PART-KEY PIC X(12).
02 ORDERS [IS] SUBRECORD.
@3 ORD-KEY PIC 9 VARYING 6 TO 10.
03 ORD-DATE PIC 9(6).
@3 ORD-QTY PIC 9 VARYING 4 TO 8.
02 DESCRIPTION PIC X(V).

02 CUSTOMER

[IS] SUBRECORD.
@3 CUST-KEY

PIC 9 VARYING 6 TO 10.

As may be seen the syntax is slightly but not significantly
changed from standard COBOL; notes of explanation are
however needed to describe the semantics.

Firstly the section of code is a declaration of a ‘logical’ file
definition (LFD) rather than the physical definition of standard
COBOL (FD). The LFD may best be regarded as the view of
the physical file (i.e. that on backing store) as seen by the
application program. In this example the program is not
concerned with (REQUIREMENTS), i.e. they are non-
sensitive and logically, therefore, they are not declared.

Changes to non-sensitive data, e.g. increase in field size, change
of type, will not therefore affect the program in any way.

Declaration of multiple occurrence segments is achieved by

The Computer Journal

20z udy 61 U0 1s8n6 Aq 8201 ¥€/1.G/1/0Z/101E/UlWOD/ W00 dNo"dlWspeoe)/:SA]Y WoJj POPEOUMOQ

associating the identifiers with an ‘[IS] SUBRECORD’ clause.
Segments so qualified may be regarded as records in their own
right as will be further illustrated in the next section.

Examples of true and pseudo variable length fields are DES-
CRIPTION and CUST-KEY respectively. Use of the
VARYING clause enables the bounds of pseudo fields to be
declared, and catered for, in the programs whilst still allowing
simplified representation on backing media. Clearly any
changes effected to data fields on the file which conflict with
the logical declaration, will necessarily require changes to the
program. However with the proposed syntax this should be
reduced to a minimum.

Currency

The concept of multiple occurrences, demonstrated in the last
example, implies that only one occurrence is represented at any
time in the logical file definition. It is essential therefore to
introduce the term ‘currency’, Codasyl (1971).

In the proposed implementation it will clearly be necessary to
hold some indication of which particular segment occurrences
are currently being manipulated by the program logic. Thus the
LFD, at a particular moment, may refer to the third occurrence
of ORDERS and the eighth occurrence of CUSTOMER.

This will have been achieved by viewing occurrences as
subrecords within records and using an ‘occurrence read’
statement

READ {occurrence name)

two and seven times respectively. The first occurrence of each
segment will already have been made available by a standard

READ (file-name){statement)

The basic idea of currency, then, is to describe the most
recently accessed segment occurrence as current.

At this point the reader will have, no doubt, recognised the
similarity between the proposed concept of subrecords and
COBOL’s existing OCCURtrence clause, in that each facility
enables the repetition of structures to be defined. It is worth-
while, therefore, to emphasise the essential differences.

In standard COBOL the maximum number of possible
substructures must be declared by means of the OCCURS
clause. Furthermore, the length of a record can only be tailored
to a variable number of OCCURrences, if an OCCURS. ..
DEPENDING clause describes the trailing section of the
record. In the dynamic record implementation of COBOL,
MacCallum and Jones (1975), already referred to, these re-
strictions are lifted, though references to identifiers at or below
the level of the OCCURS clause must be subscripted.

The SUBRECORD concept similarly permits any number of
substructures to exist within a record but does not imply
subscripting any more than one would expect to subscript the
records of a file to denote their physical location within that
file. Specific subrecords are thus selected from a record by
statements analogous to those used for selecting records from a
file system, namely READ {occurrence name).

The decision as to which structuring method should be used
in a particular application, will naturally be dependent on the
kind of processing to be performed on the substructure, and its
context within the program. For example, if many references
are to be made to a particular instance of a substructure without
intervening references to others, as in sequential processing,
then the SUBRECORD approach is to be preferred.

On the other hand, a subscripting technique would clearly be
more suited to randomly accessing a variable sized table by a
binary search routine.

The distinction is somewhat analogous to move-mode and
index-mode in a multibuffering situation.

If changes are made to a segment while it is current, they may
be effected on backing store by the use of an ‘occurrence write’
statement of the form

Volume 20 Number 1

WARITE (occurrence name)
and the segment will remain current. The use of a second
WRITE statement with no intervening occurrence read will
cause a new segment occurrence to be inserted immediately
after the one which is current, leaving the new segment as
current.

File restructuring

There are, in general, two ways in which COBOL record

formats may be restructured:

1. By adding or deleting field names, re-arranging physical
field locations or altering field lengths.

2. By modifying the hierarchical nature of the record by insert-
ing or removing levels, or by relinking subordinates of
LEVEL A to, say, LEVEL B.

The first transformation may easily be accomplished using

conventional update processing and associating the input and

output files with the old and modified logical file definitions

respectively.
For example the input may be described logically as:
|w)
@1 PART. g
02 PART-KEY PIC X(12). 2
?2 ORDERS [IS] SUBRECORD. 2
@3 ORD-KEY PIC 9(6). g
?3 ORD-DATE PIC 9(4). 3
®3 ORD-QTY PIC 9(4). 3_
— g
—_— 5
_— Y
—)
3
)
and the output as: é
?1 PART. 8
@2 PART-KEY PIC X(12). %
@2 ORDERS [IS] SUBRECORD. S
®3 ORD-KEY PIC 9(8). =l
@3 ORD-DATE PIC 9(4). S
@3 ORD-QTY PIC 9(4). &
®3 PRODUCT-CODE PIC 9(6). o
- S
__ N
- =
- >

The transformation, then, has the effect of increasing the ﬁeld@
size of ORD-KEY from 6 to 8 numeric characters and append-w
ing an additional field PRODUCT-CODE. These changes w1llo
be reflected in the mapping function heading the new ﬁch
and would in no way affect programs associated, say, with the;>
logical file definition of Fig. 1.

To avoid the problem of repeatedly reading, moving and'\’
wrltmg individual segment occurrences, a new MOVE option®
is introduced of the form:

MOVE LOGICAL ATO B

the semantics of which overcome the present constraints of
COBOL’s MOVE CORRESPONDING, with regard to
subordinate occurs clauses. Using a MOVE LOGICAL state-
ment enables a complete set of segment occurrences to be
moved from one area to another.

As stated in 2 above, hierarchical changes are essentially the
insertion or deletion of occurrence levels. In practice it is
difficult to conceive of a situation which would require the
removal of a parent occurrence whilst still retaining its filial
links. This is ordinarily because a hierarchy implies some sort
of grouping or ordering of suboccurrences within an owning
occurrence. Such ordering would be lost if the owning occur-
rence were deleted.

53

In our modified implementation, therefore, we have taken the
deletion of an individual occurrence to mean the removal of the
named occurrence plus all its dependent occurrences, if any.
However it may be necessary to caution or even prohibit such
action if; in deleting an occurrence declared in a logical file
definition, a programmer could unknowingly remove non-
sensitive data unseen by the application.

Insertion of a new occurrence /evel, on the other hand, implies
are-ordering of subordinate levels (unless the degree of the new
occurrence is unity, when all succeeding level numbers are
simply incremented by 1).

It is necessary, therefore, to extend the scope of the COBOL
sort verb to include occurrence sequencing. This, in practice,
would be fairly straightforward and does not involve any
changes to the syntax:

e.g.
SORT (occurrence-name) ON{ASCEND”\IG }KEY

DESCENDING
data-name etc’

Suppose that the structure of Fig. 1 is to be modified to include
a (PRODUCT) occurrence, between {PART) and
(ORDERS), regrouping the (ORDERS) occurrences on the
value of PRODUCT-CODE.

The input and output logical file definitions might then appear
as:

91 PART.
02 PART-KEY PIC X(12).
@2 ORDERS [IS] SUBRECORD.

@3 PRODUCT-CODE PIC 9(6).

—_— <
and
01 PART.
02 PART-KEY PIC X(12).
92 PRODUCT [IS] SUBRECORD.
?3 PRODUCT-CODE PIC 9(6).
@3 ORDERS [I1S] SUBRECORD.

respectively, and the program logic would include a statement
of the form:

SORT ORDERS OF (input file>
ON ASCENDING KEY PRODUCT-CODE &

On writing the restructured output file, all (ORDERS)»
occurrences associated with a given PRODUCT-CODE must
be linked to the appropriate (PRODUCT) occurrence.

In this example (ORDERS) occurrences would be succes-
sively read from and written to the input and output files
respectively until a change in the sort key PRODUCT-CODE
is detected. The current {PRODUCT) occurrence is then
written, and the process repeated until the input is exhausted.

Implementation

The proposals outlined in this paper, for achieving a level of
independence between physical file layout and file definitions
can be implemented by a development of the approach des-
cribed by MacCallum and Jones (1975). In this system, at
compile time, identifiers are associated with logical nodal

54

addresses of the tree defined by the declarations of the DATA
DIVISION. Then at run time, whenever an identifier is to be
accessed, tree structures are searched so that the logical nodal
address may be associated with a particular physical address
for the record being processed. File transparency may be
achieved by taking the process one stage further. Assuming that,
in the LFD of the DATA DIVISION, only those identifiers
of interest to the program are declared and that a complete
file descriptor appears as the leading record of a file then at
compile time identifiers are merely checked to ensure that they
appear in the DATA DIVISION and retained as identifier
strings in a table, to be completed at file opening time. The
identifier temporarily becomes associated with the corres-
ponding location in this table. At file opening time the file
descriptor is read, and traversed, checking each node’s
identifier against entries in the table created at compile time;
on matching, the corresponding nodal address is entered into
the table. Finally, at identifier access time, the table is looked up
at the location determined at compile time (only two or three
store accesses) to discover the corresponding nodal address,
from which the physical address is computed as before. g
The implementation of subrecords in a COBOL-type environ-2
ment may be achieved in several different ways. If access toQ
subrecords is limited to the sequential mode, then a method bya
which subrecords are physically read into a loglcal record areao
could be devised. The principal objection to this is that heavyj
overheads are incurred in the reading and writing of subrecordsU
upon which little or no processing may be done. =
In the COBOL implementation, already referred to, am
mechanism exists for handling variable numbers of sub-&
structures. To include a subrecord facility, this system requiresz:
the following basic modifications:

dnooiw

1. The addition of currency fields at nodes described as®
SUBRECORD nodes.

2. The creation of mechanisms for resetting all currency ﬁelds_
of a given subtree to 1, and for incrementing a given currencym
field on the occasion of a subrecord sequential read. The=
simplest implementation of this is by traversing the subtree‘I>
and testing whether each node is a currency node.

3. For each reference to a node of a subrecord, the phys1cal"1
address computation is similar to that used for subscnpts,h
except that the value of the appropriate currency field is usedo
instead of the value of a subscript identifier.

woo/w

/1/02/

U
<

Thus the principal overhead consists of a tree traversinge
operation upon every subrecord read. To avoid the overhead of3
resetting currency fields on every (full) record read, they can2
be reset whenever a record is written.

Conclusions
This paper has outlined proposals for a modified imple-
mentation of COBOL which endows the language with con-
siderably enhanced capabilities for handling ‘real life’ record
structures.

The intention is to develop the semantic power of its existing
statements to meet present day needs whilst at the same time
changing the syntax as little as possible. This is considered
essential when dealing with a language as widely used as
COBOL.

The advantages of data-independent file processing are self-
evident in a practical DP environment. It has been estimated
(Engles, 1975) that 259 of commercial programming is
associated with routine maintenance.

Just as important there is no reason why both logical files
and conventional files may not be handled in the same program,
or logical definitions used to describe conventional record
formats. The process of actual file conversion can therefore be

¥20z Iudy 61

The Computer Journal

gradual, existing files being ‘generalised’ as and when the need
arises, normally as a result of system integration.

Overall it is felt that the proposals bridge the gap between
conventional programming and data base technology.

References

Acknowledgement

The authors are indebted to P. E. Jones, also of Essex Univer-
sity, for his helpful comments and suggestions during the
preparation of this paper.

BowpeN, K. F., MACCALLUM, L. R., and PATIENCE, S. P. (1971). Data Structures for General Practice Records, Proc. IFIP Congress 1971.
CoADSYL (1971). Feature Analysis of Generalised Data Base Management Systems, Section 7.4, May 1971.

ENGLES, R. W. (1972). A Tutorial on Data Base Organisation, Annual Review Automatic Programming, Vol. 7, Part 1, July 1972.
MAacCaLLuM, L. R. (1973). Interpreting Record Structures, proceedings of Software 73, Transcripta Books, London.

MacCaLLuMm, L. R., and Jongs, P. E. (1975). Dynamic Record Structures for COBOL, Computer Science Memorandum CSM—13, (Copies

available from Computing Centre, University of Essex).

Book reviews

Introduction to Optimization Methods, by P. R. Adby and M. A. H.
Dempster, 1974; 204 pages. (Chapman and Hall Limited, £2-50)

The problem of optimization is usually regarded as finding x which
minimises a nonlinear functional f(x), sometimes subject to equality
constraints g(x) = 0 or inequality constraints A(x) = 0.

The history of the development of the subject is bound up with the
growing availability of adequate computational facilities. The main
mathematical concepts were worked out a quarter of a century ago
before computers really arrived on the scene. The Kuhn-Tucker
theory dates from 1951. Conjugate gradients were first used practic-
ally about the same time. Levenberg’s method for least squares
problems goes back further to 1944. The subject never seems to have
held much interest for pure mathematics. In the early literature, the
names of those developing algorithms are those of chemical engineers,
operational research scientists and others with large practical
problems demanding solutions. Typical of this phase of development
is Rosenbrock whose well known method appeared about 1960—
his notorious valley function still survives as a test of the efficiency
of new methods.

In the late 1950’s numerical analysts became interested. Powell, one
of the most prolific of writers on optimization, began publishing
about 1962. Marquadt’s celebrated algorithm appeared in 1963.
In the mid 60’s and early 70’s there followed a veritable flood of
papers introducing what were essentially computing variants of a
relatively small number of basic methods. The flood has only
recently abated. At its height the research was basically in the field
of algorithmics and computing science. Many papers were concerned
with the minutiae of computing tactics, few made a distinctive
contribution to mathematical knowledge. (Not that this was a bad
thing! Many practical people wanted practical answers quickly and
economically). By now .anyone wishing to write a text book on

optimization has a problem of discriminating the really useful from -

a mass of techniques.

The book by Adby and Dempster sets out to be a typical primer—
‘suitable for undergraduate and postgraduate courses in mathe-
matics, the physical and social sciences and engineering’ as the
preface says. After an introductory chapter, the second chapter
covers the one dimensional problem, covering search methods and
elementary approximate methods. Chapter 3 deals with methods for
unconstrained multivariable problems. These three chapters are
competently done.

Chapters 4 ‘Advanced methods’ and 5 on ‘Constrained
optimization’ take up some sixty per cent of the text. My personal
view is that here the authors try to get too much in, and in places
the text reads almost like a catalogue. There is much of value, but
readers requiring an introductory text might be better served by a
more critical account of a smaller number of variants of methods.

There are well explained algorithms for several of the methods
described, and an excellent bibliography, plus a number of good
examples. Teachers will find this quite a useful text to keep for
delving into.

A. YOUNG (Coleraine)

Volume 20 Number 1

Simulation with GASP PL/I, by A. A. B. Pritsker and R. E. Y oung
1976; 335 pages. (John Wiley, £9-25)

This book is well presented and gives a good insight into the subject
of simulation by practical example, as well as being a manual for
GASP PL/I It compares favourably with other books of this type.

The first two chapters provide a good introduction to simulation

eojumoq

Q
)
o
=
o
3

=

and would be suitable for initial reading on the subject. The text of-g

part of the second and the third chapter seems somewhat redundant,
as the tables and flowcharts provided, together with the excellent
examples that follow later, give a good explanation of the language.

The examples, that comprise two thirds of the book, cover a range
of discrete and continuous systems that amply demonstrate the

=
o
o)
Q.
(]
2

o
c

flexibility of GASP PL/I. S

There are some good exercises at the end of each chapter and the

book also contains algorithms for the random deviate generators 3

and the integration method used by the package.

A. CUNNINGHAM (Manchester)=

Integral Equations Via Imbedding Methods, by Harriet H. Kagiwada
and Robert Kalaba, 1974; 382 pages. (Addison-Wesley|W. A.
Benjamin, hardcover US$19-50, paperback US$12-50)

In this book methods are developed for obtaining numerical solutions
of Fredholm integral equations by converting them to a set of
ordinary first order differential equations with given initial values. In

Q
e}
=
Q
e}
3

€/1G/L/0¢/8Phe/

~
=
o
~
©
=2

most cases the upper limit of the integral in the integral equation isg

regarded as a variable which is the independent variable of the
differential equations.

c

(0]
[2]
—_

The first three chapters deal with degenerate and semi degenerateg
kernels. In the degenerate case, it is shown that if the kernel iso
expressed as a sum of M products then the integral equation isZ
equivalent to M2 + M differential equations. The next two chapters=
deal with the cases of displacement and composite kernels and in§
chapter 6 the general linear equation is considered. In the latter case~

it is shown that if an N point quadrature formula is used, the
integral equation is equivalent to N2 differential equations. Nonlinear
equations are similarly considered in chapter 7. In chapter 9 both
linear and nonlinear equations whose kernels involve a parameter,
which includes the eigenvalue problem, are considered. Some
particular integral equations corresponding to problems in radiative
transfer are solved in chapter 9, and there is a final short chapter
dealing with a pair of dual integral equations occurring in potential
theory.

The analysis in the book is set out clearly and in detail so that it is
easily followed, although it tends to become tedious because of the
repetitions with similar cases. The book is well produced and there
are very few misprints. What is not convincingly demonstrated is
that the method of replacing the integral equation by a set of ordinary
differential equations is superior to the normal numerical methods of
solving these integral équations.

V. E. Price (London)

55

